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Abstract

Reconstructing transparent objects is a challenging

problem. While producing reasonable results for quite com-

plex objects, existing approaches require custom calibration

or somewhat expensive labor to achieve high precision. On

the other hand, when an overall shape preserving salient

and fine details is sufficient, we show in this paper a sig-

nificant step toward solving the problem on a shoestring

budget, by using only a video camera, a moving spotlight,

and a small chrome sphere. Specifically, the problem we

address is to estimate the normal map of the exterior sur-

face of a given solid transparent object, from which the sur-

face depth can be integrated. Our technical contribution

lies in relating this normal reconstruction problem to one

of graph-cut segmentation. Unlike conventional formula-

tions, however, our graph is dual-layered, since we can see

a transparent object’s foreground as well as the background

behind it. Quantitative and qualitative evaluation are per-

formed to verify the efficacy of this practical solution.

1. Introduction

We address the problem of normal reconstruction for a

transparent object, where the integrated surface is an over-

all shape of the target object that preserves salient features

and fine structures if present on its exterior surface. Such

detail-preserving exterior surface representation is adequate

for vision and robotics applications where transparent ob-

jects are to be grabbed by a robotic arm, or avoided by a

navigating robot in a cluttered scene. In our paper, our goal

is different from photorealistic rendering or high-accuracy

reconstruction of transparent objects, where custom equip-

ment, calibrated and mechanical capture are often deemed

necessary to achieve precision as high as to trace the com-

plex refractive light-transport paths exhibited by the target

object. On the other hand, when an adequate shape without
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Figure 1. Six images showing a typical input (example FISH).

Most pixels do not record highlight in these images, indicating

a sparse set of images is inadequate for applying orientation con-

sistency.

this level of precision is sufficient, it is possible to propose a

reconstruction approach that uses a simpler setup realizable

using a smaller budget.

Without expensive or complicated setup while still sup-

porting an adequate reconstruction, what visual cues con-

cerning a transparent object can be utilized? Although some

of us have had the unpleasant experience of smacking into

a glass window without seeing it, we can still see a wide

range of transparent objects despite their apparent trans-

parency, because most of them refract and reflect incom-

ing light. Tracing refractive light-transport paths using cal-

ibrated setup and capture had contributed to the success of

techniques aiming at high-precision reconstruction. This

paper on the other hand makes use of specularities directly

reflected off an transparent object to produce an adequate

reconstruction. Due to the low dynamic range of our inex-

pensive video camera, however, indirect reflection caused

by complex light transport (e.g., caustics and total inter-

nal reflection) also produces strong highlights with intensity

that appears as strong as direct specular highlights. Thus,

the main problem to be solved is to identify at each pixel

the subset of collected highlights that are caused by direct

specular reflection.

1.1. Technical Overview

The working principle of our system is: given dense

lighting directions, a pixel location within the data capture

range has a high probability to observe a specular highlight

directly reflected off the surface point being observed, see

Figure 1. This can be used to obtain the surface normal

from a specular object with known reference geometry. At

first glance, given a dense collection of highlights at a pixel,
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Figure 2. Our budget setup. The spotlight is moved around to sim-

ulate a distant light source with constant radiance. The video cam-

era is an off-the-shelf DV of limited dynamic range. The trans-

parent object and the reference chrome sphere are captured at the

same time.

direct application of orientation consistency similarly done

in photometric stereo by examples [5] (where in our case

each pixel receives a normal transferred from a known ge-

ometry) in a “winner-takes-all” or thresholded setting [2]

for normal recovery would have solved our reconstruction

problem. But, this problem proves to be challenging, as our

low-cost capture device (Figure 2), which is similar to [2],

is an off-the-shelf DV camera of limited dynamic range,

where highlights caused by direct or indirect reflections are

likely be recorded with equally high intensities. To make

the problem tractable, we propose to use normal cues given

by shape-from-silhouette, and sparse normal cues marked

on a single view for tracking true and rejecting false high-

lights. The technical contribution consists of the optimal

integration of these two normal cues for deriving the tar-

get normal map. It turns out that the optimization problem

can be mapped into one similar to image segmentation and

thus formulated into a graph-cut optimization. Our graph,

on the other hand, is different from those in conventional

graph-cut formulation: it is a dual-layered graph because

we can observe a transparent object’s foreground as well as

the background behind it.

