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Abstract

Referring image segmentation is a challenging task that
involves generating pixel-wise segmentation masks based
on natural language descriptions. The complexity of this
task increases with the intricacy of the sentences provided.
Existing methods have relied mostly on visual features to
generate the segmentation masks while treating text fea-
tures as supporting components. However, this under-
utilization of text understanding limits the model’s capa-
bility to fully comprehend the given expressions. In this
work, we propose a novel framework that specifically em-
phasizes object and context comprehension inspired by hu-
man cognitive processes through Vision-Aware Text Fea-
tures. Firstly, we introduce a CLIP Prior module to lo-
calize the main object of interest and embed the object
heatmap into the query initialization process. Secondly,
we propose a combination of two components: Contex-
tual Multimodal Decoder and Meaning Consistency Con-
straint, to further enhance the coherent and consistent in-
terpretation of language cues with the contextual under-
standing obtained from the image. Our method achieves
significant performance improvements on three benchmark
datasets RefCOCO, RefCOCO+ and G-Ref. Project page:
https://vatex.hkustvgd.com/.

1. Introduction

Referring image segmentation (RIS) is an emerging new
task in computer vision that predicts pixel-wise segmenta-
tion of visual objects in images from natural language cues.

*Co-first author
†Corresponding author
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Figure 1. Qualitative comparison between LAVT and Ours. The
yellow box indicates the wrong segmentation results. Object un-
derstanding and Context understanding are required to tackle the
challenge of complex and ambiguous language expression.

Compared to traditional segmentation [5, 16, 50, 52, 55, 57,
61], RIS allows users to select and control the segmentation
results via text prompts, which is useful in various applica-
tions such as image editing, where users can modify spe-
cific parts of an image using simple text commands, and in
robotics, where robots need to understand and act on verbal
instructions in dynamic environments.

A particular technique to solve RIS is to obtain a ro-
bust alignment between language and vision. Performing
such an alignment presents significant challenges due to the
nature of languages, which are highly ambiguous without
given context. Early alignment approaches [13, 31, 41, 63]
in RIS either used bottom-up methods, merging vision and
language features in early fusion and using an FCN [46] as
a decoder to produce object masks, or top-down methods,
which first identify objects in image and use the expression
as the grounding criterion to select best-matched result.

Recent approaches [11, 36, 62] are based on transform-
ers that learn the interaction between vision-text modalities
followed by a standard encoder-decoder process to produce
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pixel-level segmentation results. However, existing meth-
ods have relied mostly on visual features to generate the
segmentation masks while treating text features as support-
ing components in the fusion module. This insufficient uti-
lization of text understanding hampers these methods’ abil-
ity to accurately segment target objects for challenging ex-
pressions involving rare object vocabulary or contextual re-
lationships between objects. For instance, as illustrated in
Figure 1, while LAVT [62] can effectively segment the well-
defined ”orange-striped fish” and identify specific location
information ”on the left” in the first expression, it struggles
with the expression ”clownfish” and incorrectly identifies
the turtle that is ”facing towards the camera” in the second
expression. This inconsistency highlights the limitations of
current approaches in understanding complex expressions,
especially in handling unseen vocabulary and varying ex-
pressions referring to the same object.

Moreover, the human approach to RIS [1, 2, 23] does
not involve parsing or understanding complex sentences en-
tirely. Instead, we naturally break down a referring expres-
sion into its core components: the object of interest and
its description with context information. Initially, the pri-
mary focus is on identifying what is the object mentioned
in the expression (e.g., the main object of interest). Fol-
lowing this, the search space within the image is narrowed
to objects that match the main object’s category. The final
step involves using the specific characteristics or contextual
information described in the expression to pinpoint the tar-
get object. Inspired by this, we propose decomposing this
task into two processes: object understanding and context
understanding. This decomposition allows for a more com-
prehensive understanding of text features, ultimately en-
hancing the accuracy and consistency of referring expres-
sion segmentation.

Firstly, in terms of object understanding, current meth-
ods do not utilize the object representation in the query
initialization process. ReferFormer [54] generated ob-
ject queries conditioned on language expressions, while
VLT [10] implicitly employed multiple query vectors with
different attention weights to generate various interpreta-
tions of the language description. However, these varia-
tions may lead to confusion and conflict with each other
and may not focus on the target object. On the other hand,
we propose CLIP Prior to explicitly integrate visual infor-
mation of the primary object of interest into text cues during
the query initialization process. This module transfers the
knowledge from pre-trained model CLIP [44] and generates
an object-centric visual heatmap to create adaptive, vision-
aware queries, enhancing generalization and robustness of
object comprehension, even in the challenging case where
the expression contains ”unseen” category (e.g. clownfish).

Secondly, for context understanding, we introduce a
Contextual Multimodal Decoder (CMD) to further exploit

the superior interaction between visual and text modalities,
especially the vision-to-language interaction. CMD aims to
enhance text features by using contextual information ob-
tained from the visual features and to bring the semantic-
aware textual information back to visual features in a hier-
archical architecture. While we can use the ground truth
mask annotations as a direct learning signal to supervise the
language-to-vision features, the opposite interaction is im-
plicitly learned without any learning signal. By observing
that there are multiple ways to describe an instance based on
the context provided by the image, we propose the Meaning
Consistency Constraint (MCC) as a contrastive learning sig-
nal to enforce the consistency of vision-aware text features
produced from CMD among different expressions referring
to the same instance in an image. The vision-to-language
interaction can explicitly learn through this extra in-context
learning signal, resulting in a profound, coherent, and con-
textual understanding in the feature space.

Our method is evaluated on three widely-used image
datasets, RefCOCO, RefCOCO+, and G-Ref, and further
extends the results to video datasets, Ref-Youtube-VOS and
Ref-DAVIS17. These datasets consist of diverse and chal-
lenging text expressions, and our proposed model achieves
state-of-the-art performance on all five. Through various
ablation studies, we have demonstrated the effectiveness of
our model and shown that it can achieve robust referring
segmentation even in challenging scenarios.

Our main contributions can be summarized as follows:

• We address the current limitations of existing methods
in dealing with complex text expressions and present
a novel framework to utilize Vision-Aware TEXt Fea-
tures (VATEX) for a better understanding of text ex-
pressions in RIS by decomposing it into Object Un-
derstanding and Context Understanding components.

• We introduce a novel CLIP Prior to embed an object-
centric visual heatmap in the query initialization pro-
cess, enhancing object understanding by transferring
knowledge from the pre-trained CLIP model.

• We propose Contextual Multimodal Decoder (CMD)
followed by a Meaning Consistency Constraint (MCC)
as a learning signal for vision-to-language branch to
improve context understanding. CMD module en-
hances the interaction between visual and text modal-
ities, while MCC ensures consistent interpretation of
different expressions conditioned in an image.

• Our method achieves superior performance on all
splits of the RefCOCO, RefCOCO+, and G-Ref for im-
age datasets and Ref-YouTube-VOS and Ref-DAVIS
2017 for video datasets, surpassing the current state of
the art for each dataset, especially in datasets with the
more complex expressions.
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Figure 2. The overall architecture of VATEX, which processes input images and language expressions through two concurrent pathways.
Initially, the CLIP Prior module generates object queries, while simultaneously, traditional Visual and Text Encoders create multiscale
visual feature maps and word-level text features. These visual and text features are passed into the Contextual Multimodal Decoder to
enable multimodal interactions, yielding vision-aware text features and text-enhanced visual features. We then harness vision-aware text
features to ensure semantic consistency across varied textual descriptions that reference the same object by employing sentence-level
contrastive learning, as described in the Meaning Consistency Constraint section. On the other hand, the text-enhanced visual features and
the object queries generated by the CLIP Prior are refined through a Masked-attention Transformer Decoder to produce the final output
segmentation masks.

