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Abstract—Architectural photography is a genre of photography that focuses on capturing a building or structure in the foreground with
dramatic lighting in the background. Inspired by recent successes in image-to-image translation methods, we aim to perform style transfer
for architectural photographs. However, the special composition in architectural photography poses great challenges for style transfer in
this type of photographs. Existing neural style transfer methods treat the architectural images as a single entity, which would generate
mismatched chrominance and destroy geometric features of the original architecture, yielding unrealistic lighting, wrong color rendition,
and visual artifacts such as ghosting, appearance distortion, or color mismatching. In this paper, we specialize a neural style transfer
method for architectural photography. Our method addresses the composition of the foreground and background in an architectural
photograph in a two-branch neural network that separately considers the style transfer of the foreground and the background, respectively.
Our method comprises a segmentation module, a learning-based image-to-image translation module, and an image blending optimization
module. We trained our image-to-image translation neural network with a new dataset of unconstrained outdoor architectural photographs
captured at different magic times of a day, utilizing additional semantic information for better chrominance matching and geometry
preservation. Our experiments show that our method can produce photorealistic lighting and color rendition on both the foreground and
background, and outperforms general image-to-image translation and arbitrary style transfer baselines quantitatively and qualitatively. Our
code and data are available at https://github.com/hkust-vgd/architectural style transfer.

Index Terms—Computational Photography, Image-to-Image Translations, Style Transfer
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1 INTRODUCTION

ARTIFICIAL intelligence has been revolutionizing pho-
tography with high-fidelity image synthesis using

generative modeling techniques, which has led to a wide
range of new applications for image manipulation and
editing. In this direction, style transfer is a special visual
task that aims at generating aesthetically pleasant images
in the style of a reference image. It has been well known
that style transfer techniques can successfully extract artistic
styles from famous paintings and seamlessly blend the styles
into real photographs, generating novel images.

Architectural photography is a form of photography
that captures subjects such as buildings into pictures with
into visually pleasing pictures. In general, an architectural
photograph often has a building in the foreground and a sky
background captured at a specific time of a day that exhibits
dramatic lighting. Taking architectural photographs has been
so far a challenging task, requiring both skills and aesthetic
senses of a professional photographer.

The availability of neural networks has led to a new
possibility: let a machine learn to generate realistic architec-
tural photographs with new styles. In this paper, we realize
time-of-day style transfer for architectural photographs using
neural networks. Specifically, we consider styles of outdoor
architecture photographs with dramatic lighting at magic
times of a day. Magic times of a day refer to golden hours at
sunset when the sun is falling close to the horizon, blue hours
at twilight when the sun is below the horizon and nighttime
after sunset and before sunrise without any sunlight. We call
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Fig. 1: Architectural style transfer at magic times of a day.

this problem the architectural style transfer problem.
Given the special composition of the foreground and

background in architectural photographs, performing style
transfer among these photographs is a challenging task. In
many cases, the style of the foreground and the background

https://github.com/hkust-vgd/architectural_style_transfer


cannot be represented by a single latent space, e.g., the
lighting on the building and the color and texture of the
sky are very different. This causes existing image-to-image
translation methods [1], [2], [3], [4], [5], [6] to fail because
these methods treat the input image as a single entity; they
are only good for global style transfer but fail to preserve
image details or tend to exhibit visual artifacts when being
used for architectural photographs. In the literature, there
exist a few methods that consider style transfer for outdoor
images, but they merely address natural landscapes [7], [8]
or time-lapse videos [9], [10], which do not fit well to the
composition in architectural photographs.

To overcome such challenges, we propose a new style
transfer framework for architectural photography. We se-
mantically disentangle the image content in an architectural
photograph so that the style transfer can be done on the
foreground (e.g., buildings) and the background (e.g., sky)
respectively. For the foreground, we keep the geometry of
static objects intact and transfer sufficient and appropriate
style details. For the background, we transfer overall style
including color and texture. To realize this approach, we
devise a two-branch neural network that handles the transfer
for the foreground and background, respectively. We devise
a set of loss functions for preserving the image details in the
transfer. To support training and testing, we also collect a new
dataset of architectural photographs captured at different
times of day. Our method is validated with qualitative
and quantitative comparisons with state-of-the-art image-to-
image translation and arbitrary neural style transfer methods,
which demonstrates the robustness of our method.

In summary, our main contributions are:
• A new problem setting for style transfer: photorealistic

style transfer for architectural photographs of different
times of day;

• An image-to-image translation framework with disen-
tanglement representation that separately considers style
transfer for image foreground and background respectively,
accompanied with simple but effective geometry losses
designed for image content preservation.

• A new dataset of architectural photographs and an exten-
sive benchmark for architectural style transfer.

2 RELATED WORK

Our architectural style transfer problem is related to a large
body of works in modern computer vision, namely style
transfer, image-to-image translation, image relighting, and
timelapse translation methods, which we discuss below.

