
OmniGS: Fast Radiance Field Reconstruction using Omnidirectional Gaussian
Splatting

Longwei Li1 Huajian Huang2 Sai-Kit Yeung2 Hui Cheng1

1Sun Yat-sen University 2 The Hong Kong University of Science and Technology
lilw23@mail2.sysu.edu.cn, hhuangbg@connect.ust.hk, saikit@ust.hk, chengh9@mail.sysu.edu.cn

Monocular Omnidirectional Images

SfM Point Cloud Omnidirectional / Perspective Novel-View Synthesis

Input Data Output Reconstructed Scene Model

OmniGS

Figure 1. We introduce OmniGS, a novel omnidirectional radiance field reconstruction method. It takes a series of calibrated monocular
360-degree images and sparse SfM point clouds as input to quickly recover 3D Gaussians as large-scale scene representations, achieving
real-time omnidirectional novel view synthesis.

Abstract

Photorealistic reconstruction relying on 3D Gaussian
Splatting has shown promising potential in various do-
mains. However, the current 3D Gaussian Splatting sys-
tem only supports radiance field reconstruction using undis-
torted perspective images. In this paper, we present Om-
niGS, a novel omnidirectional Gaussian splatting system,
to take advantage of omnidirectional images for fast radi-
ance field reconstruction. Specifically, we conduct a theo-
retical analysis of spherical camera model derivatives in 3D
Gaussian Splatting. According to the derivatives, we then
implement a new GPU-accelerated omnidirectional raster-
izer that directly splats 3D Gaussians onto the equirect-
angular screen space for omnidirectional image rendering.
We realize differentiable optimization of the omnidirectional
radiance field without the requirement of cube-map rec-
tification or tangent-plane approximation. Extensive ex-
periments conducted in egocentric and roaming scenarios
demonstrate that our method achieves state-of-the-art re-
construction quality and high rendering speed using omni-
directional images. The code will be publicly available at

https://github.com/liquorleaf/OmniGS.

1. Introduction
Reconstructing three-dimensional (3D) structures of ob-

served environments plays an important role in many ap-
plications, such as environmental monitoring, virtual real-
ity, localization, navigation, path planning, and other high-
level perception tasks. Recent progress [17] in this realm
has sought to harness the information contained in large
field-of-view (FoV) images for efficient reconstruction, es-
pecially omnidirectional images which are able to capture
the entire environment at each shot.

In order to achieve photorealistic reconstruction and en-
able immersive scene roaming using omnidirectional im-
ages, several approaches, such as 360Roam [6], 360Fusion-
Nerf [12], and PaniGRF [4] have explored the utilization of
the neural radiance field (NeRF) technique [14]. Unlike tra-
ditional methods [8, 19, 20] that focus on precise geometry
reconstruction, NeRF-based methods employ multi-layer
perceptrons (MLPs) to implicitly model the scene. It ac-
cumulates density and view-dependent color per ray, which
are regressed from the MLPs, for image synthesis. Mean-

1

ar
X

iv
:2

40
4.

03
20

2v
5

 [
cs

.C
V

]
 6

 N
ov

 2
02

4

https://github.com/liquorleaf/OmniGS

while, the MLP parameters are optimized by minimizing
the photorealistic loss between rendered images and corre-
sponding training images. Since such a rendering and opti-
mization process requires millions of ray samplings, NeRF-
based methods [4, 6, 12] suffer from long training or infer-
ence time to model omnidirectional radiance field.

Recently, 3D Gaussian Splatting (3DGS) [11] effectively
addresses the limitation of NeRF by introducing 3D Gaus-
sians to explicitly represent radiance field. Each 3D Gaus-
sian is a point associated with certain attributes, i.e. posi-
tion, color, scale, rotation, and opacity. For rendering, the
elliptical weighted average (EWA) splatting algorithm [23]
is applied to project and rasterize 3D Gaussians onto the
screen space. Benefiting from the highly efficient rendering
process, 3DGS significantly reduces training and inference
time in high-quality radiance field reconstruction, having
great potential in real-time applications [7,10,21,22]. Nev-
ertheless, the current splatting algorithm is only compatible
with undistorted perspective image rendering.

