Real-time Progressive 3D Semantic Segmentation for Indoor Scenes

Supplementary Materials

1. Temporal accuracy

In our experiments, the main source of fluctuation is usually come from new section of the scene is being scanned. We consider this as a trade-off between stability in accuracy and the capability to progressively fix segmentation errors. In the case if we only adhere to the temporal consistency, the system might stuck in the same segmentation over and over, even if the segmentation is deemed incorrect. In our system, we actually represented this trade-off by a weighted sum in the CRF unary term of time t. Here is a plot that shows accuracy over time when we change the weighting parameter τ for a typical scene. In our experiment, we set $\tau = 0.5$ since it gives a good trade-off between temporal consistency and segmentation accuracy.

Figure 1: Accuracy over time in SceneNN/061 when changing the temporal consistency weighting parameter τ . When τ is small, the system is subject to less fluctuation, but lose the ability to fix initial segmentation errors.

2. Additional online results

Here we present the full results of our online semantic segmentation experiments. The results consists of 80 scenes from SceneNN (Table 1) and unique scenes from ScanNet (Table 2). Figure 2 shows the accuracy differences between our method and SemanticFusion on those 400 scenes. On average, we gain 4.4% in accuracy and 7.2% in IoU. Specifically, out of a total of 480 scenes, we outperform SemanticFusion in 376 scenes, in which 176 for over 5%, and 62 for over 10% in accuracy. On the other hand, SemanticFusion only outperforms our method in 67 scenes, 21 for over 5%, and 6 for over 10% in accuracy.

We adopt two common metrics from 2D semantic segmentation for our 3D evaluation, namely vertex accuracy (A) and frequency weighted intersection over union (*wIoU*). Let v_{ij} be the number of vertices of class *i* predicted to be class *j*, and $t_i = \sum_j v_{ij}$ be the total number vertices of class *i*. The two metrics can be computed as follows:

$$A = \frac{\sum_{i} v_{ii}}{\sum_{i} t_{i}} \tag{1}$$

$$wIoU = \frac{1}{\sum_{k} t_{k}} \sum_{i} \frac{t_{i} v_{ii}}{t_{i} + \sum_{j} v_{ji} - v_{ii}}$$
(2)

We also show additional overtime accuracy evaluation for some selected scenes from SceneNN.

Figure 2: Differences in accuracy between our method and SemanticFusion on SceneNN (80 scenes) and ScanNet (400 unique scenes) dataset. The horizontal axis is scene ID sorted in increasing order.

ID	ID Direct		S	F	Ours			
	А	wIoU	А	wIoU	А	wIoU	mAP@50%	
005	0.486	0.386	0.492	0.388	0.539	0.467	0.077	
011	0.770	0.654	0.776	0.664	0.800	0.699	0.522	
014	0.490	0.391	0.508	0.414	0.539	0.501	0.118	
015	0.535	0.366	0.571	0.408	0.620	0.482	0.152	
016	0.607	0.476	0.625	0.497	0.680	0.566	0.342	
021	0.559	0.427	0.634	0.510	0.676	0.581	0.197	
025	0.643	0.519	0.648	0.533	0.698	0.610	0.213	
030	0.584	0.450	0.597	0.466	0.658	0.559	0.568	
032	0.795	0.682	0.811	0.710	0.813	0.703	0.311	
036	0.575	0.431	0.603	0.476	0.655	0.556	0.162	
038	0.608	0.499	0.628	0.527	0.659	0.590	0.394	
041	0.554	0.441	0.579	0.481	0.564	0.482	0.246	
045	0.649	0.515	0.673	0.552	0.667	0.549	0.443	
047	0.537	0.441	0.550	0.455	0.570	0.497	0.156	
052	0.578	0.448	0.530	0.423	0.552	0.433	0.437	
054	0.489	0.335	0.597	0.470	0.602	0.489	0.379	
057	0.742	0.668	0.517	0.366	0.654	0.539	0.246	
061	0.751	0.606	0.777	0.641	0.809	0.691	0.591	
062	0.497	0.353	0.757	0.693	0.778	0.727	0.377	
065	0.563	0.412	0.524	0.374	0.528	0.393	0.237	
066	0.564	0.479	0.561	0.420	0.571	0.442	0.336	
069	0.578	0.467	0.584	0.510	0.646	0.557	0.490	
071	0.557	0.435	0.588	0.483	0.626	0.514	0.219	
073	0.501	0.397	0.568	0.452	0.558	0.442	0.596	
074	0.540	0.387	0.507	0.404	0.515	0.430	0.391	
078	0.497	0.365	0.515	0.388	0.535	0.454	0.349	
080	0.634	0.503	0.570	0.431	0.628	0.510	0.393	
082	0.523	0.364	0.658	0.543	0.689	0.589	0.242	
084	0.737	0.636	0.544	0.390	0.591	0.455	0.401	
086	0.622	0.519	0.646	0.551	0.668	0.587	0.350	
087	0.192	0.151	0.731	0.617	0.751	0.658	0.434	
089	0.558	0.449	0.573	0.466	0.618	0.529	0.236	
092	0.549	0.424	0.207	0.168	0.193	0.158	0.501	
093	0.507	0.376	0.553	0.432	0.558	0.469	0.383	
096	0.659	0.536	0.668	0.549	0.666	0.565	0.265	
098	0.601	0.497	0.600	0.497	0.623	0.557	0.321	
109	0.553	0.461	0.505	0.362	0.512	0.383	0.267	
201	0.763	0.619	0.565	0.478	0.587	0.514	0.194	
202	0.520	0.403	0.779	0.640	0.794	0.678	0.250	

