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Abstract

This paper presents a new method to enforce inverse con-

sistency in nonrigid image registration and matching. Con-

ventional approaches assume diffeomorphic transforma-

tion, implicitly or explicitly. However, the inherent smooth-

ness constraint discourages discontinuity consideration. We

propose a post-processing algorithm that integrates the in-

put forward and backward fields, which are output by exist-

ing registration/matching algorithms, to produce more ro-

bust results. Given such a pair of input fields, our algo-

rithm alternately refines the fields by tensor belief propa-

gation, and enforces inverse consistency in stochastic sense

by generalized total least squares fitting. To show the effi-

cacy of our stochastic inverse consistency approach, we first

present results on very noisy fields. We then demonstrate

improvement on existing stereo matching where occlusion

is naturally handled by localizing violations of inverse con-

sistency. Finally, we propose a novel application on image

stitching, where stochastic inverse consistency is employed

in structure deformation, in order to seamlessly align over-

lapping images with severe misalignment in structure and

intensity.

Keywords: Image registration and matching.

1. Introduction

In non-rigid image registration of two input images, reg-

istering I1 to I2 and registering I2 to I1 should result in

two mappings that are inverses to each other, except at re-

gions of large topological change where no inverses exist.
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Figure 1. Enforce inverse consistency in the presence of noise and

discontinuity. (a) Input noisy fields where each component of the

vector is corrupted by Gaussian noise of zero mean and standard

deviation 0.7. (b) Refined fields obtained by smoothing the fields

respectively using TBP alone. (c) Refined fields obtained by per-

forming GTLS alone on the respective field. (d) Inverse consistent

fields computed using our TBP-GTLS, which has little difference

from the ground truth.

Integrating the registration results from both directions has

been shown to produce more robust results than considering

either direction alone ([5, 11, 12, 9, 18, 15, 1, 2] or see Fig-

ure 1). All previous works on integrating non-rigid image

registrations by symmetrizing forward and backward trans-

form assume the notion of diffeomorphism, either implicitly

(e.g. as soft constraint in a cost function [5]) or explicitly

[11, 1, 15, 2].

1.1. Diffeomorphism

Diffeomorphic transform is, by definition, continuous,

one-to-one, onto and differentiable. Many previous works

have leveraged diffeomorphism to the advantage of produc-
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ing invertible transforms. In [11], the authors enforced dif-

feomorphism by geodesic interpolating spline [4]. Inverse

consistency is achieved by enforcing the geodesic paths of

the interpolating spline to be time-symmetric. In [1], a vari-

ational energy was defined to explicitly divide the image

registration diffeomorphism into two halves such that the

source and target images contribute equally to the path. [2]

extends the mapping algorithm in [3], and makes it symmet-

ric by introducing two choices of symmetric data terms in

the matching cost function, either by symmetrizing the flow

of diffeomorphism at each point along the flow, or perform-

ing the matching only in the midpoint of the large deforma-

tion flows, so that both directions contribute equally. Us-

ing the diffeomorphic assumption, the authors in [15] sym-

metrize the commonL2 and information theoretic objective

functions in nonrigid registration. In [12], the authors as-

sume a B-spline model and add an additional constraint on

the positivity of the Jacobian to preserve topology.

The mathematical differentiability of diffeomorphism

dictates that the transformation function and its inverse exist

and are smooth. While this is often true for medical imagery

(where some previous works are related), Figure 1 shows a

typical example where the forward and backward field are

noisy, and each field contains a discontinuity which is not

apparent in the input. If we apply any state-of-the-art algo-

rithms that assume diffeomorphism, the noise as well as the

inherent discontinuity will very likely be smoothed out in

order to satisfy the implicit smoothness criterion, especially

when no landmarks (interpolation constraints) are given in

this case. The resulting mappings will be far from the de-

sired ground-truth.

There is one further drawback of diffeomorphism in in-

tegrating two discrete input mappings. While symmetry is

a necessary condition for points that have a corresponding

inverse, in non-rigid image registration, the corresponding

points of I1 can be absent from I2, and vice versa. In this

case, it is desirable to have these points labeled, instead of

fitting an invertible function.