2. Related Work

Referring image segmentation [18] aims to generate
pixel-wise segmentation masks for referred objects in im-
ages given a natural language expression. Early works [14,
19, 35] proposed to extract visual and linguistic features in-
dependently from convolutional and recurrent neural net-
works, respectively, and then concatenating these features
to create multimodal features for decoding final segmen-
tation results. In recent works [3, 10, 12, 30, 51, 58, 62,
64, 66, 68], transformer-based multimodal encoders have
been designed to fuse visual and text features, capturing
the interaction between vision and language information in
the early stage. VG-LAW [47] utilizes language-adaptive
weights to dynamically adjust the visual backbone, enabling
expression-specific feature extraction for better mask pre-
diction, while LISA [29] learns to generate segmentation
masks based on Large Language Models. PolyFormer [36],
on the other hand, treats this task as a sequential polygon
generation. Another line of works have explored enhanc-
ing text understanding in RIS using graph-based methods:
CMPC-RefSeg [20] classifies words into entity, attribute,
relation, and other categories, building a graph with entities
and attributes as nodes and relations as edges, while LSCM-
RefSeg [22] constructs fully connected graph, then based
on dependency parsing trees to prune unnecessary edges. In

contrast, our model does not depend on graph convolutional
networks, instead focusing on utilizing the vision-aware text
features in text understanding.
Query Initialization. The DETR (DEtection TRans-
former) framework [4] has achieved impressive perfor-
mance in object detection by directly transforming the task
of object detection into a set prediction problem. Build-
ing upon DETR, several works have focused on improving
the query initialization process for better performance. De-
formable DETR [67] proposes a deformable transformer ar-
chitecture to refine object queries, while DAB-DETR [37]
directly uses the bounding box coordinate in the image to
improve query initialization. In the field of referring seg-
mentation, ReferFormer [54] extracts the word embeddings
from the referring expression and treats them as the initial
query for the framework. Our CLIP Prior elevates this ap-
proach by incorporating a CLIP-generated heatmap, enrich-
ing the textual features with spatial context during query
initialization. This enriched query leads to improved per-
formance in the subsequent segmentation stages.
Contrastive Learning is pivotal in advancing vision-
language tasks [6, 7, 15, 56], enhancing model performance
by distinguishing similarities and differences in visual and
textual data. CLIP [44] employed a contrastive loss on
an extensive image-text dataset. CRIS [53] leveraged text
and pixel-level contrastive learning while VLT [11] applied
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masked contrastive learning to refine visual features across
diverse expressions. Unlike previous approaches [11, 53]
that solely focus on improving visual qualities by raw lin-
guistic information, our work utilizes contrastive learning
to enhance the comprehension of varied expressions condi-
tioned in a shared image context before using it to enrich the
visual features. This ensures the accuracy and stability of
mutual interaction between text and visual features, partic-
ularly through the comparison of vision-aware expressions
related to objects in an image.

3. Proposed Method
Inspired by the human approach to RIS, which involves

breaking down a referring expression into its core compo-
nents: object of interest and contextual description, we pro-
pose simplifying the text expression by decomposing it into
object and context parts. This decomposition aims to en-
hance the text understanding, thus improving the accuracy
and consistency of referring expression segmentation.

Our framework is constructed by three main compo-
nents, as demonstrated in Figure 2. First, for object under-
standing, we propose a CLIP Prior module to generate an
object-centric visual heatmap that localizes the object of in-
terest from the text expression, which can be subsequently
used to initialize the object queries for the DETR-based
method (Section 3.1). Next, we utilize cross-attention mod-
ules to interact between visual-text modalities in a hierar-
chical architecture via our Contextual Multimodal Decoder
(Section 3.2) and leverage Meaning Consistency Constraint
to harness vision-aware text features generated by CMD
(Section 3.3). We further adopt a masked-attention trans-
former decoder [8] to enhance the object queries through
multiscale text-guided visual features. Finally, the en-
hanced object queries and the visual features from CMD
are utilized to output segmentation masks (Section 3.4).

Mathematically, given an input image with the size of
H × W × 3, we can obtain the multiscale visual feature
maps V = {Vi}4i=1 , Vi ∈ RHi×Wi×Ci from the Visual En-
coder that captures the visual information in the data, where
Hi,Wi, Ci denote the height, width, and the channel di-
mension of Vi. Given the L-word language expression as
input, we use our Text Encoder to encode it into word-level
text features fw ∈ RL×C with C as the channel dimension.
Our visual and text features will be further processed as de-
scribed in the following sections.

3.1. Object Localization with CLIP Prior

For the object part, we first extract the main noun phrase
from the expression using spaCy [17] (e.g., the bull) in order
to focus only on this main noun phrase. Referring expres-
sions in the RIS task are object-centric, which means that
the main noun phrase is the main object of the sentence.
We then convert the complex referring expression to a sim-

Naive 
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w/ Prompt
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the camera

Expression

For visualization 
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Figure 3. Our CLIP Prior exploits the alignment of CLIP-Image
and CLIP-Text embeddings for better query initialization. Best
viewed with zoom.

ple template-based sentence before passing it to the CLIP
Encoder. In our implementation, we use ”A Photo of [Ob-
ject]” as our template as it is the most common prompt to
describe an object [65] in CLIP, where the resulting text fea-
ture is represented by Ftext. We found that this improves the
accuracy of the heatmap in localizing the object of interest.
In a separate flow, our input image goes through the CLIP
Visual Encoder, resulting in features for multiple image to-
kens FCLIP-Image ∈ R(

H
16×

W
16+1)×C .

Our visual heatmap for the object of interest can be
obtained by calculating the similarity between the visual
and text features, then reshaping to image space and going
through L2-normalization:

Heatmap = norm
(

FCLIP-image

∥FCLIP-image∥
· Ftext

∥Ftext∥

)
. (1)

As normal practice, positional prior from CLIP is em-
beded to the text features by changing the dimension of
the similarity map from H

16 × W
16 + 1 to C, then repeat

it N times together with the text features, then add these
two to create initial object queries feature with N queries,
each with C-dimension, for embedding the positional prior
and text information into the query feature. Unlike previ-
ous methods that typically learn the target object represen-
tation implicitly through multi-modal transformers [10] or
convert only textual information from natural language into
object queries [54], our approach explicitly generates the
heatmap and embeds it in the query initialization process.
This ensures that the queries contain rich and useful infor-
mation about both visual and textual aspects, as well as the
alignment between these modalities. Such a comprehen-
sive query initialization is essential for effective object un-
derstanding, particularly in challenging scenarios involving
complex or unseen vocabulary.

While this template approach can efficiently localize re-
gions of interest, it may lead to information loss due to over-
simplification (e.g., focusing only on the bull in this sce-
nario). However, its primary function is to narrow down the
search space by localizing a region containing the object of
interest, not necessarily finding out the exact object. To find
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the exact object of interest, the full-text expression needs to
pass through the CMD and MCC for more comprehensive
characteristics and contextual understanding.

3.2. Contextual Multimodal Decoder

Contextual Multimodal Decoder (CMD) is proposed to
produce multi-scale text-guided visual feature maps while
enhancing contextual information from the image into
word-level text features in a hierarchical design, see the
architecture figure in the supplementary material. Specif-
ically, our CMD is based on a feature pyramid network ar-
chitecture [33], which has four levels. Each level transfers
the semantic information from visual features to text fea-
tures and then uses these vision-aware text features to up-
date the visual features afterward via cross-modal attention.

In the i-th level of CMD, given the input visual features
Vi and text features Fw

i−1, the multi-modal interactions are
performed in two steps. First, a cross-attention that takes
text features Fw

i−1 as query and visual features Vi as key and
value is used to model the relationship of the text and visual
information. Then it forms the vision-aware text features by
associating them with current text features:

Fw
i = MHA(Fw

i−1, Vi, Vi) · Fw
i−1, (2)

where MHA(q, k, v) is the multi-head cross-attention mod-
ule with query q, key k, value v.

Fw
i is then treated as the key and value and Vi is treated

as the query in another multi-head cross-attention module to
reinforce the alignment between the visual and text modal-
ities and generate features V ′

i . Consequently, V ′
i is fused

with the text-guided visual feature F v
i−1 from the previous

level i − 1 followed by a Conv2d layer to obtain the text-
guided visual feature F v

i . Mathematically, the whole pro-
cess is as follows:

V ′
i = MHA(Vi, F

w
i , Fw

i ) · Vi, (3)
F v
i = Conv2d(V ′

i + Ups(F v
i−1)), (4)

where Conv2d() is the 2D convolutional layer, and Ups()
denotes upsampling F v

i−1 to the size of V ′
i . For the first

level with i = 1, we skip F v
0 and let Fw

0 = fw, where fw
is the word-level linguistic features extracted by the Text
Encoder.