ID	ID Direct		S	F	Ours			
	А	wIoU	А	wIoU	А	wIoU	mAP@50%	
205	0.635	0.573	0.642	0.585	0.629	0.586	0.501	
206	0.766	0.654	0.778	0.673	0.775	0.675	0.417	
207	0.559	0.432	0.568	0.446	0.596	0.510	0.171	
209	0.415	0.281	0.533	0.423	0.587	0.494	0.280	
213	0.539	0.425	0.551	0.440	0.561	0.448	0.478	
217	0.601	0.492	0.433	0.299	0.510	0.386	0.135	
223	0.669	0.559	0.689	0.587	0.729	0.655	0.409	
225	0.617	0.485	0.620	0.518	0.676	0.611	0.184	
227	0.628	0.541	0.627	0.501	0.658	0.529	0.462	
231	0.655	0.542	0.656	0.543	0.660	0.577	0.692	
234	0.648	0.532	0.631	0.551	0.682	0.617	0.342	
237	0.702	0.587	0.658	0.545	0.700	0.615	0.200	
240	0.562	0.427	0.722	0.617	0.726	0.649	0.214	
243	0.538	0.455	0.553	0.471	0.595	0.532	0.144	
246	0.530	0.373	0.577	0.448	0.580	0.496	0.006	
249	0.636	0.498	0.545	0.396	0.656	0.557	0.739	
251	0.542	0.436	0.659	0.531	0.718	0.639	0.215	
252	0.434	0.306	0.563	0.463	0.583	0.489	0.642	
255	0.423	0.316	0.439	0.334	0.558	0.473	0.486	
260	0.546	0.408	0.447	0.319	0.444	0.320	0.351	
263	0.456	0.338	0.573	0.438	0.666	0.571	0.275	
265	0.531	0.413	0.485	0.373	0.553	0.489	0.270	
270	0.555	0.397	0.523	0.395	0.613	0.515	0.598	
272	0.602	0.475	0.614	0.493	0.612	0.503	0.203	
273	0.491	0.338	0.574	0.421	0.652	0.528	0.547	
276	0.684	0.550	0.494	0.340	0.476	0.313	0.170	
279	0.684	0.550	0.699	0.577	0.781	0.706	0.258	
286	0.498	0.393	0.521	0.422	0.531	0.448	0.304	
294	0.441	0.302	0.430	0.280	0.463	0.323	0.600	
308	0.736	0.647	0.752	0.675	0.796	0.747	0.342	
322	0.657	0.599	0.662	0.606	0.687	0.642	0.593	
522	0.625	0.551	0.640	0.575	0.665	0.635	0.807	
527	0.821	0.774	0.793	0.722	0.804	0.741	0.531	
609	0.772	0.669	0.770	0.675	0.838	0.782	0.225	
613	0.795	0.651	0.783	0.633	0.886	0.792	0.175	
614	0.481	0.327	0.496	0.344	0.579	0.452	0.029	
621	0.802	0.731	0.814	0.747	0.872	0.845	0.305	
623	0.540	0.452	0.486	0.404	0.587	0.551	0.439	
700	0.609	0.470	0.607	0.463	0.661	0.535	0.581	

Table 1: Comparison of semantic segmentation performance on 80 scenes in SceneNN dataset. Our proposed CRF model consistently outperforms the naive approach that directly fuses neural network predictions to 3D (Direct) [3], and Semantic-Fusion (SF) [7]. The fifth column further reports the average precision of the instance-based semantic segmentation task.