1.2. Stochastic Inverse Consistency

In this paper, we propose a stochastic approach to inte-

grate two discrete input vector fields, respectively obtained

by registering/matching I1 to I2 and I2 to I1. The resul-

tant pair of fields are inverse consistent stochastically, ex-

cept at regions where no reliable inverses are found and

these regions are labeled. We assume no diffeomorphism

or other model. Our algorithm leverages existing registra-

tion/matching algorithms to produce more robust results, by

adopting a post-processing approach which integrates the

information from both directions. This basic premise we

use is called stochastic inverse consistency:

Stochastic Inverse Consistency. Let V̄, Ū be the input

forward and backward fields, Ṽ and Ũ be the correspond-

ing inverses. Let ū, v̄, ũ and ṽ be one vector from the cor-

responding fields, such that the vectors ū, ṽ are for the for-

ward direction, and v̄ and ũ are for the backward direction.

By considering the x-dimension (the other dimensions are

similar), Ū and Ṽ are stochastically inverse consistent if

(ūx)(ṽx) = uxvx + rx or (1)

(ux + eūx
)(vx + eṽx

) = uxvx + rx (2)

where for the two given error-perturbed vectors, we con-

sider their respective x-components ūx, and ṽx. Their prod-

uct is going to be deviated from the product of the ground

truth ux and vx (with unknown error terms eux
, eṽx

, and

rx). While the above equations are for the forward direc-

tion, replacing ūx with ũx and ṽx with v̄x results in the

equations for the backward direction.

We shall demonstrate that by adopting stochastic inverse

consistency, our algorithm is robust to noises, does not

smooth out discontinuities, symmetrizes the fields where

inverses exist, and labels in the fields where no reliable in-

verses can be found. In the rest of the paper, we will de-

scribe our algorithm in section 2, analyze our algorithm in

section 3, and demonstrate in section 4 the enforcement of

stochastic inverse consistency can improve stereo match-

ing result. We show a novel application in image stitching

where inverse consistency is employed in structure and lu-

minance deformation to produce unbiased seamless stitch-

ing results.

2. The stochastic inverse consistency algorithm

Given a pair of vector fields computed using existing reg-

istration/matching methods, we adopt a Markov Random

Field (MRF) approach to model the neighborhood relation-

ship in the vector fields. Under the MRF model, the in-

put pair of vector fields are iteratively refined by tensor be-

lief propagation (TBP) algorithm [17], which is effective

in reducing noise, preserving discontinuities, and recover-

ing missing vectors. The enforcement of the inverse consis-

tency is then achieved by fitting a pair of vector fields using

the Generalized Total Least Square (GTLS) [16].

By considering the stochastic properties of both the

forward and backward vector fields during GTLS fitting,

proper weightings are assigned, and “smart averaging” is

performed during the optimization process. The process

iterates until convergence when stochastic inverse consis-

tency is established, by alternately refining the evolving

vector mappings by TBP and stochastic fitting by GTLS.

We denote I1 to be the source image and I2 to be the tar-

get image in the forward direction, i.e., registering I1 to I2

(I2 being fixed). While in the backward direction, I1 is the

target image and I2 is the source image, i.e., registering I2

to I1 (I1 being fixed). We denote U and V as the ground

truth forward and backward vector fields respectively, so in



practice U and V are not known. Ū and V̄ are the forward

and backward vector fields given by a (nonrigid) image reg-

istration/matching algorithms. So Ū and V̄ are the input to

our method. We first summarize our algorithm as follows:

1. Tensor belief propagation (TBP) is applied to refine

both vector fields Ū and V̄.

2. Compute inverse transformations, Ũ and Ṽ. For every

vector in the forward field Ū (resp. backward field V̄),

the corresponding inverse vector in the opposite field

Ṽ (resp. Ũ) is searched within a local neighborhood

in V̄ (resp. Ū).

3. Stochastic fitting using generalized total least square

(GTLS) is applied on the forward (resp. backward)

and its computed inverse field.

4. Steps 1 to 3 are performed iteratively until all corre-

sponding vector pairs in the forward and its estimated

backward (resp. backward and its estimated forward)

fields are inverse consistent, and salient inverse incon-

sistency, if any, is detected. The final output is U
∗ (and

its optimized inverse field V
∗).

2.1. Field refinement by tensor belief propagation
(TBP)

We adopt the MRF approach and propose to refine the

input fields Ū and V̄ iteratively by tensor belief propaga-

tion [17], where missing data is inferred, noisy data is re-

fined, and discontinuities are preserved.