2.1 Style Transfer

Image style transfer has a long history in computer vi-
sion. Early techniques take user input as guidance, e.g.,
colorization methods [11], [12] take user strokes to provide
color mapping or segmentation cues. By using a pair of a
reference (target) style image and an input (source) image,
automatic methods aim at transferring the global style
of the target image to the source image while preserving
details of the source. This can be formulated as parametric
algorithms such as color tone transfer [13], data-driven
search for style transfer mapping [14], multi-level style

feature transforms [15], progressive stylization [16], image-
optimization-based approaches [17], [18], [19], [20]. However,
many of these methods usually require an iterative process
or slow post-processing that is computationally expensive.

Prior works also explore style transfer using visual cues
from semantic segmentation [10], [21], [22], [23], improving
the photorealism based on the matting Laplacian [18], [24],
screened Poisson equation [25], or photorealistic smoothing
[15] as a post-processing step. Our method belongs to the
family of techniques in which segmentation information is
explicitly used to address the style transfer problem.

With deep learning, neural networks can be trained and
perform instant style or color transfer at inference time
[26], [27], [28], [29], [30], [31], [32], [33]. Extended from the
seminal work of arbitrary global style transfer with adaptive
instance normalization (AdaIN) [28], recent networks such
as SANet [31] and AdaAttN [33] further introduce attention-
aware mechanism to cover image local features and preserve
better content appearance. Our network utilizes AdaIN [28]
for style fusion; we empirically found AdaIN more robust
for style transfer and attention-based networks like SANet
or AdaAttN does not preserve photorealistic geometry.

2.2 Image-to-image Translation

Image-to-image translation is a task that aims to transfer
an image from a source to a target domain, preserving
its original content while having the characteristics of the
target domain. Compared to traditional style transfer, this
class of methods learns to perform the mapping from data
from both domains. Image-to-image translation is, therefore,
more general and can also be used for solving image
colorization or style transfer problems. Typical methods of
image-to-image translation include supervised methods such
as pix2pix [1], unsupervised methods such as CycleGAN [2]
and UNIT [34], multi-modal translation methods such as MU-
NIT [4], DIRT [3], DSMAP [6], and more generic translators
such as StarGAN v2 [35] and FUNIT [5] for handling multiple
image classes. These methods are effective at translating style
elements such as color, texture at a speedy inference time.

An important factor to perform effective translation is
to disentangle the content and style representation. In an
encoder-decoder framework, recent methods [3], [4], [5],
[6], [10] inject both content code and style code generated
from content encoder and style encoder respectively into
the content generator to get the final transferred images
with input content appearance but target style. Park et al.
[36] designed an autoencoder to swap textures between
two images by disentangling structure and texture, which
changes input content geometry and does not suit our task.

In this work, we build our method upon the framework
of image-to-image translation with disentanglement of con-
tent and style representation. Moreover, the separation of
luminance and chrominance of images in image-to-image
translation is widely used in colorization [37] or color style
transfer [38] tasks, and is beneficial to content integrity with
luminance information intact. Therefore, we design losses
that preserve high spatial frequency details of the image by
considering the gradients of the luminance channel, so that
the translation network can retain geometric details with
high fidelity.



2.3 Image Relighting and Timelapse Translation
Our architectural style transfer problem is also relevant
to some traditional image relighting methods. Particularly,
Shih et al. [14] proposed an approach with a global to
local mapping and local affine transformation for time-lapse
appearance style transfer from video to photographs. It
achieves an elegant color appearance change of an outdoor
scene via rich appearance information from abundant time-
lapse videos. However, this method requires a matched
time-lapse video as a transfer reference and thus does not
support arbitrary style transfer. More prior works such
as Liu et al. [39], Yu et al. [40], Laffont et al. [41] and
Duchêne et al. [42] are tailored for image decomposition
to achieve outdoor scene relighting. They require multi-view
images [40], [41], [42] or illumination-varying images [39] to
achieve intrinsic decomposition. These methods can relight
scenes with general lighting conditions such as sunlight
and shadow, but cannot transfer semantic color information.
Later, Laffont et al. [43] further explored more outdoor scene
attribute transients and proposed a high-level example-based
appearance transfer system.

In recent years, timelapse translation for images or
videos can be done with deep learning on datasets from
videos, landscapes, and street photos. Karacan et al. [7]
realize style transfer with specific attributes of natural scenes
via generated style references produced by a deep scene
generator. With different specific training data such as
landscape photos [8], photos in different time of sky [44],
[45], Google street views [46], [47], timelapse transition can
demonstrate in diverse ways, e.g., color and texture [8],
sunlight estimation [44], [45], lighting and shadow conditions
in street views [39]. Animation video synthesis from a single
outdoor photo is achieved by Endo et al. [48] predicting
motion and appearance via convolutional neural network
(CNN) models. Some latest works address time-lapse video
synthesis, for examples, Nam et al. [9] and Cheng et al.
[10] trained end-to-end supervised models from time-lapse
videos to synthesize time-lapse video from a single image.