Previous methods have developed various bidirec-
tional multimodal fusion mechanisms, including word-pixel
alignment in encoder stage [58,64] and region-language in-
teractions [34]. Compared to these approaches, our novelty
is the combination of CMD and MCC, where MCC serves
as an in-context learning signal to enrich the vision-aware
text features and further enhance the vision-language inter-
actions within the hierarchical architecture of CMD.

“A black horse”

“Horse head to 
the right”

“The horse the 
woman is riding”

Sentence-level
Feature SpaceImage

Ground Truth

𝐹!(𝑝")

𝐹!(𝑝")

𝐹!(𝑛)

Pull closer
Push away

𝑓#(𝑝")

𝑓#(𝑝$)

𝑓#(𝑛)

CMD

Text FeaturesExpression

Figure 4. Illustration of Meaning Consistency Constraint. Vision-
aware text embeddings of different expressions are passed through
a contrastive learning module in sentence-level feature space. Em-
beddings referring to the same object are pulled closer while push-
ing others far away. Best view in color.

3.3. Meaning Consistency Constraint

Each object in an image can be described by various text
expressions. Although the linguistic meaning of these de-
scriptions may be different, they should convey the same se-
mantic meaning when referencing that image (see two red
expressions in Figure 4). According to this perspective, it’s
crucial for CMD to gradually comprehend contextual cues
from visual features into textual representations and ensure
consistent identification of target objects, where expressions
referring to the same object yield identical representations.
However, previous studies have often overlooked the rela-
tionship between expressions that pertain to the same in-
stance.

To delve deeper into this relationship and provide the ex-
plicit in-context learning signal for vision-aware text fea-
tures within CMD, we propose Meaning Consistency Con-
straint (MCC), a sentence-level contrastive learning ap-
proach. MCC aims to learn meaningful and discriminative
representations for different expressions while consistently
pulling sentences referring to the same object close to each
other.

Unlike previous contrastive learning-based ap-
proaches [11, 53], we focus on linguistic features that
are enriched and conditioned by visual information. This
can encourage CMD module to gradually learn how to
produce richer text features and lead to the improvement
of visual features in context understanding due to the
bidirectional attention mechanism and hierarchical design
of CMD module.

Our contrastive learning pipeline is illustrated in Fig-
ure 4. During training, we construct a triplet of text expres-
sions for each image. Each triplet comprises two sentences
that refer to the same object (positive samples), along with
a third sentence describing a different object (negative sam-
ple). We denote the positive samples by p1, p2 and the neg-
ative sample by n, respectively. With each sample x, we
derive the sentence-level feature by averaging the vision-
aware word-level textual features:

Fs(x) = Avg(Fw
4 (x), dim = 0), (5)
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Table 1. Quantitative results of referring image segmentation on Ref-COCO, Ref-
COCO+, G-Ref datasets on mIoU metric.

Method
Backbone RefCOCO RefCOCO+ G-Ref

Visual Textual val testA testB val testA testB val test

CRIS [53] ResNet-101 CLIP 70.47 73.18 66.10 62.27 68.08 53.68 59.87 60.36

CM-MaskSD [49] CLIP-ViT-B CLIP 72.18 75.21 67.91 64.47 69.29 56.55 62.67 62.69

VLT [11] Swin-B BERT 72.96 75.96 69.60 63.53 68.43 56.92 63.49 66.22

LAVT [62] Swin-B BERT 74.46 76.89 70.94 65.81 70.97 59.23 63.34 63.62

LISA-7B [29] ViT-H SAM Vicuna-7B 74.10 76.50 71.10 65.10 67.40 56.50 66.40 68.50

VG-LAW [47] ViT-B BERT 75.05 77.36 71.69 66.61 70.30 58.14 65.36 65.13

VATEX (Ours) Swin-B CLIP 78.16 79.64 75.64 70.02 74.41 62.52 69.73 70.58

Table 2. Precision analysis at different threshold value
comparison between VATEX and recent SOTA methods.

Methods Pr@0.5 Pr@0.7 Pr@0.9 mIoU

LAVT [62] 84.46 75.28 34.30 74.46
ReLA [34] 85.92 77.71 34.99 75.61
CG-Former [48] 87.23 78.69 38.77 76.93
VATEX (Ours) 88.12 82.54 45.11 78.17

Table 3. Quantitative results on video datasets.

Methods
Ref-YT-VOS Ref-DAVIS17

J&F J F J&F J F

ReferFormer [54] 62.9 61.3 67.5 61.1 58.1 64.1
VLT [11] 63.8 61.9 65.6 61.6 58.9 64.3
VATEX (Ours) 65.4 63.3 67.5 65.4 62.3 68.5

where Fw
4 ∈ RL×C , Fs ∈ RC . We adopt the InfoNCE

loss [43] to ensure that linguistic features referring to the
same object converge, while features of different objects di-
verge:

Lmcc = − log

(
sim(p1, p2)

sim(p1, n) + sim(p2, n)

)
, (6)

where sim(p, n) = exp(Fs(p)·Fs(n)) to calculate the expo-
nential for cosine similarity of sentence-level obtained from
the text expressions.

3.4. Network Training

Prediction Heads. We adopt the masked-attention trans-
former decoder [8] to update our initial query feature fo by
using the multi-scale text-guided visual features {F v

i }
3
i=1

to obtain the final object queries Fo ∈ RN×C . The final ob-
ject queries will directly predict the probability of the target
object p̂ ∈ RN . The high-resolution segmentation mask
ŝ ∈ R

H
4 ×W

4 ×N is produced by associating between object
queries Fo with the last fine-grained text-guided visual fea-
tures F v

4 ∈ RH
4 ×W

4 ×C , which can be formulated as:

ŝ = Sigmoid(F v
4 · F⊤

o ). (7)

Instance Matching. The prediction set output from
prediction heads is represented by ŷ = {ŷi}Ni=1, where
ŷi = {p̂i, ŝi}. Since a text expression refers to only a
specific object, we denote the ground truth object as y =
{pgt = 1, sgt}. The best prediction ŷδ can be found by a
Hungarian algorithm [28] by minimizing the matching cost
in terms of probability and segmentation mask [8, 9].

Training. Our prediction ŷδ is supervised by three losses.
Firstly, the class loss Lcls is binary cross entropy (BCE) loss
to supervise the probability of the referred object. Secondly,
the mask loss Lmask is a combination of dice loss and BCE.
Finally, our sentence-level contrastive loss Lmcc is used to
enforce our Meaning Consistency Constraint. The total loss

can be formulated as follows:

Ltotal = γclsLcls + γmaskLmask + γmccLmcc, (8)

where γcls, γmask, γmcc are the scalar coefficients.

Inference. In inference, our method aligns with the stan-
dard practice of using a single image or video with one text
expression, and MCC only requires sampling positive and
negative expressions in the training phase. During infer-
ence, the query with the highest probability score is selected
as the target object for the final output.

4. Experimental Results

4.1. Experiment Setup

We evaluate the performance of our model on three
image datasets: RefCOCO [24], RefCOCO+ [24], G-
Ref [42] and further evaluate the performance of our model
on two video datasets: Ref-Youtube-VOS [45] and Ref-
DAVIS17 [25]. For evaluation metrics, we follow previous
work to use mean IoU (mIoU) and Precision at different
thresholds (Pr@X) for image and J&F for video datasets.

During training, we freeze the CLIP model. Images are
resized to a short side of 480. We set the coefficients for
the losses as γcls = 2, γmask = 5, and γmcc = 2, with the
feature dimension C set to 256. We train the network for
100, 000 iterations on the RefCOCO(+/g) datasets with an
initial learning rate of 10−4 and is reduced by a factor of 0.1
at the 2/3 last iteration. For the Ref-Youtube-VOS dataset,
we initialize the pre-trained weight from RefCOCO(+/g)
and train the network for 100, 000 iterations. Regarding the
Ref-DAVIS17 dataset, we directly use the weight obtained
from the Ref-Youtube-VOS dataset for inference. The train-
ing process uses 2 NVIDIA RTX 3090 GPUs with a batch
size of 24. For detailed information on each dataset and
implementation, please see the supplementary material.
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Figure 5. Results on RefCOCO(+/g) datasets. We compare our results with CRIS and LAVT. Our method excels at segmenting objects in
complex scenarios, such as distinguishing between similar objects and localizing specific instances within a scene. The last two columns
of the results show failure cases. Best viewed in color.

Table 4. Ablation Study on the val set of RefCOCO
(mIoU) and Ref-YouTube-VOS (J&F ).