Given the MRF network induced by the image grid

where two neighboring nodes are denoted by s and t, the

MRF energy function is:

E(Ū) =
∑

s

||ū(s)− ūo(s)||+

λ
∑

t∈N(s)

log

(
1 +
||ū(s)− ū(t)||

2σ2

)
(3)

where the relevant terms are defined in the appendix. The

tensor belief propagation algorithm, also in appendix, is

used to solve Eq. (3) to refine vectors in Ū and V̄.

2.2. Computing inverse fields Ũ and Ṽ

Given the forward and backward vector fields Ū and V̄

refined by TBP, we want to find a corresponding inverse

vector fields, that is, to establish the corresponding inverse

mappings Ṽ and Ũ respectively. Note that in case a corre-

sponding inverse vector cannot be reliably computed, a null

vector will be returned. Note, after this stage, Ū and Ṽ (V̄

and Ũ) are not necessarily inverse consistent.

Given a vector ū(s) at site s in Ū, a vector ṽ(s) which

represents the inverse of ū(s) is to be found from V̄. The

simplest solution is to look at the rounded grid position p =
s + ū(s) in V̄, and check whether this vector v̄(p) points

toward s in Ū. If it is the case, then, ṽ(s) = v̄(p).
However, in many situations such vector cannot be

found, because noise and the discrete nature of the data will

render this simple point-to-point operation fail to produce

reasonable candidate matches. Instead, we adopt neighbor-

hood searching and averaging, such that the chance of find-

ing a reliable inverse is higher while some noise effect can

be effectively smoothed out at the same time. The approach

is summarized and described in Fig. 7 in appendix.

2.3. GTLS formulation for stochastic inverse con-
sistency

Recall stochastic inverse consistency:

(ūx)(ṽx) = uxvx + rx

(v̄x)(ũx) = uxvx + rx

Note that both the observations (left-hand side) and the

model (right-hand side) are perturbed by noise, and that the

stochastic property is not the same for ūx and ṽx. To solve

the problem while simultaneously considering both errors,

the Generalized Total Least Square (GTLS) ([16], also in

appendix) is adopted. Assuming in the current iteration

where tensor belief propagation has been executed and in-

verse fields has been computed, that is, V̄, Ū, Ṽ and Ũ

are available for the current iteration, the x-component is

solved at every grid position s|ṽ(s)(i) 6= ∅ in the field:

[
ūx(s)(i)

−ṽx(s)(i)

]
X ≈

[
−ūx(s)(i)ṽx(s)(i)

−ṽx(s)(i)ūx(s)(i)

]
(4)

[
v̄x(s)(i)

−ũx(s)(i)

]
Y ≈

[
−v̄x(s)(i)ũx(s)(i)

−ũx(s)(i)v̄x(s)(i)

]
(5)

where i is the iteration number. X and Y become

ūx(s)(i+1) and v̄x(s)(i+1) respectively. ṽx(s)(i+1) and

ũx(s)(i+1) are then obtained by the corresponding inverse

field establishment in the next iteration. Intuitively, Eq. (4)

performs fitting such that X will be somewhere in-between

ūx(s)(i) and−ṽx(s)(i). The position depends on their error

properties Eūx(s) and Eṽx(s) which are estimated based on

their local variances:

η = |ūx(s)(i) − (−ṽx(s)(i))| (6)

γ =
var(ūx(s)(i))

var(ūx(s)(i)) + var(ṽx(s)(i))
(7)

Eūx(s) = γ · η, Eṽx(s) = (1 − γ) · η (8)

where the error properties on the term −ūx(s)ṽx(s) are de-

fined by R = Eūx(s)Eṽx(s) (fitting is not performed if the de-

nominator is zero in Eq. (7)). The error equilibration matri-

ces for solving X in Eq. (4) are obtained from the Cholesky

decomposition of the error covariance matrices C and D,
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Figure 2. Synthetic data 1: field with discontinuity. (a) The noise-

perturbed field with σf = σb = 0.7. (b) Averaging with computed

inverse field. (c) Averaging with results refined by TBP. ṼBP is

computed from ŪBP followed by of TBP refinement. ŨBP is

similarly computed. (d) Our final result shows little difference

from the ground truth.

where C = ∆T ∆, D = ∆∆T , ∆ =

[
Eūx(s) R

Eṽx(s) R

]
.