In this paper, we aim to propose a novel system to
tame 3D Gaussian splatting for fast omnidirectional radi-
ance field reconstruction. To achieve differentiable omni-
directional image rendering, we begin by conducting a the-
oretical analysis of the derivatives of the spherical camera
model in 3D Gaussian splatting. Building upon the derived
derivatives, we develop a new GPU-accelerated omnidirec-
tional rasterizer that directly splats 3D Gaussians onto the
equirectangular screen space without the need for cube-map
rectification or tangent-plane approximation. The omni-
directional rasterizer then builds up the foundation of our
fast omnidirectional radiance field reconstruction system,
named OmniGS. OmniGS efficiently recovers the radiance
field from omnidirectional images for novel view synthesis,
as shown in Fig. 1. To verify the efficacy of our proposed
system, we conducted extensive evaluations on the omnidi-
rectional roaming scenes of 360Roam [6] and egocentric
scenes of EgoNeRF [5]. Qualitative and quantitative re-
sults show that our method achieves state-of-the-art (SOTA)
performance regarding photorealistic reconstruction quality
and rendering speed using omnidirectional images.

In summary, our contributions are as follows:

• We introduce thoughtful theoretical analysis of the om-
nidirectional Gaussian Splatting, enabling direct splat-
ting of the 3D Gaussians onto the equirectangular
screen space for real-time and differentiable rendering.

• We develop OmniGS, a novel photorealistic recon-
struction system based on our new GPU-accelerated
omnidirectional rasterizer.

• The extensive experiments demonstrate that our sys-
tem achieves state-of-the-art omnidirectional radiance
field reconstruction quality and fast rendering speed.

2. Related Works

2.1. Omnidirectional Reconstruction

Reconstructing 3D structures of observed environments
is a fundamental task that often relies on multi-view geom-
etry and factor graph solvers. Leveraging the information
embedded in large field-of-view (FoV) images can facili-
tate efficient and robust reconstruction. Existing methods
such as OpenMVG [15] utilize feature points on spheri-
cal images to establish 2D-to-3D correspondences and op-
timize the 3D structure by minimizing spherical reprojec-
tion errors. Additionally, techniques such as 360VIO [20]
and LF-VISLAM [19] integrate inertial measurement units
(IMUs) into the visual system, leading to improved accu-
racy and robustness in estimating motion structures. In con-
trast, 360VO [8] pioneers direct visual odometry using a
monocular omnidirectional camera, producing semi-dense
reconstructed point cloud maps. [9] proposes an egocentric
3D reconstruction method that can acquire scene geome-
try with high accuracy from a short egocentric omnidirec-
tional video. However, the conventional use of point clouds
or meshes to model reconstructed environments, although
effective in capturing structural information, often fails to
provide appealing visualization.

2.2. Omnidirectional NeRF Reconstruction

With the advancements in neural radiance field (NeRF)
techniques, photorealistic reconstruction has gained in-
creased flexibility. 360Roam [6] first introduced the use
of omnidirectional radiance fields for immersive scene ex-
ploration. To improve NeRF performance in large-scale
scenes, 360Roam incorporates geometry-aware sampling
and decomposition of the global radiance field, resulting
in fast and high-fidelity synthesis of novel views. 360Fu-
sionNeRF [12] and PERF [18] aim to reconstruct the ra-
diance field from a single omnidirectional image, alleviat-
ing the need for a large training dataset. However, due to
the limited information provided by the single image, addi-
tional depth maps are necessary to enhance the performance
of novel view synthesis, particularly in complex scenes.
To address the issue of training view overfitting in NeRF,
PanoGRF [4] integrates deep features and 360-degree scene
priors into the omnidirectional radiance field. Contrast-
ing the roaming scenarios explored by previous methods,
EgoNeRF [5] focuses on egocentric scenes captured within
a small circular area using casually acquired omnidirec-
tional images. EgoNeRF employs quasi-uniform angu-
lar grids to adaptively model unbounded scenes, achieving
state-of-the-art performance in egocentric view synthesis.
Despite the success of NeRF-based methods in novel view
synthesis using omnidirectional images, the computational
intensity of radiance field sampling remains a challenge,
leading to slow training or inference speeds.

2

2.3. 3D Gaussian Reconstruction

Recently, the emergence of 3DGS [11] has opened up
new possibilities for real-time applications. Building upon
this foundation, GS-SLAM [21] and Splatam [10] utilize
3D Gaussians as a scene representation to perform dense
RGB-D SLAM. Similarly, Gaussian Splatting SLAM [13]
adopts direct optimization against 3D Gaussians for camera
tracking. In addition, Photo-SLAM [7] achieves top pho-
torealistic mapping quality without relying on dense depth
optimization. Notably, it can execute online mapping seam-
lessly on an embedding device at a real-time speed, high-
lighting its potential for robotics applications.