ID	S	F	0	ırs	 ID	S	F	0	ırs
	А	wIoU	А	wIoU		А	wIoU	А	wIoU
0000	0.495	0.384	0.527	0.443	 0060	0.782	0.698	0.828	0.755
0001	0.604	0.485	0.566	0.459	0061	0.515	0.346	0.472	0.381
0003	0.573	0.505	0.649	0.589	0062	0.711	0.597	0.724	0.624
0004	0.359	0.270	0.432	0.387	0063	0.690	0.580	0.734	0.643
0005	0.767	0.623	0.903	0.849	0065	0.610	0.428	0.632	0.456
0006	0.648	0.487	0.731	0.599	0067	0.742	0.628	0.788	0.738
0007	0.568	0.415	0.574	0.457	0068	0.624	0.515	0.752	0.722
0008	0.726	0.590	0.801	0.722	0069	0.347	0.200	0.547	0.461
0009	0.795	0.667	0.845	0.750	0070	0.433	0.286	0.457	0.356
0010	0.684	0.567	0.719	0.614	0071	0.708	0.540	0.809	0.698
0012	0.551	0.386	0.612	0.511	0072	0.392	0.320	0.394	0.348
0013	0.530	0.308	0.641	0.436	0073	0.586	0.467	0.684	0.604
0015	0.780	0.634	0.832	0.730	0074	0.469	0.247	0.577	0.366
0016	0.603	0.370	0.683	0.495	0075	0.574	0.421	0.653	0.523
0017	0.576	0.396	0.702	0.555	0076	0.685	0.513	0.727	0.587
0018	0.787	0.712	0.825	0.813	0077	0.521	0.391	0.569	0.461
0019	0.666	0.517	0.760	0.652	0078	0.415	0.317	0.474	0.378
0020	0.728	0.651	0.797	0.752	0079	0.527	0.427	0.542	0.481
0021	0.567	0.366	0.885	0.820	0080	0.364	0.317	0.367	0.342
0022	0.848	0.748	0.746	0.651	0081	0.522	0.356	0.512	0.362
0023	0.822	0.687	0.933	0.879	0082	0.691	0.497	0.751	0.577
0024	0.577	0.375	0.692	0.521	0083	0.548	0.349	0.579	0.409
0026	0.576	0.486	0.622	0.573	0084	0.782	0.703	0.808	0.761
0027	0.753	0.600	0.787	0.670	0085	0.597	0.503	0.659	0.590
0030	0.670	0.511	0.671	0.544	0086	0.777	0.691	0.802	0.736
0032	0.550	0.460	0.537	0.495	0087	0.644	0.486	0.596	0.471
0033	0.838	0.721	0.925	0.861	0088	0.783	0.637	0.741	0.653
0035	0.531	0.394	0.571	0.471	0089	0.473	0.292	0.532	0.352
0036	0.554	0.414	0.668	0.599	0090	0.695	0.532	0.768	0.636
0037	0.759	0.609	0.878	0.797	0091	0.316	0.175	0.404	0.248
0038	0.813	0.685	0.868	0.794	0092	0.546	0.367	0.593	0.437
0039	0.496	0.337	0.552	0.399	0093	0.538	0.345	0.660	0.482
0041	0.747	0.574	0.690	0.596	0094	0.490	0.306	0.577	0.456
0042	0.876	0.844	0.780	0.692	0095	0.619	0.437	0.571	0.455
0043	0.709	0.592	0.597	0.480	0096	0.671	0.581	0.692	0.634
0044	0.694	0.537	0.885	0.860	0097	0.697	0.559	0.761	0.642
0045	0.837	0.761	0.900	0.875	0098	0.411	0.315	0.423	0.347
0047	0.563	0.418	0.680	0.597	0099	0.475	0.254	0.628	0.420
0048	0.727	0.616	0.750	0.678	0100	0.574	0.499	0.606	0.551
0052	0.631	0.398	0.540	0.291	0101	0.408	0.325	0.516	0.482
0053	0.770	0.638	0.812	0.709	0102	0.501	0.313	0.577	0.416
0055	0.548	0.393	0.650	0.544	0103	0.764	0.636	0.745	0.630
0056	0.666	0.480	0.799	0.669	0105	0.906	0.847	0.948	0.925
0057	0.416	0.260	0.434	0.303	0106	0.615	0.451	0.713	0.587
0058	0.477	0.305	0.584	0.446	 0107	0.532	0.378	0.555	0.424