CLIP Prior CMD MCC RefCOCO Ref-YT-VOS

- - - 70.42 +0.00 59.8 +0.0

✓ - - 71.95 +1.53 61.5 +1.7

- ✓ - 73.18 +2.76 61.9 +2.1

- ✓ ✓ 75.43 +5.01 63.6 +3.8

✓ ✓ ✓ 78.16 +7.74 65.4 +5.6

Table 5. Ablation on different query initializa-
tion methods in CLIP Prior.

Query Initialization method RefCOCO

Only text features [54] 75.43 -2.73

CLIP Prior with Prompt
”A Photo of [Object]”

78.16

CLIP Prior mean’s performance
over 80 ImageNet prompts

78.25 +0.09

CLIP Prior w.o main object extractor 74.34 -3.82

Table 6. Ablation on different bidirectional
multimodal fusion modules.

Bidirectional fusion MCC RefCOCO

CMD (Ours) ✓ 78.16
ETRIS [58] ✓ 77.22 -0.94

CoupAlign [64] ✓ 77.01 -1.15

CMD ✗ 75.12 -3.04

ETRIS [58] ✗ 74.12 -4.04

CoupAlign [64] ✗ 73.97 -4.19

4.2. Main Results

Referring Image Segmentation. As illustrated in Ta-
ble 1, our method outperforms the state-of-the-art meth-
ods by a large margin in all splits of different datasets in
the standard setting. Notably, our method surpasses the re-
cent CGFormer and VG-LAW on the validation splits of
all three benchmarks, achieving mIoU gains of 1.23% and
3.11% on RefCOCO, 1.46% and 3.31% on RefCOCO+, and
2.16% and 4.37% on G-Ref. The more complex the expres-
sions, the greater the performance gains achieved by VA-
TEX. Compared to LISA [29], a large pre-trained vision
and text encoder, VATEX consistently outperforms it by 3-
5% across all datasets. Furthermore, Table 2 demonstrates
the superior performance of VATEX over LAVT, ReLA,
and CG-Former on average precision metrics, particularly

at the Pr@0.7 and Pr@0.9, illustrating our ability to gener-
ate high-quality and complete segmentation masks.

Referring Video Segmentation. Our model can be ex-
tended to video datasets with minor adaptations to handle
temporal information. As shown in Table 3, VATEX out-
performs current SOTA methods VLT and ReferFormer on
the same Video-Swin-B backbone by 1.6 and 3.8 J&F on
Ref-Youtube-VOS and Ref-DAVIS17 datasets, respectively.

Qualitative Analysis. We provide the visualization of our
results in Figure 5. Our method can successfully segment
objects in complex scenarios, such as the presence of mul-
tiple similar objects. For example, in the first column, we
can localize the guy who sits in the chair instead of the man
standing on the tennis court. In the second sample, VATEX
can distinguish the sushi plate among several food dishes
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that LAVT cannot. In the fourth column, our model can
not only identify the correct umbrella belonging to the guy
in the light jacket but also segment a part of the shaft of
the umbrella that the ground truth does not provide. With
the expression ”bear child is hugging” in the sixth image,
LAVT can only segment the bear’s head, and CRIS over-
segment to the child and under-segment the bear, but VA-
TEX can output the target bear concisely. However, our
method fails to segment objects that need to be counted and
selected by their order or be described indirectly through an-
other object, as we have not leveraged counting information
and object interaction in our model. Another point worth
mentioning is the differences in architecture design between
VATEX and LAVT. VATEX focuses on instance-based seg-
mentation, while LAVT focuses on pixel-based segmenta-
tion. Consequently, VATEX produces smoother and more
complete segmentation masks.

4.3. More Analysis

Ablation Study. We conduct an ablation study on the val-
idation sets of RefCOCO with Swin-B backbone and Ref-
Youtube-VOS validation set with Video-Swin-B backbone
to examine the impact of each proposed component in our
model. The baseline follows the architecture of Refer-
Former [54] by using only languages as the initial query
(removing CLIP Prior), while only using text-guided vision
features and ignoring the vision-aware text features (remov-
ing CMD and MCC). As shown in Table 4, the combina-
tion of CLIP Prior, CMD, and MCC modules results in the
best performance, showcasing a remarkable performance
increase of up to 7.74% in mIoU on RefCOCO and 5.6% in
J&F on Ref-Youtube-VOS. This outcome unequivocally
attests to the remarkable effectiveness of our approach and
underscores its significant impact. The full ablation study is
shown in the supplementary material.

Study on different query initialization methods of CLIP
Prior. As described in Section 3.1, our CLIP Prior relies
on a template to convert the main noun phrase into a sim-
ple sentence suitable for CLIP. As shown in Table 5, the
baseline follows the query initialization from [54], which
uses only text features and achieves 75.43% mIoU. We in-
vestigate the effects of using different templates and how
these affect the final performance. By using the template “A
Photo of [Object]”, there is a notable improvement of 2.73%
in mIoU. We conducted an additional experiment where we
aggregated the text embeddings from 80 ImageNet prompts,
which has a very minor performance improvement. This
demonstrates that the template “A Photo of [Object]” re-
mains a practical choice. We also conduct the experiment
that using the whole sentence (instead of the main noun
phrase) leads to a significant deterioration in performance
at 3.82%. In this case, CLIP introduces noisy activation on
various objects based on their discriminative characteristics
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Figure 6. Cosine similarities between sentence-level text features
at each CMD level.

within the complex sentence, which is harmful to the model.

Different bidirectional multimodal fusion modules. We
ran an ablation study to quantify the performance of CMD
with other bidirectional multimodal fusion mechanisms by
substituting CMD with alternative modules in ETRIS [58]
and CoupAlign [64]. As shown in Table 6, CMD with MCC
performs the best, achieving a mIoU of 78.16%, which
is higher than both ETRIS [58] and CoupAlign [64] with
0.94% and 1.15%, respectively. Disabling MCC results in a
notable drop in performance across all settings, with CMD
seeing a decrease of 3.04%, while ETRIS and CoupAlign
experience decreases of 4.04% and 4.19%, respectively.
This highlights the importance of MCC in improving bidi-
rectional fusion performance, with CMD consistently out-
performing alternative methods under the same condition.

Effect of MCC on Vision-aware Text Features. To quan-
tify the impact of the MCC on Vision-aware Text Features,
we calculate the similarity between sentence-level text fea-
tures at each layer of CMD, with and without MCC, us-
ing the G-Ref dataset. We chose G-Ref because it con-
tains longer, more diverse, and complex context information
about the objects expressions, making it ideal for studying
the impact of MCC on Vision-aware Text Features. The
average similarity results for all pairs of expressions refer-
ring to the same or different objects are depicted in Fig-
ure 6. Here, level 0 represents the initial features, derived
directly from the text encoder, while level 4 indicates the
final vision-aware text features of CMD.

In the context of expressions referring to the same ob-
ject, the initial similarity of text features stands at 63.35%.
By utilizing the MCC, the average similarity gradually in-
creases from level 1 to level 4, reaching 78.28% at the final
vision-aware text feature, while without MCC, the similar-
ity score fluctuates between levels 1 and 3, achieving only ∼
8% performance gain at the end. This illustrates the effec-
tiveness of MCC in guiding the vision-aware text features
toward a semantically rich feature space, where the features
of two sentences referring to the same object are closer in
that feature space.
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Regarding different objects, the pairwise similarity of
expressions referring to different objects progressively de-
creases through the four levels of CMD, from 60.06% to
36.81%. In contrast, using CMD without MCC results in an
unstable feature space. This illustrates the effectiveness of
MCC in guiding vision-aware text features toward a more
robust feature space, where the features of two sentences
referring to different objects can be similar at the beginning
but are pushed apart in the final vision-aware text feature.

These findings underscore the pivotal role of MCC in
bolstering multimodal comprehension provided by CMD.
Specifically, we reveal how the in-context learning signal
in MCC effectively improves the representation of vision-
aware text features.

Others. We reported the Universality of VATEX, the Run-
time Analysis of VATEX, and the effect of MCC on object
segmentation in Supplementary Material.