To extend Gaussian Splatting for omnidirectional im-
age rendering, a concurrent work 360-GS [1] leverages
a tangent-plane approximation to formulate the Gaussian
splatting process. However, even though 360-GS outper-
forms previous NeRF-based baselines in terms of omni-
directional image rendering quality and training speed, its
two-stage projection splatting method is suboptimal. Fur-
thermore, its reliance on indoor layout priors limits its gen-
eralization capabilities in multi-room scale and outdoor sce-
narios. In this paper, our proposed OmniGS uses direct
screen-space splatting to accelerate rendering and does not
rely on scene assumptions or deep networks, enabling its
application in diverse indoor and outdoor scenes.

3. Omnidirectional Gaussian Splatting
3.1. Preliminary

3D Gaussian Splatting [11] is an anisotropic point-based
scene representation. Each point is parameterized by 3D
center position m, color c (derived from m and Spherical
Harmonics coefficients), rotation q, scale S and opacity o,
where q and S are used to derive the 3D Gaussian covari-
ance of that point. To render an image from a certain view,
all points and their covariance are projected, sampled, and
α-blended onto the 2D screen space. This forward render-
ing procedure is differentiable, allowing scene reconstruc-
tion and optimization from pose-calibrated images and a
sparse point cloud.

3.2. Camera Model

The camera model is the mathematical relationship be-
tween a 3D camera-space point t = [tx, ty, tz]

T and its pro-
jected position p = [px, py]

T on the image. Let m be the
world position of the point, and Tcw be its transform from
the world coordinate system to the camera space, we have

t = Tcw ∗m = Wm+ tcw. (1)

where W is the rotation matrix and tcw is the translation.
The original 3DGS uses the perspective camera model:[

px
py

]
=

[
fxtx/tz + cx
fyty/tz + cy

]
, (2)

YX

Z

Forward

(a) Camera coordinate system.

𝑝𝑥

𝑝𝑦

(b) Image coordinate system.

lat−𝜋 +𝜋
+
𝜋

2

lon

−
𝜋

2

(c) Latitude and longitude.

𝑠𝑦−1 +1
+1

𝑠𝑥

−1

(d) Uniform screen-space.

Figure 2. Coordinate systems used in OmniGS. We use the SLAM
convention for cameras, i.e. +X is right, +Y is down, and +Z
is forward. In the forward rendering process, 3D Gaussians are
first transformed from the world coordinate system to the camera
space, then projected onto the image. The latitude-longitude co-
ordinate system and the uniform screen-space coordinate system
serve as intermediate variables during the projection process. The
X-Z plane of the camera space is the equatorial plane, i.e. lat = 0.

where fx, fy are focal lengths and cx, cy are the principle
points of the pinhole camera model.

To take advantage of one-shot omnidirectional images,
we use the equirectangular projection model, which is the
most commonly used form in the context of omnidirectional
reconstruction. As shown in Fig. 2a, we define the camera
coordinate system according to the SLAM convention. The
camera X-Z plane corresponds to the equatorial plane of
equirectangular projection. To keep high fidelity, we use
the original inverse trigonometric functions to compute the
spherical latitude lat and longitude lon:[

lon
lat

]
=

[
arctan2(tx/tz)
arcsin(ty/tr)

]
, (3)

where tr =
√

t2x + t2y + t2z is the distance from the center of
unit sphere to the center of the 3D Gaussian in the camera
space, arctan2 is the 4-quadrant inverse tangent, and we
have −π ≤ lon < π and −π/2 ≤ lat < π/2. Then the
above latitude and longitude (Fig. 2c) can be transformed
into the uniform screen-space coordinates (Fig. 2d):[

sx
sy

]
=

[
lon/π
2lat/π

]
, (4)

so that we have −1 ≤ sx, sy < 1. At the end of the pro-
jection process, the uniform screen-space coordinates are
transformed into the pixel position on the image (Fig. 2b):[

px
py

]
=

[
(sx + 1)W/2
(sy + 1)H/2

]
, (5)

where W ,H are the width and height of the equirectangular
image respectively, measured in the count of pixels.

3

SfM

Points

G.T.

Images

3D

Gaussians

Initialization Omni.

Images

Omnidirectional

Rasterizer

Equirectangular

Projection

Sampling

& Blending

Loss

Density ControlForward Flow

Gradient Flow

Figure 3. A schematic overview of OmniGS optimization flow. It optimized 3D Gaussian representation by minimicing the loss between
the rendering omnidirectional images and the input ground truth images.