ID	S	F	0	ırs	 ID	S	F	0	ırs
	А	wIoU	А	wIoU		А	wIoU	А	wIoU
0108	0.307	0.225	0.291	0.232	 0156	0.666	0.526	0.674	0.560
0109	0.541	0.397	0.576	0.461	0157	0.424	0.336	0.392	0.302
0110	0.472	0.369	0.415	0.327	0158	0.329	0.240	0.314	0.240
0111	0.526	0.418	0.505	0.426	0159	0.544	0.435	0.571	0.496
0112	0.798	0.652	0.950	0.910	0160	0.353	0.230	0.405	0.296
0113	0.673	0.564	0.688	0.603	0161	0.680	0.498	0.772	0.620
0114	0.463	0.308	0.502	0.377	0162	0.644	0.512	0.591	0.460
0115	0.735	0.625	0.714	0.639	0163	0.654	0.457	0.634	0.479
0116	0.133	0.045	0.205	0.087	0164	0.528	0.423	0.533	0.458
0117	0.612	0.474	0.676	0.571	0165	0.672	0.607	0.668	0.638
0118	0.654	0.465	0.682	0.501	0166	0.453	0.380	0.475	0.409
0119	0.227	0.206	0.229	0.215	0167	0.574	0.488	0.621	0.546
0120	0.639	0.504	0.715	0.604	0168	0.396	0.290	0.452	0.378
0121	0.435	0.266	0.421	0.270	0169	0.529	0.347	0.598	0.420
0122	0.747	0.616	0.755	0.640	0170	0.451	0.386	0.488	0.420
0123	0.659	0.592	0.621	0.576	0171	0.628	0.476	0.575	0.482
0124	0.636	0.505	0.695	0.599	0172	0.348	0.265	0.394	0.326
0125	0.669	0.519	0.718	0.611	0173	0.644	0.496	0.666	0.536
0126	0.393	0.314	0.449	0.401	0174	0.398	0.319	0.466	0.418
0127	0.453	0.411	0.526	0.461	0176	0.717	0.526	0.910	0.834
0128	0.370	0.200	0.425	0.282	0177	0.355	0.292	0.319	0.283
0129	0.612	0.450	0.732	0.622	0178	0.440	0.335	0.629	0.593
0131	0.463	0.383	0.512	0.474	0179	0.504	0.287	0.627	0.418
0132	0.549	0.450	0.631	0.568	0181	0.578	0.416	0.627	0.500
0133	0.723	0.566	0.758	0.619	0182	0.593	0.405	0.709	0.582
0134	0.348	0.224	0.358	0.268	0183	0.385	0.226	0.436	0.286
0135	0.464	0.393	0.500	0.437	0184	0.165	0.140	0.167	0.162
0136	0.330	0.252	0.327	0.277	0185	0.609	0.385	0.584	0.381
0137	0.479	0.356	0.504	0.402	0186	0.309	0.227	0.328	0.250
0138	0.490	0.321	0.640	0.492	0187	0.716	0.597	0.759	0.682
0139	0.419	0.324	0.495	0.412	0188	0.615	0.442	0.603	0.454
0140	0.561	0.471	0.569	0.490	0189	0.625	0.404	0.789	0.647
0141	0.631	0.524	0.568	0.514	0191	0.439	0.285	0.454	0.308
0142	0.476	0.420	0.482	0.442	0192	0.378	0.234	0.273	0.271
0143	0.399	0.305	0.471	0.383	0193	0.547	0.431	0.625	0.545
0145	0.549	0.414	0.592	0.521	0194	0.492	0.302	0.504	0.312
0146	0.659	0.488	0.668	0.492	0195	0.497	0.410	0.579	0.543
0147	0.453	0.348	0.447	0.359	0196	0.709	0.593	0.758	0.658
0148	0.595	0.477	0.595	0.531	0197	0.518	0.387	0.581	0.461
0149	0.497	0.346	0.469	0.350	0198	0.487	0.408	0.529	0.473
0150	0.574	0.369	0.686	0.505	0199	0.749	0.602	0.688	0.556
0151	0.514	0.388	0.602	0.524	0200	0.529	0.340	0.642	0.469
0152	0.501	0.391	0.510	0.426	0201	0.653	0.530	0.673	0.575
0153	0.437	0.385	0.463	0.440	0202	0.612	0.483	0.663	0.545
0154	0.492	0.276	0.508	0.291	0203	0.385	0.225	0.424	0.269