Similarly Y is solved. The whole iterative process will be

continued until:
∑

{s|ṽ(s)(i) 6=∅}

||ū(s)(i) − ṽ(s)(i)||

+
∑

{s|ũ(s)(i) 6=∅}

||v̄(s)(i) − ũ(s)(i)|| < ǫall (9)

where ǫall is a small constant. Notice that the fitting process

and convergence evaluation are omitted at the positions of

‘holes’ where reliable inverses are absent. If the inverse

does not exist, the vector should remain unchanged. So the

vectors at those positions will only be modified during the

TBP process in the next iteration. After the whole process

has converged, regions where ‘holes’ still survive in step 2

will be labeled as salient inconsistency region. Experiments

show that the number of holes is monotonically decreasing

during the process.

3. Analysis of stochastic inverse consistency

First, we use synthetic input vector fields corrupted with

various amount of noise. We compare our result with the

ground truth (Figure 2 and Table 1). Then, we show how

we detect the salient inverse inconsistency (Figure 3).

3.1. Noisy input fields with discontinuity

We first tested our proposed framework on synthetic

noisy vector fields with a salient discontinuity to demon-

strate the robustness of our framework against noises and

the capability of recovering reasonable results close to the

ground truths (Figure 2). Different amounts of noise are

σb
(a) ‖ Ū − U ‖ (e) ‖ V̄ − V ‖

σf (b) ‖
(Ū−Ṽ)

2
− U ‖ (f) ‖

(V̄−Ũ)
2

− V ‖

(c) ‖
(V̄BP+ŨBP)

2
− U ‖ (g) ‖

(ŪBP+M
ṼBP)

2
− V ‖

(d) ‖ U
∗ − U ‖ (h) ‖ V

∗ − V ‖

Vector fields with discontinuity

0.5 0.6 0.7 0.8

257.0 258.2 248.8 306.9 261.8 362.5 257.9 417.3

0.5 254.9 272.4 272.8 277.3 279.3 322.8 297.5 341.0

96.0 96.8 106.7 116.4 125.5 141.5 101.1 165.1

25.3 26.1 41.7 40.8 37.0 36.0 23.3 23.1

298.9 271.6 322.9 311.1 300.9 361.0 330.6 406.5

0.6 283.4 266.8 303.9 289.5 294.3 292.5 324.3 332.6

119.5 108.2 131.4 121.5 135.0 155.3 172.8 163.3

96.7 95.9 42.1 42.1 44.7 43.5 42.0 40.7

360.6 266.9 359.8 311.5 354.7 362.9 372.9 401.3

0.7 309.6 297.4 317.8 299.0 312.8 327.0 323.5 349.2

132.0 110.9 157.0 132.2 146.9 161.5 160.4 176.3

24.2 23.5 41.3 38.6 48.7 50.0 83.7 81.9

408.0 261.8 406.0 313.2 431.4 361.6 423.7 417.2

0.8 335.2 291.1 341.6 329.6 344.9 323.2 350.1 357.0

165.1 124.9 159.4 137.4 199.9 181.2 200.1 210.9

47.1 48.5 42.8 43.5 60.1 60.2 87.1 90.5

Table 1. The entries in the bottom table are explained by the table

in the top. Ground truth vector fields are U and V with ‖ U ‖
= ‖ V ‖ = 512. In the top table: σf - noise level on perturbed

input Ū, σb - noise level on V̄. Note the error entry in (d) is

smallest among (a)–(d), and also (h) among (e)–(h). This table is

color-coded.

added to each dimension independently. While simple av-

eraging are unsatisfactory in all the noise levels, simple av-

eraging with TBP incorporated produces result far worse

than ours. Table 1 shows the quantitative comparison. We

compute the sum of absolute differences between the noisy

fields with the ground truth. Let the signal strength of the

ground truth field be ‖ U ‖. Excluding the boundary,

‖ U ‖= (400− 38)
√

2 = 512 as each color is a unit vector.

The terms ‖ U − Ū ‖ and ‖ V − V̄ ‖ respectively show

the exact errors of the input vector fields. ‖ U −U
∗ ‖ and

‖ V−V
∗ ‖measure the error of our recovered vector fields

compared with the ground truth. From the table, we can see

that even under large amount of noise (i.e., SNR = 1.64 dB

for ‖ U − Ū ‖ when σf and σb = 0.7), our method still

recovers the fields with high SNR (SNR = 15.4 dB in the

same case).