3.3. Forward Rendering

Following 3DGS [11], the final color of each image pixel
is decided following the α-blending model:

C =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj), (6)

where N is the number of 3D Gaussians near this pixel.
For perspective cameras, these Gaussians are sorted by their
tz , from nearest to farthest. However, under the circum-
stances of omnidirectional vision, the criterion for sorting
is changed to the distance between the camera center and
3D Gaussian kernal center tr. The i-th Gaussian has color
ci and sampled intensity αi. Furthermore, αi is determined
by its opacity oi and the sampled value on its 2D Gaussian
distribution:

αi = oiGi(∆pi), (7)

where ∆pi = pi − ps is the difference vector between its
projected center pi and the sampling pixel position ps, and
the sampling on the 2D Gaussian function is defined as:

Gi(∆pi) = exp

(
−1

2
(∆pi)

TΣ̃−1
i (∆pi)

)
. (8)

To get 2D covariance Σ̃ of the Gaussian projected onto
the equirectangular image plane, we compute it according
to the local affine approximation method described in [23]:

Σ̃ ≈ JWΣWTJT, (9)

where Σ is the 3D covariance, derived from the scaling vec-
tor and rotation quaternion of this Gaussian [11], J is the
Jacobian of the camera projection described in Sec. 3.2:

J =

∂px
∂tx

∂px
∂ty

∂px
∂tz

∂py
∂tx

∂py
∂ty

∂py
∂ty

0 0 0

, (10)

with

∂px
∂tx

= +
W

2π
· tz
t2x + t2z

, (11)

∂px
∂ty

= 0, (12)

∂px
∂tz

= −W

2π
· tx
t2x + t2z

, (13)

∂py
∂tx

= −H

π
· txty

t2r
√

t2x + t2z
, (14)

∂py
∂ty

= +
H

π
·
√

t2x + t2z
t2r

, (15)

∂py
∂tz

= −H

π
· tzty

t2r
√

t2x + t2z
, (16)

and W is the rotation part of the 4×4 transformation matrix
Tcw from the world coordinate system to the camera space.
The 2×2 covariance matrix finally can be obtained by skip-
ping the third row and column of Σ̃. The forward process
could be largely accelerated by the approximation Eq. (9),
leading to high-FPS real-time rendering.

Overall, during the tile-based forward rendering process,
a whole equirectangular image is partitioned into grids com-
posed of tiles of the same size. First, the center and covari-
ance of 3D Gaussians are projected onto the image screen.
Second, each tile counts the 2D Gaussians whose radius
of influence covers this tile, generating one instance per
influence. Third, all pixels within the same tile are ren-
dered at the same time, each pixel assigned to one thread.
These threads cooperatively get the attributes of the Gaus-
sian instances observed by the current tile, then separately
accumulate instances for α-blending until the pixel has
α = 0.9999. (The stopping threshold is not exactly 1 for
numerical stability considerations.)

3.4. Backward Optimization

To optimize the world position m, color c, rotation q,
scale S and opacity o of 3D Gaussians, we minimize the
photometric loss between the rendered image Ir and ground

4

truth Igt:

L(Ir, Igt) = (1− λ) |Ir − Igt|1 + λ(1− SSIM(Ir, Igt)),
(17)

where SSIM(Ir, Igt) is the structural similarity between two
images, and λ is a balancing weight factor.

The backward gradient flows from L to the attributes of
3D Gaussians through the full projection process. To be
specific, except for c and o which have nothing to do with
the camera model, the gradients of L over the attributes are
what we need to derive and modify for omnidirectional op-
timization. We can apply the chain rule for multivariable
functions to obtain:

∂L
∂m

=

M∑
k=1

[
∂L
∂c

∂c

∂m
+

∂L
∂αk

∂αk

∂Gk

(
∂Gk

∂Σ̃

∂Σ̃

∂J

∂J

∂t

∂t

∂m

+
∂Gk

∂p

∂p

∂s

∂s

∂t

∂t

∂m

)]
, (18)

∂L
∂q

=

M∑
k=1

(
∂L
∂αk

∂αk

∂Gk

∂Gk

∂Σ̃

∂Σ̃

∂Σ

∂Σ

∂R

∂R

∂q

)
, (19)

∂L
∂S

=

M∑
k=1

(
∂L
∂αk

∂αk

∂Gk

∂Gk

∂Σ̃

∂Σ̃

∂Σ

∂Σ

∂S

)
, (20)

where M is the total number of instances generated by this
Gaussian in all tiles. Note that R is the rotation matrix con-
verted from quaternion q, which is an inner property deter-
mining the Gaussian covariance along with S, and is dif-
ferent from the rotation part W of transform Tcw. Vectors
s and p are the screen-space and image-space coordinates,
respectively. We retain the common portion from gradients
given by [11], and replace the following parts with our om-

nidirectional gradients:
∂Σ̃

∂Σ
,
∂J

∂t
,
∂p

∂s
,
∂s

∂t
. Detailed deriva-

tion can be found in our supplementary material.