5. Limitations
Our method is not without limitations. Particularly, our

method does not exploit positional relationship between
different objects as well as the alignment between actions
and expressions referring to them (see Figure 5 the last
two columns). Consequently, situations involving count-
ing (”third from left”), indirect descriptions (”kid next to
girl in pink pants”), or actions (”a woman walking to the
left”) might lead to inaccurate predictions. Another line of
future work is making RIS work on general scenarios (e.g.
segment all the red-colored objects, segment all the text in
the image) or more fine-grained segmentation (e.g. segment
the eye of the owl). Dealing with intra-frame object rela-
tionships and inter-frame information for video is vital for
future work. It is also of great interest to investigate vision-
aware text features with the VLMs and to lift this task to the
3D domain.

6. Conclusion
This paper introduces VATEX, a novel framework that

examines how vision-aware text features can enhance the
performance of RIS by emphasizing on object and con-
text comprehension. First, we propose integrating visual
cues into text features during the query initialization pro-
cess in CLIP Prior for object understanding. First, we pro-
pose integrating visual cues into text features during the
query initialization process via the CLIP Prior module for
object understanding. Second, we exploit the mutual in-
teraction between visual and text modalities through the
Contextual Multimodal Decoder (CMD) module and pro-
vide an explicit in-context learning signal for the vision-
to-language direction using the Meaning Consistency Con-
straint (MCC). As a result, our proposed method consis-
tently achieves new state-of-the-art results on three bench-

mark datasets: RefCOCO, RefCOCO+, and G-Ref.
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Vision-Aware Text Features in Referring Image Segmentation:
From Object Understanding to Context Understanding

— Supplementary Material —

Our supplementary has 5 sections. Section 7 shows
additional information about datasets and training proce-
dure. Section 8 explains how spaCy is used to extract main
noun phrases from sentences and also explains how poten-
tial LLMs can be used to create diverse object descriptions
to improve dataset annotations. Section 9 contains the ad-
ditional experiments on RefCOCO(+/g), Ref-Youtube-VOS
and Ref-DAVIS17. This section also illustrates and ana-
lyzes the performance of CLIP Prior, CMD and MCC in
different situations as well as the runtime and.

7. Additional Implementation Details
7.1. Datasets

Image datasets. RefCOCO and RefCOCO+ [24] are two
of the largest image datasets used for referring image seg-
mentation. They contain 142,209 and 141,564 language
expressions describing objects in images. RefCOCO+ is
considered to be more challenging than RefCOCO, as it fo-
cuses on purely appearance-based descriptions. G-Ref [42],
or RefCOCOg, is another well-known dataset with 85,474
language expressions with more than 26,000 images. The
language used in G-Ref is more complex and casual, with
longer sentence lengths on average.

Video datasets. Ref-YouTube-VOS [45] and Ref-
DAVIS17 [25] are well-known datasets for referring video
object segmentation. Ref-YouTube-VOS contains 3978
video sequences with approximately 15000 referring ex-
pressions, while Ref-DAVIS17 consists of 90 high-quality
video sequences. These datasets are used to evaluate the
performance of algorithms that aim to identify a specific
object within a video sequence based on natural language
expressions.

7.2. Metrics

In our work, we use mIoU and Precision@X to evalu-
ate our method for image datasets, while J&F are used as
evaluation metrics for video datasets. mIoU stands for mean
Intersection over Union, which measures the average over-
lapping between the predicted segmentation masks and the
ground truth annotations. Precision@X, on the other hand,
measures the success rate of the referring process at a spe-
cific IoU threshold, and it focuses on the referring capability
of the method.

In addition, region similarity J and contour accuracy F ,
and their average J&F are commonly used evaluation met-

rics for video object segmentation (VOS) datasets. The J is
similar to the IoU score, while the F score is the boundary
similarity measure between the boundary of the prediction
and the ground truth. These two metrics together measure
the performance of the predicted object mask over the entire
video sequence. Higher J&F score indicates better RVOS
performance.

Furthermore, to quantify the ability to consistently seg-
ment various expressions for the same object and further
validate the effectiveness of our proposed Meaning Consis-
tency Constraint, we leverage an Object-centric Intersection
over Union (Oc-IoU) score, which calculates the overlap
and union area between ground truth and all segmentation
predictions of the same object. Specifically, consider the
i-th object with Ki expressions referring to that object and
the corresponding ground truth mask GTi. Let P j

i be the
model’s prediction for the j-th expression of the i-th object,
where j = 1.. Ki. The Object-centric IoU can be formu-
lated as follows:

Oc-IoU(GTi,Pi) =
GTi ∩ P1

i ∩ ... ∩ PKi
i

GTi ∪ P1
i ∪ ... ∪ PKi

i

, (9)

Oc-IoUtotal =
1

N

N∑
i=1

Oc-IoU(GTi,Pi), (10)

where N is the total number of objects/instances in the
datasets.

7.3. Training Details

Our model is optimized using AdamW [40] optimizer
with the initial learning rate of 10−5 for the visual en-
coder and 10−4 for the rest. Our model comprises a total
of nine Masked-Attention Transformer Decoder layers fol-
lowed [8]. We set the number of queries to 5 [54]. For
the setting of training from classification weight from Ima-
genet on Ref-Youtube-VOS dataset, we train the model for
200, 000 iteration with the learning drop at 140, 000-th iter-
ation. On Ref-DAVIS17 [25], we directly report the results
using the model trained on Ref-YouTube-VOS without fine-
tuning. In terms of coefficients in loss function, γcls = 2
and γmask = 5 are followed from Mask2Former. To main-
tain balance, we then choose γmcc = 2. We want to priori-
tize the mask loss with the highest weight because the IoU
is the primary metric.
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broccoli front center

short guy

a doctor is working in a hospital behind a school

remote

bowl with 3 red spots

a tv underneath the clock

cow closest to us

open umbrella

chocolate frosted one at edge

giraffe in the rear look over the other giraffes backs

black cat sleeping on a red and black luggage beside a gray and white kitten

the horse on the right in the right hand picture

a man’s black tie under all the other ties he is wearing

a plate with fruit on it behind two other dishes

Figure 7. Examples of our main object extractor output. Given the expression, our algorithm will output the main noun phrase in the
sentence. Typically, the root word of the sentence is a noun phrase, which we directly output as the main noun phrase. However, if the root
word is not a noun phrase (e.g. working, wearing in the image), we instead focus on identifying its child noun. Additionally, we illustrate
the dependency parsing tree for some representative sentences on the right.

8. Additional Details of VATEX
8.1. Main Object Extractor

We use spaCy [17] to implement our main object extrac-
tor, leveraging its optimized, fast, and effective dependency
parsing capabilities. First, spaCy extracts the root word of
the sentence, also known as the head word, which has no
dependency on other words (i.e., it has no parent word in
the dependency tree). If this root word is a noun phrase, we
directly output it as the main noun phrase of the sentence.
If the root word is not a noun (e.g., a verb), we focus on its
child noun to ensure it centers on the described object. Fig-
ure 7 shows some examples on the datasets and shows the
output of our algorithm as well as the dependency parsing
tree of some representative cases.

To handle complex sentence structures that lack a di-
rectly related noun phrase, we have implemented a roll-
back mechanism (in L27 of vatex/utils/noun phrase.py) that
returns the whole sentence, preventing information loss
and mitigating potential errors from inaccurate main noun
phrase extraction. As shown in Table 7, this rollback mech-
anism helps avoid poorly extracted nouns that could poten-
tially cause incorrect segmentation masks.

8.2. Enhancing Expression Diversity in Refer-
ring Image Segmentation Datasets through
Prompting Techniques

Our method’s utilization of diverse referring expressions
for each object aligns with established best practices in text-
image dataset annotation. This approach is widely accepted

Table 7. Rollback stats on the validation split of three RIS datasets.

Dataset RefCOCO RefCOCO+ G-Ref

Num expressions 10,834 10,758 4,896
Rollback rate(%) 10.7 10.8 3.1
mIoU w/o rollback 76.23 68.45 69.01
mIoU w. rollback 78.16 70.12 69.73

and implemented across several benchmark datasets. In sce-
narios where multiple expressions per object are unavail-
able, we have the flexibility to employ Large Language
Models (LLMs) for enhancing expression diversity. This
can be achieved either by augmenting existing expressions
or generating new ones based on object masks, a technique
successfully employed by datasets like RIS-CQ. Further-
more, we demonstrate a practical application of this ap-
proach through a sample that showcases how we can prompt
ChatGPT to generate relevant expressions in Figure 8. This
generation is based on factors like an object’s position in
the image, its relative position to other objects or people,
and distinguishing attributes such as color or appearance.