3.2. Noisy input fields where inverses may not exist
We tested our framework on input field where parts of

the vector fields have no inverse. Figure 3 shows the mod-

ified forward fields U and Ū, where the modified region

has no corresponding inverse in the backward field. The

results we obtained are similar to the previous example, ex-

cept that the total number of holes is no longer zero upon

convergence. The computed inverse from the final result

U
∗ and V

∗ shows a region of null vectors which actually

corresponds to the region with no inverse. This feature is

useful for occlusion detection in stereo matching, demon-

strated in the following section.

4. Applications

We apply our stochastic inverse consistency to stereo

matching in the presence of occlusions, and show that more
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∗ (d) computed inverse
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Figure 3. Synthetic data 2: field with discontinuity and non-

invertible region. (a) Ground truth. (b) Input forward vector field.

The corresponding backward vector fields V and Ṽ remain un-

changed as in Synthetic Data 1. (c) Our result U
∗. (d) The com-

puted inverse from the pair of converged deformation fields. No-

tice the region where corresponding inverse cannot be found. (e)-

(h) compare the convergence behavior between synthetic data 1

and 2 of our algorithm. (e) and (f) are the plot of ǫall/2 and (total

no. of holes)/2 for synthetic data 1, ǫall is defined in Eq. (9). Cor-

respondingly (g) and (h) are for synthetic data 2. While for both

cases they converge quickly, in (h), the total number of holes drops

to a constant, rather than zero, as depicted in (f). It shows the fact

that upon convergence, there exists region where inverses cannot

be reliably computed. The region is automatically labeled by the

null vectors as shown in (d).

accurate disparity can be obtained by detecting occlusion

as violations in inverse consistency. Finally, we apply

our method to general image registration, and show results

in image stitching and unconventional image compositing,

where feature matching is incorporated to deal with large

deformation, in order to align image intensity and preserve

underlying image structures without bias.

4.1. Symmetric stereo matching

We demonstrate in this section the enforcement of

stochastic inverse consistency improves the results of stereo

matching, by symmetrizing the disparity mapping from one

image to another. Occlusion is one of the major challenges

in stereo matching. Many MRF approaches have already

modeled pixel matching, visibility, occlusion constraints in

their corresponding energy functional by considering both

matching directions [14, 6]. Very good results have been

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4. Symmetric stereo results for Map (top) and Sawtooth

(bottom). (a) I1. (b) I2. (c) Ground truth disparity map, taking

I1 as reference, denoted as U (forward direction). (d) Forward

disparity map Ū. (e) Backward disparity map V̄. (f) Refined

forward disparity map U
∗ by taking Ū and V̄ as the input. (g)

The forward occlusion map, i.e., taking I1 as reference, detected

as violation of inverse consistency using our method. (h) Refined

backward disparity map V
∗. (i) The backward occlusion map.

obtained, but the disparity maps obtained by swapping the

images may still not be consistent, because each term con-

tributes only a part to the overall energy. Another approach

proposed the symmetric Potts model [19], which is a sym-

metric cost function, and did not explicitly model occlusion.

Enforcing stochastic inverse consistency in stereo match-

ing can be regarded as a data-driven approach to refine a

pair of disparity maps, which are obtained by any stereo al-

gorithm by swapping the input images. During the GTLS

fitting process, occlusion and depth discontinuities are de-

tected as salient violation to inverse consistency. We

demonstrate the idea by applying our method using the

stereo framework created by Scharstein and Szeliski [13],

which can be found at http://www.middlebury.edu/stereo.

Figure 4 shows the improved disparity maps of the Map

and Sawtooth examples. The input disparity maps are

computed by the Graph Cuts algorithm [8] provided in

Scharstein and Szeliski’s package. Figure 4 (d) and (e) show

their results, which in turn become our input. From Figure

(d) and (e) we can observe that the disparities that signifi-

cantly deviate from the ground truth (e.g. the noisy dispar-

ities in Map) are due to occlusion, where matching corre-

spondences are lacking. Our framework refines the dispar-

ity maps from both directions with discontinuity consider-

ation. Violation of inverse consistency will be regarded as



occlusion. Notice that our goal is not on introducing a new

stereo matching algorithm; rather our contribution here is to

simultaneously refine the results obtained from any reason-

able stereo algorithm and detect scene occlusion. Note in

Sawtooth where potential occlusion regions in the dispari-

ties are detected.