ID	S	F	0	ırs	ID	S	F	0	ırs
	А	wIoU	А	wIoU		А	wIoU	А	wIoU
0204	0.785	0.656	0.689	0.561	0253	0.236	0.185	0.243	0.214
0205	0.633	0.481	0.708	0.590	0254	0.542	0.389	0.599	0.494
0206	0.320	0.243	0.350	0.291	0255	0.493	0.330	0.599	0.465
0207	0.323	0.280	0.355	0.335	0256	0.441	0.271	0.491	0.328
0209	0.477	0.395	0.465	0.426	0257	0.805	0.726	0.646	0.546
0210	0.535	0.361	0.553	0.393	0258	0.548	0.492	0.675	0.623
0211	0.381	0.206	0.408	0.232	0259	0.623	0.499	0.615	0.539
0212	0.550	0.437	0.428	0.375	0260	0.427	0.353	0.482	0.435
0213	0.488	0.339	0.524	0.403	0261	0.596	0.418	0.647	0.497
0214	0.602	0.469	0.619	0.498	0262	0.428	0.297	0.488	0.402
0215	0.732	0.614	0.750	0.659	0263	0.462	0.336	0.514	0.422
0216	0.648	0.503	0.793	0.697	0264	0.441	0.325	0.460	0.361
0217	0.494	0.444	0.491	0.442	0265	0.643	0.527	0.684	0.608
0218	0.570	0.502	0.566	0.540	0266	0.642	0.546	0.602	0.507
0219	0.608	0.398	0.727	0.564	0267	0.696	0.582	0.665	0.559
0220	0.491	0.363	0.505	0.434	0268	0.245	0.178	0.255	0.189
0221	0.541	0.389	0.600	0.489	0270	0.314	0.240	0.372	0.309
0222	0.384	0.314	0.397	0.335	0271	0.474	0.380	0.490	0.438
0223	0.501	0.399	0.544	0.473	0272	0.475	0.330	0.575	0.459
0224	0.229	0.162	0.248	0.181	0273	0.399	0.286	0.460	0.347
0225	0.516	0.434	0.549	0.488	0274	0.667	0.479	0.718	0.546
0226	0.516	0.413	0.530	0.442	0275	0.513	0.360	0.591	0.459
0227	0.716	0.534	0.780	0.634	0276	0.593	0.420	0.699	0.561
0228	0.535	0.319	0.579	0.369	0277	0.454	0.300	0.521	0.401
0229	0.442	0.311	0.715	0.564	0278	0.558	0.497	0.624	0.581
0230	0.554	0.429	0.607	0.505	0279	0.526	0.421	0.621	0.540
0232	0.848	0.740	0.907	0.832	0280	0.359	0.299	0.370	0.320
0233	0.459	0.328	0.459	0.341	0281	0.750	0.635	0.682	0.570
0234	0.532	0.344	0.549	0.368	0282	0.421	0.229	0.448	0.262
0235	0.572	0.392	0.628	0.476	0283	0.724	0.562	0.853	0.752
0236	0.393	0.314	0.383	0.342	0284	0.504	0.410	0.512	0.442
0237	0.458	0.409	0.437	0.389	0285	0.698	0.531	0.755	0.605
0238	0.443	0.368	0.527	0.494	0286	0.430	0.370	0.437	0.388
0239	0.442	0.356	0.561	0.460	0287	0.502	0.396	0.548	0.483
0241	0.730	0.600	0.818	0.759	0288	0.552	0.460	0.584	0.516
0242	0.742	0.582	0.783	0.641	0289	0.677	0.551	0.700	0.590
0244	0.556	0.481	0.623	0.578	0290	0.267	0.188	0.146	0.083
0245	0.593	0.456	0.630	0.531	0291	0.764	0.623	0.781	0.654
0246	0.395	0.255	0.481	0.344	0293	0.401	0.362	0.384	0.356
0247	0.556	0.411	0.563	0.427	0294	0.585	0.381	0.595	0.403
0248	0.366	0.246	0.305	0.250	0295	0.507	0.423	0.563	0.519
0249	0.651	0.466	0.696	0.531	0296	0.550	0.421	0.583	0.475
0250	0.635	0.571	0.629	0.580	0297	0.730	0.581	0.772	0.647
0251	0.677	0.552	0.690	0.573	0298	0.505	0.376	0.534	0.413
0252	0.642	0.417	0.740	0.554	0299	0.662	0.531	0.706	0.597