Figure 8 showcases two innovative prompting tech-
niques for generating object descriptions. On the left,
we demonstrate how combining an original image with its
masked version can effectively prompt GPT-4 to generate
detailed descriptions. The right side of Figure 10 highlights
the application of the SOTA ’Set of Mark’ (SoM1 [60])

1https://github.com/microsoft/SoM
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Table 8. Universality of VATEX. We conduct experiments to plug-
and-play CLIP Prior and MCC in ReLA. † means we run experi-
ment on their official code to get the mIoU score.

Method RefCOCO G-Ref

ReLA† 73.16 63.64
ReLA + CLIP Prior 74.32 +1.16 65.76 +2.12

ReLA + MCC 75.46 +1.16 65.12 +1.48

ReLA + CLIP Prior + MCC 76.33 +3.17 67.69 +4.05

Table 9. Fair Backbone Comparison between CRIS, JMCELN,
LAVT and VATEX.

Method Backbone RefCOCO
Visual Textual val testA testB

CRIS [53] ResNet-101 CLIP 70.47 73.18 66.10
JMCELN [21] ResNet-101 CLIP 74.40 77.69 70.43
VATEX (Ours) ResNet-101 CLIP 75.66 77.88 72.36

LAVT [62] Swin-B BERT 74.46 76.89 70.94
LAVT [62] Swin-B CLIP 73.15 75.24 70.02
VATEX (Ours) Swin-B CLIP 78.16 79.64 75.64

technique to enhance the capability of GPT-4(V) in acquir-
ing deeper knowledge. SoM involves creating masks for
each object in the image using SAM, each distinguished by
a unique identifier. This marked image then serves as an
input for GPT-4V, enabling it to respond to queries necessi-
tating visual grounding with greater accuracy and relevance.

9. Additional Results and Analysis
9.1. Universality of VATEX

VATEX employs CLIP Prior for Object Understanding
and Meaning Consistency Constraint for Context Under-
standing. These two modules can be easily integrated into
any DETR-based model (e.g. ReLA [34]) for RIS. We took
ReLA as a representative work and reproduced the perfor-
mance of ReLA on the validation sets of the RefCOCO and
G-Ref datasets using mIoU metrics. As illustrated in Ta-
ble 8, VATEX seamlessly integrates into current models,
achieving significant performance gains of 3.17% on Re-
fCOCO and 4.05% on G-Ref. This demonstrates the ef-
fectiveness of our approach in utilizing Vision-Aware text
features for both object understanding and context under-
standing.

9.2. Additional Comparison on RefCOCO(+/g)

9.2.1 Fair backbone comparison

We have benchmarked our model, VATEX, using the
ResNet-101 backbone, aligning it with CRIS and JMCELN
for a more equitable comparison, as illustrated in Ta-

ble 9. This adaptation demonstrates VATEX’s superior per-
formance, achieving a 1.26% improvement on RefCOCO
val and a significant 1.93% on RefCOCO testB over the cur-
rent state-of-the-art methods.

Further, to address comparisons with LAVT, we have ex-
perimented with CLIP as the text encoder, adhering to the
official repository guidelines. This experiment revealed a
performance decline of approximately 1% when substitut-
ing BERT with CLIP as the text encoder. This finding un-
derscores the critical importance of using the CLIP Image
Encoder together with the CLIP Text Encoder to maintain
model performance. A similar trend was observed with
ReferFormer, reinforcing our conclusion. Consequently,
when compared to LAVT under the fair conditions in back-
bone, VATEX shows a substantial improvement, outper-
forming by 5.01%, 4.40%, and 5.62% on RefCOCO val,
testA, and testB, respectively. This data confirms the effec-
tiveness of our approach and the importance of consistent
backbone usage for fair and accurate performance assess-
ment.

9.2.2 External/Multiple Training dataset

We compare VATEX with other methods in RIS, which used
external training data in Table 10. SeqTR [66], RefTR [30],
and PolyFormer [36] enhance their performance on the Re-
fCOCO dataset by incorporating external datasets—Visual
Genome with 5.4M descriptions across over 33K cate-
gories, Flickr30k-entities with 158K descriptions, and the
joint dataset RefCOCO(+/g) with 368K descriptions. Their
papers indicate that using such external datasets for pre-
training can improve performance by 8-10%.

Compared to PolyFormer [36], without using external
pretraining dataset, VATEXRefCOCO demonstrates superior
performance over PolyFormer-B, while VATEXRefCOCO+
and VATEXG-Ref achieve comparable results with [36] while
using 42x and 69x smaller datasets respectively, with the
exception of the RefCOCO+ test B. The performance’s gap
on RefCOCO+ Test B, which focuses on non-human ob-
jects described purely by their appearance (e.g. ”the porce-
lain throne,” ”part of the bed occupied by a black pam-
phlet”), could be attributed to the varied object categories
covered during the pre-training phase with extensive exter-
nal datasets.

On the otherhand, VATEXjoint adopts a different strategy.
By solely utilizing the RefCOCO(+/g) dataset, which is 16x
smaller than the datasets used by PolyFormer, VATEXjoint
with Swin-B backbone still achieves remarkable results.
Specifically, VATEXjoint outperforms PolyFormer by 4-6%
across all benchmarks, setting a new state-of-the-art result
on the RefCOCO dataset. UNINEXT [59] and HIPIE [51],
while achieving strong results, rely on extensive pretraining
and data leakage in finetuning (joint training with COCO for
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1. The horse is leaping over a jump
fence, showcasing its agility and
training in equestrian sports.

Describe the object in the left picture with the corresponding mask in the right
picture in 4 concise and straightforward ways, using the format <object +
description> at the beginning of each sentence. The descriptions can include
the object's position in the image, its relative position to other objects or
person, or attributes such as color or appearance.

2. The horse, with a rider on its back,
is captured in mid-air, demonstrating
coordination and skill.

3. The horse's glossy chestnut coat
stands out brightly against the sandy
arena and the assorted jump obstacles.

4. The horse's mane flows backward,
suggesting speed and the motion of
the jump.

(a) Prompting with Mask

1. The horse is mid-jump over a white
fence, displaying athleticism and
focus.

Describe horse 4 in 4 concise and straightforward ways, using the format
<object + description> at the beginning of each sentence. The descriptions can
include the horse's position in the image, its relative position to other objects or
people, or attributes such as color or appearance.

2. The horse has a glossy brown coat
with a large white blaze on its
forehead, contrasting with the sandy
arena.

3. The horse's 's muscular build is
evident as it arches over the obstacle
with tucked legs.

4. The horse is the central figure,
clearly separated from the colorful
background clutter.

(b) Prompting with SoM

Figure 8. Example of using GPT-4(V) with different prompting techniques to generate object description.

segmentation while RefCOCO images and annotations are
a subset of COCO train split). In contrast, VATEX achieves
competitive performance without relying on such extensive
pretraining and removes all potential data leaking in the
training phase.

9.2.3 Comparison with SOTA foundation models

Table 11 illustrates the quantitative performance between
VATEX with generalist foundation models: Grounded-
SAM [38] [27], SEEM [69] and X-Decoder [68] in Ta-
ble 11. For Grounded-SAM, we first use Grounding DINO
to extract the bounding box prediction from the text prompt,
then we feed that bounding box to SAM to obtain the final
segmentation mask. For X-Decoder and SEEM, we directly
use the report number on their official github2 with Focal-
L backbones. While VATEX is trained on much smaller
dataset sizes and smaller backbones, VATEXjoint still signif-
icantly outperforms Grounded-SAM with 14.34%, 15.65%,
and 16.4% improvements on RefCOCO, RefCOCO+ and
G-Ref, respectively. Compared with X-Decoder and SAM,
which are trained and finetuned on RefCOCO(+/g) datasets,
we also outperform them with approximately 2% with VA-
TEX and 7.7% with VATEXjoint.

2https://github.com/UX-Decoder/Segment-Everything-Everywhere-
All-At-Once/

9.3. Experimental results on Ref-YoutubeVOS and
Ref-DAVIS17

The result for Ref-Youtube-VOS dataset is shown in Ta-
ble 12. As can be seen, our method demonstrates supe-
rior performance, setting a new state-of-the-art for referring
video object segmentation on the Ref-Youtube-VOS dataset
with different backbones. In particular, our approach with
the spatial-temporal backbone (e.g., Video-Swin [39]) and
pre-trained weights from image dataset achieves the highest
J&F score of 65.4% among all other methods on the Ref-
Youtube-VOS dataset, including VLT and ReferFormer.