3 BACKGROUND AND MOTIVATION

The primary emphasis of an architectural photograph is
the harmonious rendition of a building structure in the
foreground on an aesthetically pleasing background. Given
an input architectural image (source) and a style architectural
image (target), we aim to transfer the characteristics of
the target to the source while preserving the content and
structure of the source image. The transferred characteristics
include the color and texture rendition in both the foreground
and the background of the target. An example of the source,
target, and the transferred result can be seen in Figure 1. We
call this problem the architectural style transfer problem.

The foreground and background in architectural pho-
tographs pose unique challenges in this domain-specific
style transfer problem. At first, we are tempted to directly use
recent methods for generic neural style transfer and image-to-
image translation to solve this problem, but we soon realized
that these methods barely work up to our expectations, and
there remain the following challenges. Existing image-to-
image translation methods treat the image as a single entity
without knowing the foreground and background. The lack

of this inductive bias in architectural photography makes
these methods perform not as effectively. We found that while
these methods are efficient in transferring the global style,
they tend to operate poorly in preserving geometry details
of the foreground, having visual artifacts, or producing
unfaithful results with mismatching color (e.g., Fig. 5 (c)).
It is, therefore, necessary to derive a specific method for
architectural style transfer that takes all such issues into
account.

4 PROPOSED METHOD

4.1 System Overview

We design a specific method for image-to-image translations
of architectural photographs. We take the inductive bias from
architectural photography into account by having the neural
networks learn to transfer the foreground and background
styles, respectively. This learning bias, while seemingly triv-
ial, provides a strong constraint for architectural style transfer
as it allows us to define the semantic correspondences
between the input and the style image, effectively model the
characteristics of architectural photographs because the style
of the foreground and background can be vastly different
and diverse.

Our framework has three main modules: image seg-
mentation, image translation, and image blending. Given
an input image and a style image, we first segment their
background and foreground for data preprocessing, and then
train the image translations separately for the foreground
and background. To train the neural networks, we propose
a new geometry loss to preserve structural details that are
vital in architectural images. Particularly, we aim to preserve
the geometry contour (Image Gradient loss) and spatial lumi-
nance distribution (Spatial Luminance KL-divergence loss) for
image foreground translation. With the illumination density
constraint, empirically, the appearance information is well
retained.

To produce the final result, we blend the predicted
foreground and background using the original high-fidelity
input source as a geometric constraint. We intentionally let
this step be fixed and not trainable as we found that such a
post-processing step can already provide satisfactory results.
An overview of our framework is presented in Figure 2.

4.2 Semantic Correspondences

We determine the foreground and background of the architec-
tural images by a semantic segmentation model. Particularly,
we segment the input and the style images into the back-
ground (i.e., sky) and foreground (other elements such as
buildings, trees, rivers, etc.). This allows us to build high-
level semantic correspondences between the input and the
style image to perform the transfer on each correspondence,
respectively. Our semantic segmentation is built upon an
encoder-decoder model as follows. We use ResNet-50-dilated
[49] for the encoder, and the pyramid pooling module with
loss optimization from PSPNet [50] for the decoder. We use
the official pretrained model trained on the ADE20K dataset
[51].

Given the pretrained semantic segmentation model, we
preprocess our training images by applying the model to



Fig. 2: Our architectural style transfer framework has three main modules: segmentation, image translation and blending
optimization. Only style transfer in one direction (X1 → X2) is illustrated. x1 and x2 are images from two domains (X1 and
X2), x1 as high-fidelity source input, x2 as target style reference. After segmentation, foreground and background images
are fed into the translation network respectively. The translated image x1→2 (or cstyle) and the input source x1 can be further
post-processed by the blending optimization module. More details are in Section 4.3, 4.4, and 4.5.

Fig. 3: The common image-to-image translation network ar-
chitecture. x1 and x2 are images from two domains (X1, X2).
x1→2 and x2→1 are style transferred outputs between two
domains. x1→1 and x2→2 are reconstruction outputs. We
use the same architecture for foreground and background
translation.

predict the masks that indicate the foreground and back-
ground. We store all the masks and use them to separate the
foreground and background for our training. At inference,
we have the flexibility to allow users to use the pretrained
segmentation model to automatically segment the inputs
or manually provide their masks. We empirically observed
that our training tolerates segmentation imperfection at a
certain extent. We discuss some failure case due to imperfect
segmentation in Sec. 5.6 and Fig. 11.

4.3 Neural Network Architecture

Given the source domain X1, the target domain X2, and a
pair of image x1 ∈ X1, x2 ∈ X2, our goal is to develop an
image-to-image translation network to transform x1 to the
target domain, i.e., the translated image should resemble in
style of x2 while preserving the details in x1. Our method
is based on the disentanglement of style and content under
the same separation domains assumption as [3], [4], [6].
It assumes that each image belongs to a shared domain-
invariant content latent space Dc but a different domain-
specific style latent space Ds. An overview of our method is
shown in Fig. 3.