4. Reconstruction Pipeline
We illustrate an overview of OmniGS in Fig. 3. Recon-

struction starts from a set of SfM-calibrated equirectangular
images {Ij}, each of which has a pose Tj . We obtain initial
3D Gaussians G from the colored sparse SfM point cloud P.
We set their rotation, scale and opacity to unit values as [11]
does, then begin a series of optimization iterations. For each
iteration, we choose one view Ij from the randomly shuffled
{Ij}, render from Tj to get Ir, then compute L(Ir, Ij) and
the corresponding backward gradients. After densifying G
based on the following strategies, we advance the optimizer
by one step to optimize all 3D Gaussians.

We apply a gradient-based densification control strategy
similar to [11]. But instead of using the perspective gra-
dients, we judge whether to densify a Gaussian in sight of

Algorithm 1 Reconstruction Pipeline

Input: Equirectangular images {Ii} with calibrated poses
{Ti} and sparse SfM point cloud P

Output: 3D Gaussians available for novel-view synthesis
Initialization : Create initial 3D Gaussians G from P

1: for j = 1 to maximum iteration do
2: pick a random i
3: render G from Ti to get Ir
4: Lj = L(Ir, Ii)← Eq. (17)
5: backpropagate Lj

6: if j ≤ maximum densification iteration then
7: if j mod densification interval == 0 then

8: densify G by
∂Lj

∂s
9: prune G by o

10: prune G by S
11: end if
12: if j mod opacity-resetting interval == 0 then
13: reset large o in G
14: end if
15: end if
16: advance optimizer by one step
17: end for
18: return G

its gradient over omnidirectional screen-space location, i.e.
∂L
∂s

, which is derived and recorded during the calculation
process in Sec. 3.4. In detail, for Gaussians with a large
enough gradient, if their scales are too large or too small,
then they are going to be split or cloned respectively to den-
sify G, enhancing its ability to represent details. We also
prune the Gaussians whose scale or screen-space radius is
too large, intending to boost the details. Additionally, opaci-
ties of all Gaussians also contribute to the densification con-
trol. Gaussians with an excessively small opacity are pruned
as well. Large opacities are reset to encourage more densi-
fication. We execute the densification control process peri-
odically until reaching a certain number of iterations. We
conclude the above reconstruction pipeline in Algorithm 1.

5. Evaluation

We will report the evaluation results of OmniGS in
this section. We compare our reconstruction quality and
rendering speed with the baseline SOTA photorealistic
3D reconstruction methods, NeRF [14], Mip-NeRF 360
[2], 360Roam [6], Instant-NGP [16], TensoRF [3] and
EgoNeRF [5]. We also conducted a cross-validation exper-
iment to confirm the effectiveness of our method compared
to the perspective 3DGS.

5

OmniGS (Ours) Ground Truth360Roam

3
6

0
R

o
a

m
-C

a
fe

3
6

0
R

o
a

m
-C

a
n

te
e
n

Figure 4. Qualitative comparison example of novel-view synthesis on 360Roam dataset. OmniGS can reconstruct clearer detail structures.
It is also free from obvious holes or blurs, as the results in cafe show.

Method PSNR↑ SSIM↑ LPIPS↓ FPS↑
NeRF [14] 22.443 0.672 0.339 <1

Mip-NeRF 360 [2] 24.579 0.748 0.269 <1
TensoRF [3] 15.035 0.531 0.676 <1

Instant-NGP [16] 17.018 0.548 0.532 4
360Roam [6] 25.061 0.760 0.202 30

Ours 25.464 0.806 0.141 121

Table 1. Quantitative evaluation results on the 360Roam dataset.
We mark the best two results with first and second .

5.1. Implementation and Experiment Setup

We accomplished OmniGS based on LibTorch frame-
work, which is the C++ version of PyTorch. The tile-based
omnidirectional rasterizer was implemented with custom
CUDA kernels. As for the usage of datasets, we directly
utilized the calibrated camera poses and sparse SfM point
clouds contained in the datasets as initial input. But notably,
we performed openMVG [15] SfM on the OmniBlender
scenes of EgoNeRF dataset, since these scenes provide no
sparse point clouds. For the sake of a fair comparison, we
used an RTX-3090 GPU to conduct all experiments on Om-
niGS, using the provided training and testing split, and gath-
ered the RTX-3090 baseline results reported by the authors
of datasets [6] and [5] unless specifically stated. We evalu-
ated the results in terms of PSNR, SSIM, LPIPS, and ren-
dering FPS (forward pass inference speed), which are com-
mon criteria for photorealistic reconstruction. The base-

lines, except for EgoNeRF, were evaluated in terms of per-
spective novel-view synthesis, regarding their original ob-
jective. Detailed hyperparameter setups are discussed in our
supplementary material.