4.2. Image stitching with large discrepancy in
structure and intensity

Global registration is often preferred to pairwise registra-

tion in constructing image mosaics in order to minimize ac-

cumulation error in registering more than two overlapping

images. Here, we address a new problem of stitching multi-

ple images with large discrepancy in structure and intensity,

where the images may not capture the same scene or ob-

ject. Besides these new challenges, similar to conventional

mosaic construction, to produce a seamless stitching result,

a global method is preferred to avoid accummulation error

or biased results. In the following, we shall show how our

post-processing approach to enforcing inverse consistency

can naturally achieve the following goal: Let I1, I2, · · · , In

be the image sequence to be stitched, where successive im-

ages Ii and Ii+1 are pairwise-overlapping. The same un-

biased result is desired when we reverse the stitching se-

quence, that is, In, In−1, · · · , I1.

Existing image stitching algorithms that eliminate across

the input images luminance discrepancy [10] and structure

mismatch [7] deform input images to a reference image to

solve the misalignment problems, therefore generating re-

sults dependent on the input order. Our approach to com-

puting an unbiasd result is to deform all input images, so

that all structures and luminance can be aligned across the

stitched result. This is a property often desirable in image

stitching.

In order to generate an unbiased stitching result, we de-

form both input fields under our new inverse consistency

framework. The detailed steps are as follows:

1. Similar to stitching algorithms [10, 7], given two im-

ages that are roughly aligned, we compute the opti-

mal partition in the overlapping region. Then, detect

and match 1D features along the stitching boundary to

form a sparse set of deformation vectors, similar in [7].

2. Propagate the deformation vectors to the entire over-

lapping region. This is different from [7] where the

deformation propagation will not be applied across the

stitching boundary. The propagation is performed in

both the forward and backward directions.

3. The forward and backward vector fields obtained in

step 2 become the input of our TBP-GTLS framework.

The iterative refinement is performed until a pair of

inverse-consistent vector fields is obtained.

(a)

(b)

(c) our input partition

(d) deform left image only

(e) deform right image only

(f) deform both images

Figure 5. Brush example. Example in [7] for comparison of con-

ventional stitching methods. (a) is the input image. (b) Optimal

seam result as shown in [7]. Since we cannot replicate the yellow

region directly, for fair comparison we use a new input partition as

shown in (c). (d) and (e) are results by [7] where only the left side

or the right side is deformed, respectively, showing that the shape

transition is not smooth across the stitching boundary, especially

in (d). (f) is our result where both sides are deformed to the mean

shape. Our result is better since both images are deformed, the

shape and luminance transition are smoother. [7] also performed

exhaustive comparison using the same example.

Since we cannot replicate the overlapping region as ex-

actly as in [7], for fair comparison, we form a new partition

of the two brushes as shown in Figure 5(c). Stitching results

for the forward and backward directions are shown in Fig-

ure 5(d) and Figure 5(e). In Figure 5(d), it is obvious that

a smooth transition of the shape cannot be obtained. Our

result is shown in Figure 5(f), where a smooth deformation

for both overlapping images is obtained.

Next, we show a complex stitching example of a pho-

tomontage created by stitching five images of Frank Lloyd

Wright’s architectural masterpieces (Figure 6(a)). Three

images are real photos and two are artist’s renderings. The

discrepancy in structure and colors are evident as shown

in the globally aligned and blended result in Figure 6(b).

Note in particular the curved ramps (Guggenheim Mu-

seum) which necessitates nonrigid structure deformation

here. Figure 6(b) shows the stitching result generated by



(a)

(b)

(c)

(d)

(e)

Figure 6. Architecture example. (a) Input images. Note the

large discrepancy in structure and color among these images. (b)

Roughly aligned images. The overlapping areas are blended. (c)

is the stitching result generated by deforming Ii, i = 2, · · · , n, to

align with the current stitching result {I1, · · · , Ii−1}, which are

fixed during each stitching step. (d) is the stitching result gener-

ated by deforming Ii, i = n − 1, · · · 1, to align with the current

stitching result {Ii+1, · · · , In} which are fixed in the current step.