ID	S	F	Oı	irs	ID	S	F	O	ırs
	А	wIoU	А	wIoU		А	wIoU	А	wIoU
0300	0.829	0.723	0.850	0.755	0345	0.498	0.363	0.574	0.474
0301	0.334	0.258	0.407	0.360	0346	0.429	0.406	0.429	0.398
0302	0.569	0.380	0.661	0.483	0348	0.412	0.312	0.403	0.338
0303	0.453	0.376	0.507	0.451	0349	0.439	0.351	0.437	0.369
0304	0.683	0.572	0.701	0.624	0350	0.602	0.553	0.651	0.630
0305	0.420	0.357	0.510	0.497	0351	0.530	0.386	0.564	0.437
0306	0.372	0.276	0.315	0.277	0352	0.410	0.269	0.513	0.395
0307	0.485	0.292	0.598	0.419	0353	0.379	0.315	0.422	0.377
0308	0.258	0.190	0.317	0.274	0355	0.434	0.352	0.413	0.331
0309	0.510	0.354	0.514	0.371	0356	0.381	0.313	0.414	0.368
0310	0.428	0.251	0.513	0.350	0358	0.712	0.592	0.656	0.534
0311	0.511	0.338	0.528	0.371	0359	0.585	0.359	0.707	0.515
0312	0.504	0.291	0.638	0.451	0360	0.669	0.557	0.727	0.685
0313	0.306	0.169	0.336	0.182	0361	0.175	0.066	0.198	0.081
0314	0.521	0.400	0.601	0.573	0363	0.431	0.372	0.485	0.420
0315	0.389	0.277	0.494	0.414	0364	0.466	0.373	0.488	0.411
0316	0.599	0.413	0.721	0.593	0365	0.666	0.479	0.712	0.552
0317	0.585	0.535	0.613	0.591	0367	0.646	0.547	0.686	0.608
0318	0.136	0.089	0.168	0.118	0368	0.474	0.351	0.497	0.399
0319	0.438	0.281	0.515	0.433	0369	0.598	0.463	0.632	0.553
0320	0.435	0.363	0.454	0.410	0370	0.642	0.496	0.649	0.517
0321	0.640	0.520	0.750	0.637	0371	0.746	0.579	0.795	0.665
0322	0.719	0.572	0.763	0.638	0372	0.635	0.457	0.705	0.566
0323	0.444	0.301	0.501	0.355	0374	0.679	0.563	0.694	0.603
0324	0.700	0.540	0.837	0.754	0375	0.569	0.403	0.699	0.588
0325	0.344	0.241	0.388	0.320	0376	0.461	0.331	0.625	0.555
0326	0.550	0.413	0.608	0.542	0378	0.386	0.269	0.437	0.338
0327	0.421	0.269	0.431	0.318	0379	0.447	0.291	0.557	0.418
0328	0.189	0.089	0.388	0.287	0380	0.574	0.388	0.689	0.555
0329	0.611	0.434	0.638	0.484	0381	0.772	0.636	0.784	0.680
0330	0.352	0.141	0.492	0.263	0382	0.358	0.270	0.451	0.399
0331	0.409	0.335	0.442	0.394	0383	0.391	0.230	0.479	0.323
0332	0.564	0.445	0.605	0.491	0384	0.573	0.448	0.616	0.554
0333	0.409	0.221	0.416	0.237	0385	0.504	0.306	0.584	0.442
0334	0.586	0.432	0.706	0.679	0387	0.776	0.652	0.893	0.836
0335	0.535	0.409	0.535	0.446	0388	0.778	0.636	0.804	0.681
0336	0.601	0.459	0.720	0.638	0390	0.256	0.095	0.275	0.093
0337	0.548	0.479	0.700	0.618	0391	0.543	0.337	0.552	0.375
0338	0.608	0.474	0.677	0.559	0392	0.544	0.382	0.566	0.430
0339	0.594	0.419	0.529	0.382	0393	0.482	0.357	0.497	0.396
0340	0.443	0.339	0.484	0.403	0395	0.458	0.354	0.452	0.361
0341	0.458	0.277	0.525	0.355	0396	0.745	0.660	0.794	0.744
0342	0.744	0.578	0.799	0.653	0397	0.538	0.433	0.570	0.503
0343	0.387	0.198	0.471	0.274	0398	0.532	0.451	0.559	0.502
0344	0.686	0.534	0.751	0.638	0399	0.733	0.588	0.681	0.535

Table 2: Comparison of semantic segmentation performance on ScanNet dataset with SemanticFusion (SF) [7]. Some scenes are missing due to crashes during processing.

SceneNN/096

SceneNN/243

3. Additional offline results

3.1. SceneNN

We show the segmentation results on 20 SceneNN scenes. Each scene is presented with five figures consisting of ground truth segmentation, results from direct fusion using SegNet [2] and FCN-8s [6], and results from our proposed CRF using SegNet and FCN-8s. The weighted IoU scores of scenes from SceneNN are provided in Table 3.

3.2. ScanNet

We also conducted additional experiments on ScanNet [4], a new richly-annotated 3D indoor scene dataset. This dataset consists of 1513 annotated scenes of various indoor settings. However, we didn't chose this data for our main experiments because of these two issues: (1) the annotations are performed on a sub-sampled mesh; and (2) their annotations are not completed, with a lots of un-annotated regions.

Providing dense annotations in 3D is a non-trivial task. For ScanNet, they had to out-source the segmentation task to workers on Amazon Mechanical Tusk. However, quality control will be a big concern, as there might be subtle disagreements between manual segmentation results. With this experiment, we want to show that our method can speed up this process by providing an initial high-quality semantic labels automatically. Later, user intervention can help refining these labels without much effort.

We chose to show results of 10 scenes from ScanNet. We present the results with the same format as in SceneNN. The segmentation results are obtained on high-quality meshes, while the ground truth meshes are in lower quality. results are shown in Table 4.