5.2. On 360Roam dataset

360Roam dataset [6] contains 10 complicated real-world
indoor scenes captured by a commercial omnidirectional
camera fixed on a mobile robot. Note that we skipped the
bottom part of the images when computing and backpropa-
gating loss in 360Roam scenes since the base mobile robot
is a dynamic object, which is beyond the scope of this paper.
So the resolution actually used by omnidirectional evalua-
tion was 712× 1520, for both training and testing.

We show qualitative comparison examples in Fig. 4, and
report the quantitative evaluation results in Tab. 1. Please
refer to our supplementary material to find the per-scene
quantitative results. With the help of our derived back-
ward optimization based on explicit geometry representa-
tion, OmniGS outperformed the NeRF-based baselines. We
gained a slightly higher performance above the state-of-
the-art (SOTA) 360Roam which used 2048 multilayer per-
ceptrons and needed several hours to train. We took only
less than 25 minutes (32k iterations) to earn similar quality,
which was also faster than the other NeRF-based baselines.
Our rendering FPS was also at least 4 times higher than the
baselines. Note that EgoNeRF needs input images with an

6

Dataset EgoNeRF-OmniBlender EgoNeRF-Ricoh360
Indoor Outdoor

Method PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑
NeRF [14] 27.660 0.756 0.425 <1 23.630 0.686 0.458 <1 22.780 0.663 0.538 <1

Mip-NeRF 360 [2] 27.410 0.763 0.412 <1 25.570 0.769 0.306 <1 24.280 0.725 0.384 <1
TensoRF [3] 29.250 0.791 0.376 2 25.680 0.734 0.344 2 25.160 0.732 0.376 2
EgoNeRF [5] 30.230 0.840 0.248 2 28.810 0.868 0.136 2 24.710 0.746 0.314 2

Ours 35.330 0.917 0.072 115 32.670 0.919 0.044 116 26.032 0.825 0.128 91

Table 2. Quantitative evaluation results on the EgoNeRF dataset. We mark the best two results with first and second .

OmniGS (Ours, 25minutes) Ground TruthEgoNeRF (30 minutes)

E
g

o
N

e
R

F
-C

en
te

r
E

g
o

N
e
R

F
-G

a
ll

er
y

_
P

il
la

r

Figure 5. Qualitative comparisons of omnidirectional novel-view synthesis in egocentric scenes. OmniGS can reconstruct the details more
sharply and precisely with less training time, i.e. 25 minutes.

egocentric camera motion pattern, and therefore cannot be
applied on 360Roam, in which the camera roams randomly
in the scenes. In addition, 360-GS [1] reports an FPS of
60 in indoor scenes with a resolution of 512× 1024, which
is slower than ours due to its two-stage projection. It also
fails to deal with the multiple-room scenes of 360Roam be-
cause of its dependence on single-room layout prediction
networks.

5.3. On EgoNeRF dataset

EgoNeRF [5] provides 11 OmniBlender simulation
scenes and 11 Ricoh360 real-world scenes. The Om-
niBlender scenes are further classified into 4 indoor and
7 outdoor scenes. We continued to use the provided clas-
sification and the original image resolutions, i.e. 1000 ×
2000 for EgoNeRF-OmniBlender and 960 × 1920 for
EgoNeRF-Ricoh360, for both training and testing. We

trained OmniGS to 32k iterations per scene, which took
around 25 minutes. We gathered the results of 10k it-
erations for EgoNeRF (around 30 minutes), Mip-NeRF
360 (more than 2 hours) and NeRF (more than 5 hours),
and 100k iterations for TensoRF (around 40 minutes).
Quantitative results are shown in Tab. 2. We also report
the per-scene results in our supplementary material. Our
method outperformed the SOTA EgoNeRF in terms of both
quality and rendering speed (PSNR+5.100, SSIM+0.077,
LPIPS−0.176, FPS 57.5 times on OmniBlender-indoor,
PSNR+3.860, SSIM+0.051, LPIPS−0.092, FPS 58 times
on OmniBlender-outdoor, and PSNR+1.322, SSIM+0.079,
LPIPS−0.186, FPS 45.5 times on Ricoh360). We also spent
less time on training to acquire such performance. Figure 5
shows some qualitative comparison examples of omnidirec-
tional rendering, illustrating the ability of OmniGS to re-
construct clearer and sharper details.

7

G
r
o

u
n

d
 T

r
u

th
3

D
 G

a
u

ss
ia

n
 S

p
la

tt
in

g
O

m
n

iG
S

 (
O

u
r
s)

O-Renderd P-Rendered

Figure 6. An example result of qualitative evaluation in perspec-
tive rendering, on 360Roam-Center. P denotes perspective image,
and O denotes omnidirectional image. The perspective 3DGS suf-
fers detail loss and artifacts caused by the limited FoV utilization
rate, while OmniGS renders correct omnidirectional novel views
that can be cropped to better perspective images.