Particularly, to transfer style from source domain X1 to
target domain X2, we employ two encoders Ec

1, Es
2 to embed

content and style features respectively into latent spaces Dc

and Ds, and a decoder G2 to generate results with specified
content and style. We further employ a mapping module M
followed the design of DSMAP [6] to map the content latent
space Dc, which is domain invariant, to become domain-
specific for better generation in the target domain.

Let c1 = Ec
1(x1) ∈ Dc be the domain-invariant content

code of image x1, and z1 = M(c1) be the domain-specific
content code after mapping. The style code can be extracted
as s2 = Es

2(x2) ∈ Ds. In the generator G2, we apply adaptive
instance normalization (i.e., AdaIN [28]) for style transfer.
Finally, the latent content and style codes are fed into the
generator to obtain a new image x1→2 = G2(z1, s2) ∈ X2

that has the content of X1 and the style of X2. Likewise,
the translated image x2→1 from domain X2 to X1 can be
obtained via x2→1 = G1(z2, s1).

Accordingly, we have two discriminators D1 and D2 to
discriminate the real images and generated images in each
domain X1 and X2, respectively. Similar to Huang et al.
[4], we employ the multi-scale discriminator architecture.
The details of our network architecture are illustrated in the
supplementary.

We separately apply the same network architecture to



perform style transfer for both the foreground and the
background, respectively. We empirically found that such
a separation is necessary and robust because the styles of
the foreground and background are vastly different. Both
network branches for the foreground and the background
share the same set of training objectives. We leave the
investigation of joint training both branches as future work.

4.4 Training Objectives

We design a set of training objectives that can work for both
the foreground and the background. We train both translation
networks using unpaired data with the reconstruction loss,
cycle-consistency loss, and adversarial loss. Particularly,
to preserve high-frequency geometry information of fore-
ground, we presume the luminance of an image contains
both geometry and illumination information, and devise the
geometry losses (i.e., Image Gradient loss and Spatial Luminance
KL-divergence loss) to guide the generator to reproduce high-
frequency content of the source.

Here we detail the losses by assuming the transfer
direction to be from domain X1 to domain X2.
Image Gradient Loss. Image gradient can well represent
edges of objects in an image. Preserving the good gradient
attribute of an image to some extent guarantees the photore-
alism and fidelity [25]. Our image gradient loss for x1→2 is:

Lgd1
= Ex1,x2

[∥∇(Y (x1→2))−∇(Y (x1))∥1] , (1)

where E[.] is the expectation operator, ∇(·) is the image
gradient, Y (x) is luminance of image x. Following ITU-R
BT.601 conversion standard [52] to get Y channel values from
RGB channels, we define the luminance by

Y = 0.299×R+ 0.587×G+ 0.114×B. (2)

Here R, G and B are image values in RGB channels.
Spatial Luminance KL Divergence Loss. The relative
entropy or the so-called Kullback-Leibler divergence (KL
divergence), is a useful distance measure for continuous
distributions. To constrain the luminance distribution to the
target segmented style image, we apply KL divergence loss
on the luminance channel of output x1→2 and style x2:

Lkl1 = Ex1,x2
[KL(Y (x1→2) ∥ Y (x2))] (3)

where each value of luminance Y (x) is normalized
to [0, 1] when calculating the loss; KL(p ∥ q) =∑

x p(x) log[p(x)/q(x)] measures the KL divergence between
a distribution p and a reference distribution q. This loss
constrains the model to generate images in illumination
distribution of target domain (X2).

We call the total of image gradient loss and the KL diver-
gence loss the geometry loss as it can improve the geometry
quality while transferring the illumination faithfully.
Reconstruction Loss. We utilize the same concept of bidirec-
tional reconstruction loss in [4] for image reconstruction loss,
which involves image self-reconstruction loss Lx, content
latent code reconstruction loss Lc and style latent code

reconstruction loss Ls. And we have reconstruction loss
of domain-specific content latent code Lz same as that in [6]:

Lx1 = Ex1 [∥ x1→1 − x1 ∥1], (4)
Lc1 = Ex1,x2 [∥ Ec

1(x1→2)− Ec
1(x1) ∥1], (5)

Ls2 = Ez1,r[∥ Es
2(G2(z1, r)))− r ∥1], (6)

Lz1 = Ex1,x2 [∥ M(Ec
1(x1→2))−M(Ec

1(x1))) ∥1] (7)

where x1→1 = G1(z1, s1), G2(z1, r) is generation with
appearance of x1 and random style r in style space of X2,
r is a random value drawn from a Gaussian distribution
[3] to ensure diversity of the style embedded codes and
multi-modal translations.