Acc.		SegNet			FCN-8s	
Scene	Base	SF	Ours	Base	SF	Ours
0000	0.442	0.469	0.480	0.512	0.553	0.598
0002	0.481	0.512	0.549	0.451	0.483	0.501
0006	0.610	0.613	0.600	0.627	0.652	0.644
0014	0.513	0.525	0.449	0.534	0.549	0.503
0028	0.554	0.607	0.664	0.550	0.617	0.693
0029	0.614	0.660	0.625	0.615	0.686	0.736
0031	0.510	0.543	0.577	0.649	0.713	0.729
0034	0.631	0.691	0.661	0.660	0.698	0.679
0050	0.548	0.585	0.620	0.526	0.561	0.574
0054	0.481	0.513	0.534	0.451	0.470	0.482

Table 4: Accuracy offline results of direct method [3], SemanticFusion (SF) [7] and ours on ScanNet [4].

wIoU	SegNet		FCI	N-8s	SSCNet		
Scene	Base	Ours	Base	Ours	Base	Ours	
011	0.622	0.783	0.550	0.682	0.299	0.378	
016	0.425	0.636	0.463	0.519	0.514	0.679	
030	0.413	0.570	0.421	0.624	0.418	0.383	
061	0.351	0.728	0.162	0.276	0.640	0.641	
078	0.405	0.594	0.393	0.562	0.374	0.428	
086	0.459	0.613	0.356	0.551	0.464	0.448	
096	0.495	0.605	0.460	0.545	0.545	0.567	
206	0.502	0.718	0.463	0.729	0.800	0.771	
223	0.524	0.685	0.567	0.669	0.528	0.526	
255	0.410	0.559	0.429	0.580	0.450	0.526	

Table 3: Weighted IoU offline results on SceneNN [5].

Ground truth

Direct (FCN)

Ours (SegNet)

Ours (FCN)

SceneNN/016

Direct (FCN)

Ours (FCN)

SceneNN/030

Ground truth

Direct (FCN)

Ours (FCN)

Ground truth

Direct (FCN)

Ours (SegNet)

Ours (FCN)

SceneNN/078

Ground truth

Direct (SegNet)

Direct (FCN)

Ours (FCN)

SceneNN/086

Ground truth

Ours (FCN)

Ground truth

Direct (SegNet)

Direct (FCN)

Ours (SegNet)

Ours (FCN)

SceneNN/096

Ground truth

Direct (SegNet)

Ours (SegNet)

Ours (FCN)

Ground truth

Direct (FCN)

Direct (SegNet)

Ours (SegNet)

Direct (FCN)

Ours (FCN)

Ground truth

Direct (FCN)

Ours (SegNet)

Ours (FCN)

SceneNN/206

Ground truth

Direct (SegNet)

Direct (FCN)

Ours (SegNet)

Ours (FCN)

SceneNN/207

Ground truth

Direct (SegNet)

Ours (FCN)

Ground truth

Direct (SegNet)

Direct (FCN)

Ours (SegNet)

Ours (FCN)

SceneNN/223

Ground truth

Direct (SegNet)

Direct (FCN)

Ours (SegNet)

Ours (FCN)

SceneNN/231

Ground truth

Direct (SegNet)

Ours (FCN)

Ground truth

Direct (FCN)

Ours (SegNet)

Ours (FCN)

SceneNN/255

Ground truth

Direct (SegNet)

Direct (FCN)

Ours (FCN)

SceneNN/272

Ground truth

Direct (SegNet)

Ours (FCN)

Ground truth

Ours (SegNet)

Ours (FCN)

ScanNet/scene0000

Ground truth

Direct (FCN)

Direct (SegNet)

Ours (SegNet)

Ours (FCN)

ScanNet/scene0002

Ground truth

Direct (FCN)

Direct (SegNet)

Direct (FCN)

Ours (FCN)

ScanNet/scene0006

Ground truth

Ours (FCN)

ScanNet/scene0014

Ground truth

Direct (FCN)

Direct (SegNet)

Direct (FCN)

Ours (SegNet)

Ours (FCN)

Ground truth

Direct (SegNet)

Ours (SegNet)

Direct (FCN)

Ours (FCN)

ScanNet/scene0029

Ground truth

Direct (FCN)

Ours (SegNet)

Ours (FCN)

ScanNet/scene0031

Direct (FCN)

Ours (FCN)

ScanNet/scene0034

Ground truth

Direct (FCN)

Ours (SegNet)

Ours (FCN)

ScanNet/scene0050

Ground truth

Ours (SegNet)

Ours (FCN)

ScanNet/scene0054

Ground truth

Direct (FCN)

Direct (SegNet)

Direct (FCN)

Ours (FCN)

4. Mean Field Updates

This section discusses the mean field updates for the RaCRF model introduced in the main paper. For consistency, we use the same notation as in the main paper. We use mean field inference to approximate the joint distribution with the product of marginals $\prod_i Q(x_i = l)$. We denote $Q(\mathbf{x_r})$ as the marginal probability of a clique. In general, mean field updates of such CRF take the following form

$$Q^{t+1}(x_i = l) = \frac{1}{Z_i} \exp\left(-\sum_{\{\mathbf{x}_r | x_j = l\}} Q^t(\mathbf{x}_{r-i})\psi(\mathbf{x}_r)\right)$$
(3)

where Q^{t+1} is the marginal after the t^{th} iteration, \mathbf{x}_r is an label assignment to all variables in the r^{th} region, \mathbf{x}_{r-i} is an assignment to all variables in the r^{th} region except for x_i , $\psi(\mathbf{x}_r)$ is the cost of assigning \mathbf{x}_r , and Z_i is the normalization factor that converts $Q(x_i = l)$ into a proper probability distribution after updating.