5.4. Additional Perspective Rendering Evaluation

With a view to validate the effectiveness of our method,
we used openMVG to divide each equirectangular image
into 6 perspective images and trained the 360Roam scenes
again with the perspective 3DGS [11]. We ran the optimiza-
tion process to the same densification time and total time.
Perspectives including the base mobile robot were skipped,
for the same reason stated in Sec. 5.1.

As shown in Tab. 3, when considering the tested-as-
trained performance, i.e. the P-trained P-tested 3DGS and
O-trained O-tested OmniGS, 3DGS was a little better than
our OmniGS (P denotes perspective and O denotes omni-
directional). This is because when scene models are eval-
uated in the form of equirectangular images, the near-pole
distortion of real omnidirectional cameras will deteriorate
the quantitative results [5]. The above phenomenon indi-

Method Training Testing PSNR↑ SSIM↑ LPIPS↓

3DGS [11] P P 25.708 0.875 0.143
O 22.663 0.751 0.244

OmniGS (Ours) O O 25.464 0.806 0.141
P 27.520 0.888 0.098

Table 3. Quantitative comparison of perspective rendering results
on 360Roam Dataset. P denotes perspective image, and O denotes
omnidirectional image. Though OmniGS performs slightly worse
when tested as trained, it outperforms 3DGS when the form of
testing images are unified into O or P, respectively.

cates that we should unify the form of testing images before
comparing OmniGS with the perspective 3DGS. Taking this
into account, we re-evaluated the OmniGS results by crop-
ping the rendered testing views into perspective images, and
then compared the two P-tested results. It came out that our
method was equipped with the ability to generate better per-
spective views cropped from the rendered omnidirectional
images (PSNR+1.812, SSIM+0.012, LPIPS−0.045). In
addition, we rendered the 3DGS-trained models with our
omnidirectional rasterizer, then compared the two O-tested
results. The omnidirectional novel-view synthesis qual-
ity of our models was also higher than that of 3DGS
(PSNR+2.801, SSIM+0.055, LPIPS−0.103). Moreover,
qualitative results (Fig. 6) figure out that the perspective
3DGS tended to lose detail and suffered artifacts due to
the low utilization rate of observations. It can use only
one limited view at one time. In contrast, when given the
same time for training, OmniGS made use of the whole om-
nidirectional environment in each iteration, reaching more
robust densification and faster model convergence. Om-
nidirectional images rendered from OmniGS-reconstructed
models can also be cropped to generate perspective views
properly, showing the strong scalability of our method.

6. Conclusion

In this paper, we present a novel fast photorealistic 3D
reconstruction method, named OmniGS, which fully ex-
ploits the speed advantage of direct omnidirectional screen-
space splatting. We derived the backward gradient and im-
plemented a real-time tile-based omnidirectional rasterizer.
Experiment results on various datasets show that OmniGS
achieves SOTA reconstruction quality and rendering FPS,
even with less training time. Compared to the original
3DGS, our method can directly optimize the radiance field
using omnidirectional images and realize better perspective
view synthesis. We believe OmniGS holds the potential to
evolve in various directions, such as integrating OmniGS
into omnidirectional visual SLAM systems to perform real-
time online photorealistic mapping systems.
Acknowledgements: This work was supported by the
China National Key Research and Development Program
under Grant 2022YFB3903804.

8

References
[1] Jiayang Bai, Letian Huang, Jie Guo, Wen Gong, Yuanqi

Li, and Yanwen Guo. 360-GS: Layout-guided panoramic
gaussian splatting for indoor roaming. arXiv preprint,
arXiv:2402.00763, 2024. 3, 7

[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5470–5479, 2022. 5, 6, 7

[3] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. TensoRF: Tensorial radiance fields. In European
Conference on Computer Vision (ECCV), pages 333–350,
2022. 5, 6, 7

[4] Zheng Chen, Yan-Pei Cao, Yuan-Chen Guo, Chen Wang,
Ying Shan, and Song-Hai Zhang. PanoGRF: Generalizable
spherical radiance fields for wide-baseline panoramas. In
Thirty-seventh Conference on Neural Information Process-
ing Systems, 2023. 1, 2

[5] Changwoon Choi, Sang Min Kim, and Young Min Kim. Bal-
anced spherical grid for egocentric view synthesis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 16590–16599, 2023.
2, 5, 6, 7, 8