The results for Ref-DAVIS17 are shown in Table 13.
Similarly, our approach achieves competitive performance
compared to other state-of-the-art methods in referring
video object segmentation. Specifically, with backbones
ResNet-50, our proposed model outperforms ReferForme
and achieves slightly better results than RRVOS. Moreover,
our method achieves the best performance among all meth-
ods with the Video-Swin-B backbone with a J&F score
of 65.4%, which is 3.8% higher than the closest competitor
VLT.

9.4. Heatmap of CLIP Prior

To obtain the heatmap result, from the vector of shape(
H
16 × W

16 + 1, 1
)
, we remove ”CLS” token and reshape it

into 2D heatmap of H
16 ×

W
16 . For visualization purposes, we

resize the original image to 960× 960, then pass it through
CLIP-Image Encoder, resulting in a high-quality heatmap
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Table 10. Quantitative results of referring image segmentation on Ref-COCO, Ref-COCO+, G-Ref datasets with other SOTA methods
using external training data. VATEX is trained with Swin-B backbone

Method External Datasets
RefCOCO RefCOCO+ G-Ref

val testA testB val testA testB val test

SeqTR [66] Visual Genome (5.4M) &
Flickr30k-entities (158K) &
RefCOCO(+/g) (368K)

71.7 73.31 69.82 63.04 66.73 58.97 64.69 65.74
RefTR [30] 74.34 76.77 70.87 66.75 70.58 59.4 66.63 67.39
PolyFormer-B [36] 75.96 77.09 73.22 70.65 74.51 64.64 69.36 69.88

UNINEXT-H [59] Object365 (30M) & 82.2 – – 72.5 – – 74.7 –
HIPIE [51] COCO + RefCOCO(+/g) 82.6 – – 73.0 – – 75.3 –

VATEXRefCOCO RefCOCO (142K) 78.16 79.64 75.64 - - - - -
VATEXRefCOCO+ RefCOCO+ (141K) - - - 70.02 74.41 62.52 - -
VATEXG-Ref G-Ref (85K) - - - - - - 69.73 70.58

VATEXjoint RefCOCO(+/g) (368K) 81.53 82.75 79.66 74.61 78.75 68.52 75.54 76.4

A bird flying in between 
two other birds

[Prompt] A photo of
a birdNaive ImplementationA tennis racket Naive Implementation [Prompt] A photo of

a tennis racket Raw heatmap Raw heatmap

A brown camel moving to 
the right fence Naive Implementation

[Prompt] A photo of
a brown camel Raw heatmap

A green motorbike being 
jumped in the forest

[Prompt] A photo of
a green motorbikeNaive Implementation Raw heatmap

Figure 9. Our heatmap from CLIP Prior. Naive Implementation means feeding the whole sentence through CLIP Model, without the Main
Object Extractor. By reducing the complexity of the text expression, it can be seen that the activation on the object of interest becomes
more accurate. Best view in zoom.

Table 11. Quantitative results of referring image segmentation on
Ref-COCO, Ref-COCO+, G-Ref validation datasets with SOTA
vision foundation models.

Method RefCOCO RefCOCO+ G-Ref

Grounded-SAM [38] [27] 67.19 58.96 59.14
X-Decoder [68] - - 67.5
SEEM [69] - - 67.8

VATEX 78.16 70.02 69.73

VATEXjoint 81.53 74.61 75.54

of size 60 × 60. Notably, we only use a default input size
of 224×224 during training. Regarding the quality of the
heatmap, Figure 9 demonstrates the comparison between
the naive implementation and our prompt-based template.

In the 3rd and 7th rows, it is evident that simplifying the
sentence and employing prompt templates can aid in dis-
tinguishing the target object from the image, resulting in
decreased localization errors.

While CLIP Prior excels at localizing objects of inter-
est, it can struggle in complex cases where the expression
describes multiple instances within the same category and
their relative positions (e.g. bottom right of Figure 9).
In these situations, the heatmap may encompass all ob-
jects within the category rather than the specific referred
instances. However, CLIP Prior’s core purpose is to nar-
row down the relevant region, not pinpoint the exact object.
Identifying the precise instance will be handled later in the
full-text prompt by the Transformer architecture, which can
leverage additional context and relationships.

Moreover, CLIP Prior can also help the model in cases
when the referring expression contains out-of-vocabulary
objects. By transferring the knowledge from CLIP and em-
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Table 12. Quantitative comparison with the SOTA on Ref-
Youtube-VOS.

Methods Backbone
Ref-Youtube-VOS

J&F J F

Train with Image segmentation weight from RefCOCO(+/g)

ReferFormer [54] ResNet-50 55.6 54.8 58.4
RR-VOS [32] ResNet-50 57.3 56.1 58.4
VATEX (Ours) ResNet-50 58.5 57.1 59.9

ReferFormer [54] Swin-L 62.4 60.8 64.0
VATEX (Ours) Swin-L 64.2 61.4 67.0

ReferFormer [54] Video-Swin-B 62.9 61.3 64.6
VLT [11] Video-Swin-B 63.8 61.9 65.6
VATEX (Ours) Video-Swin-B 65.4 63.3 67.5

Table 13. Quantitative comparison with the SOTAs on Ref-
DAVIS17 dataset.

Methods Backbone
Ref-DAVIS17

J&F J F

ReferFormer [54] ResNet-50 58.5 55.8 61.3
RR-VOS [32] ResNet-50 59.7 57.2 62.4
VATEX (Ours) ResNet-50 61.2 58.2 64.3

ReferFormer [54] Video-Swin-B 61.1 58.1 64.1
VLT [11] Video-Swin-B 61.6 58.9 64.3
VATEX (Ours) Video-Swin-B 65.4 62.3 68.5

bedding the heatmap into the query initialization, the model
can obtain a good segmentation mask based on the cues
from CLIP Prior. Figure 10 shows how CLIP Prior heatmap
can help the model to localize the object in the early phase,
thus improving the model’s performance.

CLIP-based model in RIS. Adopting CLIP is a good prac-
tice taken by several previous methods, including CRIS,
CM-MaskSD, and RIS-CLIP. However, to effectively use
the aligned embedding from CLIP to obtain good results in
referring segmentation is an open question. For example,
although using powerful CLIP as the backbone, the SOTA
CLIP-based method RIS-CLIP [26] has a comparable per-
formance with the SOTA Non-CLIP model VG-LAW [47].
To analyze it, we take CRIS [53] as a baseline for CLIP-
based model. CRIS directly used the well-aligned embed-
ding space between text and vision for RIS. However, the
performance of this work is not good compared to others,
as there are two concerns with relying solely on CLIP for
referring image segmentation tasks:

1. Frozen CLIP Model. CLIP model, trained on object-

Table 14. Quantitative results of referring image segmentation
on Ref-COCO, Ref-COCO+, G-Ref validation datasets on CLIP-
based and Non-CLIP model.

Method RefCOCO RefCOCO+ G-Ref

CLIP-based Model

CRIS [53] 70.47 62.27 59.87
CM-MaskSD [49] 72.18 64.47 62.67
RIS-CLIP [26] 75.68 69.16 67.62
Ours w/ CLIP Prior 78.16 70.02 69.73

Non-CLIP Model

LAVT [62] 74.46 65.81 63.34
VG-LAW [47] 75.05 66.61 65.36
Ours w/o CLIP Prior 75.43 67.38 68.12

centric images, generates visual features focusing on
semantic class meanings rather than instance-based de-
tails (see bird example in Figure 9). This limits the
effectiveness of CLIP for instance-level tasks.

2. Fine-tuning CLIP Model. Fine-tuning the CLIP model
risks overfitting on training samples, thereby diminish-
ing its ability to generalize features to novel classes.

We found that learning from a visual backbone pre-
trained on ImageNet and only utilizing frozen CLIP as a
prior gave better performance on both instance-level seg-
mentation and open-vocabulary segmentation nature of RIS
task.

In Table 14, for a truly fair comparison, we provide our
method w/o CLIP, which achieves 75.43, 67.38, and 68.12
mIoU, and we still outperform the SOTA LAVT (74.46,
65.81, and 63.34) and VG-LAW (75.05, 66.61 and 65.36)
on RefCOCO(+/g) in the same setting.