On one side, we consider the reconstruction of the input
source image; on the other side, we take into account
the reconstructions of domain-specific content latent code,
style latent code, and domain-invariant content latent code,
respectively from the content encoder Ec

1 and style encoder
Es

2 and content space mapping M .
Cycle Consistent Loss. For unsupervised GANs, Zhu et al. [2]
proposed the cycle-consistent loss, which is widely accepted
in unsupervised image translation tasks. We compute the
cross-cycle consistency loss Lcycle between input x1 and the
reconstruction from domain X1 to domain X2 and back to
X1 again (i.e., X1→2→1):

Lcycle1 = Ex1,x2
[∥ G1→2→1(x1, x2),−x1 ∥1] . (8)

Adversarial Loss. We also adopt the adversarial loss Ladv of
LSGAN [53] between discriminators and generators:

LD2

adv1
= Ex1,x2

[
1

2
(D2(x1)− 1)2 +

1

2
D2(G2(z1, sx))

2

]
,

(9)

LG2

adv1
= Ex1,x2

[
1

2
(D2(G2(z1, sx)− 1)2

]
, (10)

where D2 is the discriminator for images in target domain
X2, sx = {s2, r}.
Total Loss. All encoders, generators and discriminators are
trained simultaneously with bidirections. We get the final
total loss for the generator as

Ltotal = λxLx + λcLc + λsLs + λzLz (11)
+ λcycleLcycle + λadvLadv + λgdLgd + λklLkl,

where λ’s are hyperparameters to balance the losses. Each
loss contains losses in both directions

L∗ = L∗1
+ L∗2

(12)

where ∗ ∈ {x, c, s, cs, cycle, adv, gd, kl}. For training with
background we set λgd = λkl = 0.
Hyperparameter Settings In training, we adapt the Adam
Optimizer with an initial learning rate of 1× 10−4, β1 = 0.5,
β2 = 0.999. For foreground and background training, we
set different hyperparameters for geometry loss, remaining
weights the same for all our models. Empirically, for fore-
ground training, we set the weight of image gradient loss
λgd = 5, weight of spatial luminance KL divergence loss
λkl = 5, while for background training, we set both of them
zero to let the generator learn to change the background
texture. For other losses, we empirically set λx = 10, λc = 2,
λcs = 2, λs = 10, λcc = 5, λadv = 1. We set the batch size to
2 for training. Each model for foreground and background
was trained for 200k iterations, respectively.



DRIT++ [3], [54] MUNIT [4] FUNIT [5] DSMAP [6] StarGANv2 [35] AdaIN [28] SANet [31] AdaAttN [33] LST [32] Ours

e-SSIM↑ 0.5214 0.5653 0.4959 0.4790 0.4778 0.4962 0.4854 0.5194 0.4903 0.6359
Acc↑ 0.8903 0.8678 0.77.14 0.9106 0.8788 0.7352 0.6193 0.6443 0.7071 0.9486
IS↑ 2.6160 2.5916 2.5903 2.6580 2.6088 2.4082 2.1062 2.0928 1.7299 2.7290
IoU↑ 0.6915 0.7382 0.5473 0.4975 0.4100 0.6642 0.7183 0.6532 0.6264 0.7257

TABLE 1: Evaluation results of Daytime to Golden, Blue and Nighttime Hour translations. Bold and underlined text indicates
the best and 2nd best result, respectively.

DRIT++ [3], [54] MUNIT [4] FUNIT [5] DSMAP [6] StarGANv2 [35] AdaIN [28] SANet [31] AdaAttN [33] LST [32] Ours-opt

e-SSIM↑ 0.4939 0.5074 0.5003 0.4911 0.4935 0.4863 0.4921 0.4706 0.4815 0.8094
Acc↑ 0.8586 0.8507 0.7532 0.8721 0.8391 0.7019 0.5332 0.5973 0.6623 0.9007
IS↑ 2.5528 2.5236 2.5227 2.5572 2.5087 2.2646 1.8310 1.9978 2.1587 2.6127
IoU↑ 0.6997 0.7228 0.7143 0.6972 0.6902 0.7083 0.7369 0.7023 0.7053 0.7715

TABLE 2: Evaluation results of Daytime to Golden, Blue and Nighttime Hour translations with blending optimization
applied to all methods. Bold and underlined text indicates the best and 2nd best result, respectively.

Fig. 4: Blending optimization. Alpha blended image cstyle
(e.g., x1→2) works as style constraint, or meanwhile as
background geometry constraint. The high-fidelity source
input cgeo (e.g., x1) constrains the precise image contour,
enhancing overall photorealism.

4.5 Image Blending Optimization

After image translation, we get two generated images
(foreground and background). Foreground and background
generated images are integrated again with the segmentation
mask from the segmentation module using alpha blending.

We apply a similar strategy to [55] for blending op-
timization (see Fig.4), which helps restore the original
gradient. Instead of training a new GAN to generate a
relatively low-resolution color constraint image as described
in [55], we apply our translated image as the style constraint
(cstyle = x1→2). With realistic low-resolution style constraint
(cstyle) and the high-fidelity source image (cgeo = x1)
with perfect geometry, we iteratively optimize the Gaussian
Poisson Equation [55] and finally retrieve source geometry
while the transferred style is preserved. Differently, to
retain novel generated background textures (e.g., new cloud
texture), the style constraint image is used to extract a new
background gradient for blending optimization. Empirically,
1 or 2 iterations are enough for high fidelity restoration.