Updates from objectness potentials The contribution from ψ^A to the update of $Q(\mathbf{x}_r^{(i)} = l)$ takes the form

$$\sum_{\mathbf{x}_r \mid x_r^{(i)} = l\}} Q(\mathbf{x}_{r-i}) \psi^O(\mathbf{x}_r) = \begin{cases} \frac{1}{|\mathbf{x}_r|} Q(y_r = 0), & \text{if } l \in \mathcal{O}, \\ \frac{1}{|\mathbf{x}_r|} Q(y_r = 1), & \text{if } l \notin \mathcal{O} \end{cases}$$
(4)

where \mathbf{x}_{r-i} is a label assignment to the r^{th} region, ignoring the i^{th} vertex. A similar derivation can be found in [1], but the authors used object detection instead of an object proposal method in their formulation.

Updates from consistency potentials The contribution from $\psi^{C}(\mathbf{x}_{r})$ to the mean field update of $Q(\mathbf{x}_{r}^{(i)} = l)$ is derived as follows

$$\sum_{\{\mathbf{x}_r \mid x_r^{(i)} = l\}} Q(\mathbf{x}_{r-i}) \psi^C(\mathbf{x}_r) = -\sum_{l_k \in \mathcal{L}} f_r(l_k) \log f_r(l_k) \left(\prod_{x \in \mathbf{x}_{r-i}} Q(x=l)\right) - \sum_{l_k \in \mathcal{L}} f_r(l_k) \log f_r(l_k) \left(1 - \prod_{x \in \mathbf{x}_{r-i}} Q(x=l)\right)$$
(5)

Note that we only need to calculate the entropy of a region once after one iteration, and it can be re-used for every vertices inside that region. The frequency calculation can also be used for updates of co-occurrence potentials.

Figure 3: Failure case of the proposed CRF model. The model fails to produce fine segmentation such as cluttered objects on the table, or clothing on a chair. The final segmentation result loses some of the fine details, since the model favors consistency over complexity.

Updates from relationship potentials The contribution from $\psi^{R}(\mathbf{x}_{r}, \mathbf{x}_{q})$ to the mean field update of $Q(\mathbf{x}_{r}^{(i)} = l)$ is derived as follows

$$\sum_{\{\mathbf{x}_r | x_r^{(i)} = l\}} \sum_{\{\mathbf{x}_q | x_q^{(i)} = m\}} Q(\mathbf{x}_{r-i}) Q(\mathbf{x}_q) \psi^R(\mathbf{x}_r, \mathbf{x}_q) = -\sum_{l_i \in \mathcal{L}} \sum_{l_j \in \mathcal{L}} \log f_r(l_i) \log f_q(l_j) \log \gamma_{l_i, l_j} \times \prod_{x_j \in \mathbf{x}_{r-i}} \prod_{x_k \in \mathbf{x}_q} Q(x_j = l) Q(x_k = m) \quad (6)$$

Again, we observe that the frequency can be pre-calculated for every regions. However, this update needs to compute the marginal product between pairs of vertices, so it only feasible when the number of connections is small. In our case, we only consider neighboring regions based on mesh connectivity, the computation is still manageable.

5. Failure cases

To highlight a typical failure case, we show an example of over-smoothing in Figure 3.

References

- A. Arnab, S. Jayasumana, S. Zheng, and P. H. Torr. Higher order conditional random fields in deep neural networks. In *European Conference on Computer Vision*, pages 524–540. Springer, 2016.
- [2] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561, 2015.
- [3] T. Cavallari and L. Di Stefano. Semanticfusion: Joint labeling, tracking and mapping. In *Computer Vision–ECCV 2016 Workshops*, pages 648–664. Springer, 2016.
- [4] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proc. Computer Vision and Pattern Recognition (CVPR), IEEE*, 2017.
- [5] B.-S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.-F. Yu, and S.-K. Yeung. Scenenn: A scene meshes dataset with annotations. In *International Conference on 3D Vision (3DV)*, 2016.
- [6] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In *CVPR*, 2015.
- [7] J. McCormac, A. Handa, A. Davison, and S. Leutenegger. Semanticfusion: Dense 3d semantic mapping with convolutional neural networks. In *ICRA*, 2016.