9.5. Full ablation study

Table 15 presents an ablation study conducted on the
validation set of RefCOCO and Ref-Youtube-VOS, evalu-
ating the mIoU (mean Intersection over Union) and J&F ,
respectively of different model configurations. The study
explores the impact of three components: CLIP Prior,
CMD (Contextual Multimodal Decoder), and MCC (Mean-
ing Consistency Constraint).

The first row represents the baseline model with none of
the studied components incorporated. The mIoU for this
configuration is 70.42% mIoU and 59.8 J&F . In rows
2 to 4, the ablation study reveals that incorporating inde-
pendently the CLIP Prior alone (row 2) and CMD (row 3)
both contribute positively to the mIoU on the RefCOCO
and J&F on Ref-YoutubeVOS validation set with an im-
provement of 1.53%, 2.76% mIoU and 1.7%, 2.1% J&F ,
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Jerry carrying 

money Charmander
Tom in Iron Man 
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Figure 10. Comparison between VATEX with state-of-the-art methods on challenging out-of-vocabulary cases in referring image segmen-
tation. LAVT’s pixel-based approach results in imprecise masks with irrelevant pixel activation. PolyFormer, while creating instance-based
masks, struggles with hard cases like ”clownfish” or ”Jerry” due to limited recognition of unfamiliar objects. HIPIE [51] fails completely
due to its constrained pretraining on 365 categories from Objects365. Its high performance on RefCOCO may stem from overfitting and
potential data leakage when joint training with COCO. In contrast, VATEX successfully segments correct objects in these difficult vocabu-
lary situations by leveraging the CLIP Prior heatmap. This demonstrates VATEX’s superior generalization to unseen objects and complex
expressions, highlighting its effectiveness in real-world referring image segmentation tasks.

whereas the introduction of the Meaning Consistency Con-
straint (MCC) alone (row 4) leads to a modest increase (only
0.30% mIoU and 0.4 J&F), emphasizing the individual
significance of each component in enhancing model perfor-
mance. Although MCC alone has a modest impact, when
combined with the CMD in row 7, there is a notable im-
provement of 4.7% (mIoU of 75.1) and 3.3% (J&F of

63.1). This synergy demonstrates that while MCC alone
may not perform exceptionally, its collaboration with CMD
effectively enhances model performance, aligning with our
approach of leveraging enriched text features conditioned
by visual information for improved mutual interaction. The
final row represents the model with all components (CLIP
Prior, CMD, and MCC) combined, achieving the highest
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Table 15. Ablation Study on the validation set of RefCOCO
(mIoU) and Ref-Youtube-VOS (J&F).

CLIP Prior CMD MCC RefCOCO Ref-Youtube-VOS

1 - - - 70.42 +0.00 59.8 +0.0

2 ✓ - - 71.95 +1.53 61.5 +1.7

3 - ✓ - 73.18 +2.76 61.9 +2.1

4 - - ✓ 70.70 +0.30 60.2 +0.4

5 ✓ ✓ - 75.12 +4.72 63.1 +3.3

6 ✓ - ✓ 72.14 +1.74 61.3 +1.5

7 - ✓ ✓ 75.43 +5.01 63.6 +3.8

8 ✓ ✓ ✓ 78.16 +7.74 65.4 +5.6

Table 16. Ablation on the number of queries.

Number of queries 1 3 5 10 20 50

RefCOCO 77.23 77.84 78.16 78.02 78.11 77.91

mIoU of 78.16 (+7.74) and J&F of 65.4 (+5.6).
Table 16 presents the impact of varying query numbers

on VATEX’s performance for the RefCOCO dataset. The
results show that while a single query (N=1) achieves a re-
spectable 77.23% mIoU, increasing the number of queries
generally improves performance. The optimal performance
is achieved with 5 queries, yielding 78.16% mIoU, while
the performance slightly decreases for query numbers above
5 (78.02% for 10, 78.11% for 20, and 77.91% for 50
queries). The performance pattern is consistent with Refer-
Former [54]’s findings.

9.6. Effect of MCC on Object segmentation mask.

To validate the effectiveness of our proposed MCC mod-
ule, we propose to use a new Object-centric Intersection
over Union (Oc-IoU) score. Unlike mIoU, which averages
the overlap and union area for all segmentation predictions
within the same image, Oc-IoU measures the overlap and
union area between the ground truth and all segmentation
predictions for the same object across different expres-
sions, then averages these values across all objects in the
dataset. This metric provides an evaluation of the consis-
tency and accuracy of segmentation results across various
expressions.

Table 17 provides the comparisons between our method
and the state-of-the-art method LAVT in Oc-IoU on the val-
idation set of three RIS benchmarks. As can be seen, our
method outperforms LAVT in all three datasets. Comparing
the last two rows of Table 17, we can see that the MCC helps
the model, especially CMD to enhance mutual information
between textual and visual features to further provide more
consistent and accurate segmentation. These results under-
score the compelling efficacy of our Meaning Consistency
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Figure 11. The architecture of Contextual Multimodal Decoder.

Constraint in resolving language ambiguities, thus improv-
ing the segmentation performance.

Table 17. Performance comparison between LAVT and VATEX
on Oc-IoU metric.

Method RefCOCO RefCOCO+ G-Ref

LAVT [62] 62.51 50.79 56.01
Ours w/o MCC 66.42 54.92 59.25
Ours 68.20 57.38 61.69

9.7. Archiecture Figure of CMD

For a robust use of visual and text features in subse-
quent steps, we propose to fuse visual and text features
using a Contextual Multimodal Decoder (CMD), which is
designed to produce multi-scale text-guided visual feature
maps while enhancing contextual information from the im-
age into word-level text features in a hierarchical design as
shown in Figure 11. The process on each level of CMD
is achieved by a Bi-directional Attention Transfer(BAT),
which incorporates two cross-attention modules.

9.8. Runtime and Computational Comparison of
VATEX

We report the inference time in FPS and the number of
parameters among VATEX, PolyFormer, and LAVT in Ta-
ble 18. FPS is measured on an NVIDIA RTX 3090 with a
batch size of 1 by taking the average runtime on the entire
RefCOCO validation set.

Table 18. Comparison in inference time and parameters on the
validation set of RefCOCO dataset.

Method mIoU FPS #params #trainable params

LAVT 74.46 13 217M 217M
PolyFormer 75.96 3.5 295M 295M
VATEX(Ours) 78.16 11 251M 165M
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the woman on 
the right

a glass of wine where the person 
holding it has a watch on

a wine glass to the right 
of another wine glass

the hand on the left 
holding the wine glass

Image

Image

a man is sitting wearing 
a black jacket

man with phone

an asian girl with glasses

man with beard 
and glasses

black cat sleeping 
on a red luggage

the wooden chair 
leg on the far left

a grey cat on a red suitcase 
between two black cats

a wooden chair leg 
surrounded by cats

girl laying on the ground

the woman sitting 
up holding the book

a notebook being 
held by a women

a laptop in front 
of a women

Image

Image

Figure 12. Qualitative results of VATEX according to different language expressions for each image on the validation split of G-Ref.
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1. A man riding a motorbike 2. A green motorbike

1. A baby seal
2. An adult seal to the left of

another adult seal
3. An adult seal to the right 

of another seal

1. A person with a
red surfboard

2. A man with dark blue swimsuit carry a 
surfboard, on the right hand of the view

3. A light blue and 
white surfboard

Referring Video Object SegmentationReferring Image Segmentation

the orange closest to the banana

the boy sitting against the wall

a drinking glass with a knife resting on it

Ground-truth OursImage time

Figure 13. Visualization of VATEX’s results. VATEX performs well in complex scenarios such as rapidly changing (motorbike), and
distinguishing from multiple highly similar objects (people, seal). The last row of the video results shows a failure case: PDF segments
the wrong man in the last column who has similar attributes when the correct one(green) disappears in the video sequences. Best viewed
in color.

9.9. Additional Visual Results

In Figure 12 and Figure 13, we present additional visual-
ization results for our approach. These results demonstrate
that VATEX can successfully segment referred objects in
a variety of scenarios, including complex expressions or
scenes containing multiple similar objects or rapidly chang-
ing shapes. To further illustrate our method’s capabilities,
we have also created a video demo that compares our ap-
proach to ReferFormer on Ref-Youtube-VOS. This video
demo is provided as an attachment.
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