5 EXPERIMENTS

In this section, we first introduce the dataset used for training
and evaluation, and then the baselines and evaluation
metrics. Next, quantitative and qualitative comparisons are
reported and discussed. In addition, the ablation study
results are illustrated to validate the effectiveness of our

framework design. Finally, we show the comparisons of
the proposed method (deep learning base) with traditional
methods (non-deep learning base).

5.1 Time-lapse Architectural Dataset
To better achieve style transition of different times in the day
for architectural images, we collected 21,291 high-resolution
exterior architectural photos for training. The training photos
include 16,908 unpaired landmark photos in the wild and
4,383 extracted frames from 110 time-lapse videos of outdoor
scenes from [14]. The evaluation set consists of 1,003 photos
of high fidelity collected from public domains [56], [57],
[58]. We manually filtered out low-resolution or unattractive
images, labeled images into four classes (day, golden, blue,
night), and pre-processed images with proper cropping and
resizing before training. All photographs of the sky and
main architecture(s) have different geometry, luminance, and
chrominance changes. The sky has a dynamic appearance
as time elapses, while the architectures keep static geometry.
Therefore, an outstanding time-of-day architectural style
transfer should accomplish matched style transfer semanti-
cally.

More details can be checked in the supplementary. We
will distribute our training dataset upon request for research
purposes and release our evaluation set publicly.

5.2 Experiment Setup
Baselines. We qualitatively and quantitatively compare
our results to state-of-the-art image-to-image translation
baselines, i.e., DRIT++ [3], [54], MUNIT [4], FUNIT [5]
and DSMAP [6], and StarGANv2 [35]; neural style trans-
fer methods including AdaIN [28], LST [32], SANet [31],
AdaAttN [33]. For ablation study, our method also compare
to our variants without proposed geometry loss, and our
model trained without segmentation.
Implementation Details. We trained all models until the total
generation loss did not decrease noticeably. All baselines
are trained using whole images, while our work uses
segmented images with different hyperparameter settings
for foreground and background training.

At the training time of baselines and ours, all images
are resized into 286×286 and randomly cropped to 256×256



(a) Input (b) Style (c) Whole (d) Segmented

Fig. 5: Qualitative comparison on segmentation condition. (a)
Input image. (b) Style reference. (c) Style transfer result from
our network trained on whole images. (d) Result from our
network trained on segmented images.

with random horizontal flipping. At inference time, photos
are resized with the shortest side to 256 pixels or 512 pixels
to generate transferred results. All models are trained in a
resolution of 256×256. Our networks are fully convolutional
and support input images of arbitrary resolutions. For
quantitative evaluation, results are evaluated in 256× at
smaller side. For qualitative comparison, we display results
of 512× at smaller side. The teaser Fig 1 show results of
1024× at smaller side.

All methods use a single NVIDIA GeForce RTX 2080 Ti
GPU for training except that FUNIT utilizes 4 GPUs. FUNIT,
StarGANv2 and all neural style transfer approaches trained
with daytime images as source and all four classes together
as targets. We use the default training configuration for all
baselines except that we increase the weight of content loss
in AdaIN (content : style = 3 : 10) and SANet (content : style
= 2 : 1) and the weight of local feature loss in AdaAttN (local :
global = 1 : 2) to enhance the geometry of the stylized images.

The unseen evaluation set apart from the training set is
used for result inference. The main exploratory experiments
are three types of style transfers, i.e., daytime to golden
hours, daytime to blue hours, and daytime to nighttime.
In the evaluation set, all daytime images get transferred
with every style reference image in each target-style set (i.e.,
golden, blue, and night), and we got totally over 200k results
from each method for quantitative evaluation.
Performance Metrics. The quantitative evaluation involves
generation accuracy and diversity, geometry and appearance
preservation, and semantic style transfer.

We trained an InceptionV3 [59] classifier using our dataset
with three target domain labels (i.e., golden, blue, and night).
We evaluate the generation top-1 accuracy and Inception
Score (IS) [60] which indicate how realistic and diverse the
generation is.

To quantitatively evaluate geometry and appearance
similarity, we utilize Structural Similarity Index (SSIM)
[61]. Similar to [16], we calculate Edge Conditioned SSIM
(edge-SSIM), which computes image structural similarity
(SSIM) between Canny edge detected maps of images [62],
alleviating luminance influence on geometry.

Intersection over Union (IoU) between input and output
is used to evaluate structure preservation and visual recog-
nizability in foreground and background. We use the same
segmentation model used in our framework.