[6] Huang Huajian, Chen Yingshu, Zhang Tianjia, and Ye-
ung Sai-Kit. 360Roam: Real-time indoor roaming us-
ing geometry-aware 360◦ radiance fields. arXiv preprint,
arXiv:2208.02705, 2022. 1, 2, 5, 6

[7] Huajian Huang, Longwei Li, Hui Cheng, and Sai-Kit Ye-
ung. Photo-SLAM: Real-time simultaneous localization and
photorealistic mapping for monocular, stereo, and RGB-D
cameras. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), in press,
2024. 2, 3

[8] Huajian Huang and Sai-Kit Yeung. 360VO: Visual odometry
using a single 360 camera. In International Conference on
Robotics and Automation (ICRA). IEEE, 2022. 1, 2

[9] Hyeonjoong Jang, Andréas Meuleman, Dahyun Kang,
Donggun Kim, Christian Richardt, and Min H. Kim. Ego-
centric scene reconstruction from an omnidirectional video.
ACM Transactions on Graphics (Proc. SIGGRAPH 2022),
41(4), 2022. 2

[10] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula,
Gengshan Yang, Sebastian Scherer, Deva Ramanan, and
Jonathan Luiten. SplaTAM: Splat, track & map 3D gaussians
for dense RGB-D SLAM. arXiv preprint, arXiv:2312.02126,
2023. 2, 3

[11] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler,
and George Drettakis. 3D gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics,
42(4), 2023. 2, 3, 4, 5, 8

[12] Shreyas Kulkarni, Peng Yin, and Sebastian Scherer. 360Fu-
sionNeRF: Panoramic neural radiance fields with joint guid-
ance. In 2023 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 7202–7209, 2023.
1, 2

[13] Hidenobu Matsuki, Riku Murai, Paul H. J. Kelly, and An-
drew J. Davison. Gaussian Splatting SLAM. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), in press, 2024. 3

[14] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view
synthesis. In European Conference on Computer Vision
(ECCV), 2020. 1, 5, 6, 7

[15] Pierre Moulon, Pascal Monasse, Romuald Perrot, and Re-
naud Marlet. OpenMVG: Open multiple view geometry. In
Reproducible Research in Pattern Recognition, pages 60–74,
2017. 2, 6

[16] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics,
41(4), 2022. 5, 6

[17] Kan You Yaxin Li Duojie Weng San Jiang and Chen Wu. 3D
reconstruction of spherical images: a review of techniques,
applications, and prospects. Geo-spatial Information Sci-
ence, pages 1–30, 2024. 1

[18] Guangcong Wang, Peng Wang, Zhaoxi Chen, Wenping
Wang, Chen Change Loy, and Ziwei Liu. PERF: Panoramic
neural radiance field from a single panorama. Technical Re-
port, 2023. 2

[19] Ze Wang, Kailun Yang, Hao Shi, Peng Li, Fei Gao, Jian Bai,
and Kaiwei Wang. LF-VISLAM: A SLAM framework for
large field-of-view cameras with negative imaging plane on
mobile agents. IEEE Transactions on Automation Science
and Engineering, pages 1–15, 2023. 1, 2

[20] Qi Wu, Xiangyu Xu, Xieyuanli Chen, Ling Pei, Chao Long,
Junyuan Deng, Guoqing Liu, Sheng Yang, Shilei Wen, and
Wenxian Yu. 360-VIO: A robust visual–inertial odometry
using a 360° camera. IEEE Transactions on Industrial Elec-
tronics, pages 1–10, 2023. 1, 2

[21] Chi Yan, Delin Qu, Dong Wang, Dan Xu, Zhigang
Wang, Bin Zhao, and Xuelong Li. GS-SLAM: Dense vi-
sual SLAM with 3D gaussian splatting. arXiv preprint,
arXiv:2311.11700, 2024. 2, 3

[22] Vladimir Yugay, Yue Li, Theo Gevers, and Martin R. Os-
wald. Gaussian-SLAM: Photo-realistic dense SLAM with
gaussian splatting. arXiv preprint, arXiv:2312.10070, 2023.
2

[23] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. EWA
splatting. IEEE Transactions on Visualization and Computer
Graphics, 8(3):223–238, 2002. 2, 4

9

	. Introduction
	. Related Works
	. Omnidirectional Reconstruction
	. Omnidirectional NeRF Reconstruction
	. 3D Gaussian Reconstruction

	. Omnidirectional Gaussian Splatting
	. Preliminary
	. Camera Model
	. Forward Rendering
	. Backward Optimization

	. Reconstruction Pipeline
	. Evaluation
	. Implementation and Experiment Setup
	. On 360Roam dataset
	. On EgoNeRF dataset
	. Additional Perspective Rendering Evaluation

	. Conclusion