(e) Our final stitching result shows a better unbiased photomontage

where all images are deformed during the stitching process.

deforming Ii to align with the stitched set {I1, · · · , Ii−1}
while the latter are fixed during each stitching process. No-

tice the curved ramp is squeezed. Figure 6(d) is analogous

to (c) with the stitching direction reversed. Observe the

stretched ramp. Figure 6(e) shows the stitching result of an

unbiased photomontage where the four pairwise transforms

are post-processed successively by enforcing stochastic in-

verse consistency to avoid biases and accumulation errors.

5. Conclusion

We propose a post-processing algorithm for enforcing

stochastic inverse consistency, given a pair of forward and

backward fields. By using synthetic data, we showed that

the fields processed by our algorithm can satisfy stochas-

tic inverse consistency when applicable. The symmetrized

output is unbiased to any input image, allowing the same re-

sult (in a stochastic sense) be obtained regardless of the im-

age order. We exploit this advantage and proposed two ap-

plications. One application involves symmetrizing match-

ing between a stereo pair, where occlusion boundaries can

be localized as violations to inverse consistencies, without

any modifications to the chosen matching algorithm. An-

other application is general image stitching in the presence

of severe intensity and structure misalignment among the

images. Our result suffers less biases as a result of enforc-

ing stochastic inverse consistency among the input images

during the stitching process.
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A. TBP algorithm

1. Initialize mst(s, t) as a n × n identity matrix, and

ms(s) = ūo(s)ūo(s)
T to indicate the initial belief in

the vector for site s, where ūo(s) ∈ Ū.

2. Update messages mst(s, t) iteratively for N iterations

(N is set according to the size of input image):

2.1 Find the current vector with the highest probability:

bs(s) ← ms(s) +
∑

k∈N(s)

mks(k, s) (10)

ū(s) ← ê1[bs(s)] (11)

where N(s) is the first-order neighborhood of s, and

ê1[bs(s)] is the unit eigenvector associated with the

largest eigenvalue of the tensor bs(s).

2.2 Compute new messages:

mst(s, t) ← ϕst(ū(s), ū(t))(normalize [ms(s) +∑

k∈N(s)\t

mks(k, s)]) (12)

where the normalization scales all eigenvalues so that

the largest one equals to 1 and ϕst(ū(s), ū(t)) =

exp(− log(1+ 1
2 ( ||̄u(s)−ū(t)||

σ
)2)

2σ2
1

) is defined by the robust

estimator (Lorentzian) to preserve the discontinuity

between s and t.

3. Compute beliefs:

bs(s) ← ms(s) +
∑

k∈N(s)

mks(k, s) (13)

ū(s) ← ê1[bs(s)] (14)

B. Computing inverse map

See Figure 7.

C. GTLS

We summarize GTLS [16] here. Consider an overde-

termined system of linear equations with a set of m linear

equations in n× d unknowns X :

AX ≈ B A ∈ Rm×n, B ∈ Rm×d and

X ∈ Rn×d, m > n + d (15)

Partition A = [A1; A2], where A1 ∈ Rm×n1 , A2 ∈
Rm×n2 and n = n1 + n2, and also partition X =

[XT
1 ; XT

2 ]
T

, where X1 ∈ Rn1×d and X2 ∈ Rn2×d. As-

sume that the columns of A1 are error free and that non-

singular error equilibration matrices RD ∈ Rm×m and

RC ∈ R(n2+d)×(n2+d) are given such that the errors on

R−T
D [A2, B]R−1

C are equilibrated, that is, uncorrelated with

zero mean and same variance. Then, a GTLS solution of

Eq. (15) is any solution of the set ÂX = A1X1 + Â2X2 =

B̂ where Â = [A1, Â2] and B̂ are determined such that

Range(B̂) ⊆ Range(Â) (16)

and

‖ R−T
D [△Â2,△B̂]R−1

C ‖F
= ‖ R−T

D [A2 − Â2, B2 − B̂]R−1
C ‖F (17)

is minimal. The problem of finding [△Â2,△B̂] such that

Eqs (16) and (17) are satisfied is referred to as the GTLS

problem. Whenever the solution is not unique, GTLS sin-

gles out the minimum norm solution, denoted by X̂ =

[X̂T
1 ; X̂T

2 ]
T

.