5.3 Quantitative Results
We carried out metric evaluations on three style translations,
i.e., daytime to golden hour, daytime to blue hour, and

(a) Input (b) Style reference (c) w/o Lgd + Lkl

(d) w/o Lkl (e) w/o Lgd (f) Ltotal

Fig. 6: Qualitative comparison on geometry losses.

e-SSIM↑ Acc↑ IS↑ IoU↑

Ours-whole 0.6838 0.8282 2.5240 0.7410
Ours 0.6359 0.9486 2.7290 0.7257
Ours-opt 0.8094 0.9007 2.6127 0.7715

TABLE 3: Ablation study of segmentation. Ours-whole
indicates our full model trained with whole images, while
Ours (or Ours-opt) is the full model trained with segmented
images.

w/o Lkl + Lgd w/o Lkl w/o Lgd Ltotal

e-SSIM↑ 0.4800 0.5539 0.5159 0.6359
Acc↑ 0.8934 0.9201 0.9265 0.9486
IS↑ 2.6858 2.7183 2.7241 2.7290
IoU↑ 0.6056 0.6536 0.6612 0.7257

TABLE 4: Ablation study of different geometry losses for
foreground models. Bold text indicates the best result.

daytime to nighttime, and reported mean scores in Tables
1 and 2. Our translation results and optimized results
(Ours and Ours-opt) outperform others or have competitive
performance on style transfer accuracy and quality (Accuracy,
IS, IoU), structure and perceptual similarity (edge-SSIM,
IoU). It validates the effectiveness of geometry losses, and
our blending optimization (Ours-opt) can somehow restore
primal scene contour information (edge-SSIM) and improve
perceptual similarity (IoU). Overall, our models have better
style transfer in terms of photorealism and style diversity.

Ablation Study

Does segmentation help?
We conducted ablation experiments on models trained

with and without segmentation. On the one hand, segmenta-
tion provides explicit semantic color distribution information.
As seen in Figure 5, some cases in which the model trained
with whole images cannot semantically transfer color from
buildings and sky, respectively. Our trained model using
segmented foreground and background can successfully
convey the correct color style semantically. On the other
hand, with different hyperparameters of geometry losses for
foreground and background models, our result Fig. 5(d)
generates a dense cloud texture similar to style image
Fig. 5(b) and keeps foreground appearance unchanged. But



Original scenes Reference styles

DRIT++ [3], [54] MUNIT [4] FUNIT [5] DSMAP [6] Ours Ours+Opt

Fig. 7: Comparisons among image-to-image translation baselines and our proposed method. Our results have plausible colors
from foreground and background, and preserve the geometry in different style transfer cases. (Please see our interactive
viewer in the supplementary for a detailed comparison.)

Original scenes Reference styles

AdaIN [28] SANet [31] AdaAttN [33] LST [32] Ours Ours+Opt

Fig. 8: Comparisons among neural style transfer baselines and proposed method. While neural style transfer methods tend
to have visual artifacts, our results have matched colors from foreground and background respectively, and preserve the
geometry of the foreground while generating diverse cloud textures in the background. (Please see our interactive viewer in
the supplementary for a detailed comparison.)

the result in Fig. 5(c) preserves both unchanged foreground
and background texture and geometry.

The evaluated metric results are illustrated in Table 3.

Compared to Ours, Ours-whole has better geometry preserva-
tion (e-SSIM, IoU) but worse stylization performance (Accu-
racy, IS). It might be because Ours has different background



Fig. 9: Perceptual preference in terms of photorealism,
structure and style.

from source input while Ours-whole keeps whole image
geometry information intact. The evaluation results in Table 1
(IoU) and Figure 9 (Structure & Style) also show that our
segmented training strategy has better performance than
baselines with respect to semantic style transfer.
Are the geometry losses effective?

To validate the proposed geometry losses (Image Gradient
loss and Spatial Luminance KL Divergence loss), we train
foreground models with different settings: no geometry loss,
without KL divergence loss, without image gradient loss,
and with full geometry losses.

According to qualitative results in Figure 6 and quan-
titative results in Table 4, a model with either only KL
divergence loss or only gradient loss can to some extent help
preserve geometry but does not perform better than a model
with both geometry losses. Some previous work [25] tried
applying gradient loss in style transfer network but failed.
We conjecture that the generator attains insufficient geometry
transfer information from only gradient loss, e.g., with
unconstrained luminance distribution, so infinite geometry
changes have similar or even equal gradient losses. With the
limit of target spatial luminance distribution (Lkl), gradient
loss can assist luminance density transfer from the source
domain to the target domain (e.g., day to night with high
to low luminance transfer) and protect primal geometry. In
general, gradient loss plus spatial luminance KL divergence
loss can largely improve the correctness of luminance transfer
and keep geometry unchanged.

User Study

To validate our results, we also conducted a perceptual user
study (Fig. 9) covering three aspects, i.e., image photoreal-

Input

Reference styles

Shih et al. [14] Laffont et al. [41] Pouli et al. [63]

Ours

Fig. 10: Additional comparisons to traditional methods.

ism and semantic structure similarity plus semantic style
consistency. The photorealism score contains the percentage
of images that look real or fake. Structure and style score is
obtained from pair comparisons (ours versus other baselines).
Semantic structure similarity illustrates how well generated
images keep foreground geometry intact and transfer tar-
get background texture. Semantic style consistency shows
how much style transfers correctly for foreground and
background. The results in Fig. 9 show that the proposed
method outperforms previous works in terms of image
fidelity and semantic style matching, indicating that our
method can achieve more photorealistic style transfer than
others. Particularly, neural style transfer methods generate
much more non-photorealistic images than most image-to-
image translation approaches. Please refer to supplementary
materials for the complete quantitative results and the user
study details.

5.4 Qualitative Results

Results from some baselines for style transfers from daytime
to golden hour, blue hour, and nighttime are selected to
display in Figure 7 and Figure 8. More visual results can be
checked in the supplementary.

In general, all baselines tend to have inaccurate semantic
color matching. As can be seen, for golden or blue style
transfer, all baselines treat some parts of the building as
sky, so it leaks sky color (DRIT++, MUNIT, FUNIT, DSMAP,
AdaIN, SANet, AdaAttN) or texture (FUNIT, DSMAP, AdaIN,
LST) to the foreground.

FUNIT, and DSMAP tend to generate noisy artifacts,
e.g., golden hour and nighttime style transfer. DSMAP
and FUNIT sometimes merge part of the building into the
background, hence appearing the ghosting artifacts and
building distortion. By contrast, our approach can transfer
a more semantically matched color style while retaining the



foreground appearance. Sky in our results has both style
and texture in line with the target style images, and our
foreground has plausible new lighting style and geometry
quality.

From visual results in Fig.8, neural style transfer methods
(AdaIN, SANet, AdaAttN, and LST) in some way preserve
global geometry because of the effect of content related
losses. Nonetheless, these style transfer methods transfer
texture strokes for both sky and foreground (e.g. sky in
results in the first row, building texture in results in the
second row). Ours tends to produce different sky textures
according to the reference styles, such as removing clouds
for golden style and adding clouds for blue style in Fig.8.
Particularly, AdaAttN has sharper appearance features since
it constrains both local (high-frequency) and global (low-
frequency) content features during training. But AdaattN
fails to produce photorealistic appearance. By contrast, our
proposed geometry losses are based on high-frequency
spatial information, thus helping with geometry preservation.
Regarding stylization performance, AdaIN, SANet, and LST
have visually more aesthetic style effects than AdaAttN and
globally matched color in terms of reference styles, though
the transferred images look like paintings. In general, our
results are more photorealistic, while neural style transfer
baselines are more artistic.

5.5 Comparisons to Traditional Methods
We provide additional comparisons to non-deep learning
methods including color transfer by Shih et al. [14], by
Pouli and Reinhard [63], and an intrinsic decomposition
for relighting method by Laffont et al. [41] in Figure 10.
Shih et al.’s locally affine model is solved from a pair of
frames of a similar scene retrieved from their video database.
The intrinsic decomposition-based method by Laffont et
al. [41] requires paired images that capture a typical scene
under varying lighting for illumination transfer. Our method
instead learns the transfer with unpaired images.

For night-style images, Shih et al. fail to handle the
background properly, while our result has a natural sky.
Our method also has more consistent styles with better
color saturation than the method by Laffont et al. and better
highlights on rocks than the method by Pouli and Reinhard.

5.6 Limitation
As our approach largely relies on segmentation, sometimes
deficient segmentation (e.g., nighttime style background and
daytime imperfect foreground in Fig. 11) will lead to wrong
color rendition or artifacts. For example, in Figure 11, the
results generate shiny spot artifacts (red boxes in (e) and (f))
on the top of building due to wrong style background, and
wrong bright yellow boundary (blue boxes in (e) and (f)) on
background due to input foreground enclosing background
portion.

6 CONCLUSION

We realize a photorealistic neural style transfer system to
solve the architectural style transfer problem, which transfers
an outdoor architectural photograph from daytime style to a
target style at different magical times in a day (i.e., golden

(a) Input (b) Style

(c) Style foreground (d) Style background

(e) Ours (f) Ours-opt

Fig. 11: Failure cases. (Zoom in for a best view.)

hour, blue hour, and nighttime). An ideal architectural style
transfer is able to achieve color and illuminance transfer for
foreground buildings, roads, etc., and realize novel target
sky background color and texture transfer. With foreground
and background segmentation for training respectively and
proposed geometry losses, our image-to-image translation
models successfully transfer semantically matched styles and
effectively preserve content information of foreground.

Our proposed method is not limited to architectural
photographs and can be generalized to transfer other types
of images as long as they have foreground and background
in different lighting and texture properties, e.g. headshot por-
trait transfer, group photos, natural landscape images with
animals. Exploring these domains is interesting future work
once sufficient data are collected. Additionally, developing
a more robust segmentation technique for complex outdoor
scenes, and training the proposed networks in an end-to-end
fashion would be interesting research avenue.
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