1.2. Paper’s Structure

The organization of the rest of the paper is as follows:

Section 2 reviews related work. Section 3 describes the ob-

servations and assumptions used in our approach. Section 4

describes the normal map estimation using graph-cuts. Sec-

tion 5 presents the results. Finally, we conclude our paper

in section 6.

2. Related Work

The following classical works determine the shape of a

transparent object by specularities. In specular stereo [1] a

two-camera configuration and image trajectory were used.

A theory of specular surface was developed in [16], where

the relationship between specular surface geometry and im-

age trajectories were studied and features were classified as

real and virtual. Virtual features, which are reflections by

a specular surface not limited to highlights, contain useful

information on the shape of the object. In [11], two views

were used to model the surface of a transparent object, by

making use of the optical phenomenon that the degree of

polarization of the light reflected from the object surface

depends on the reflection angle, which in turn depends on

surface normal. This approach utilizing light polarization,

where the light transport paths were ray-traced, was fur-

ther explored in [10] where one camera was used. In [8],

a theory was developed on refractive and specular 3D shape

by studying the light transport paths, which are restricted

to undergo no more than two refractions. Two views were

used for dynamic refraction stereo [12] where the notion of

refractive disparity was introduced. In this work, a refer-

ence pattern and refractive liquid were used. Scatter trace

photography [13] was then proposed to reconstruct trans-

parent objects made of inhomogeneous materials, by using

a well-calibrated capture device to distinguish direct scat-

ter trace from other indirect optical observations. In [6],

a transparent object was immersed into fluorescent liquid.

Computer-controlled laser projector and multiview scans

were available for merging. While the recovered normal

maps of mesostructures look good in [2] and were demon-

strated to be useful for relighting, their assumption on spec-

ular highlight does not apply to general transparent objects

that exhibit complex refraction phenomena (such as total

internal reflection and caustics). Our shape reconstruction

method makes use of rough initial shape (normals), sparse

normal cues, and dense specular highlights, which sets itself

apart from the above approaches where mathematical theo-

ries were developed based on the physics of light transport,

or simplifying assumptions were imposed on the transpar-

ent object.

3. Observations and Assumptions

Given a dense set of views of a solid transparent object

captured by a static video camera under variable illumina-

tion, the problem is to reconstruct the normal map by utiliz-

ing specular highlights directly reflected off the surface.

The specular highlight directly reflected corresponds to

the observed normals of the exterior surface, after applying

orientation consistency using a reference shape of known

geometry, which is a chrome sphere in our case. Trans-

parent objects are more challenging, since indirect reflec-

tions caused by complex light transport and caustics can

also produce highlight as strong as direct specular reflec-

tion. Using our inexpensive capture system and under the

orthographic camera assumption, we have the following key

observations:

Data capture range. The light direction is restricted such

that those falling outside the 90-degree realm will be ig-

nored; otherwise the light source would have been located



(a) (b)

Figure 3. (a) Orientation consistency in the presence of transparency and indirect illumination effects. The reference sphere and the object

have different material properties but they act like ideal specular objects when they reflect specular highlights (brightness and contrast

were enhanced for visualization). (b) Under the orthographic camera assumption, we can directly obtain the normal orientation from the

reference sphere. Notice that given a single view, only a subset of normals can be computed. (L is light direction, R reflection direction,

N is normal direction.)

(a) direct (b) indirect, strong (c) indirect, weak

Figure 4. [color figure] Three typical scenarios on the observed light emanating from a point on the exterior surface of a transparent and

refractive object. The numbers in the figure indicate intensity magnitudes. (a) Nearly ideal specular reflection. In practice, the specular

highlight spans a finite region in the image. (b) Non-specular reflection where the intensity is similar to that of a true specular highlight.

Examples include caustics and total internal reflection reflected off from the back surface of the object. (c) Non-specular reflection where

the intensity is attenuated making it easily discarded by thresholding. Orientation consistency should be applied to (a), but not to (b) or (c)

because they are not specular reflections.

behind the transparent object. Under this lighting configu-

ration and using a shiny chrome sphere (Figure 3(a)) as a

reference geometry, surface normals falling outside the 45-

degree realm measured from the upward direction cannot be

recovered, Figure 3(b). The mathematical explanation can

be readily derived using the law of specular reflection under

orthographic projection.

Highlight appearance. Direct specular highlight is

bright and concentrated (Figure 4(a)). However, some non-

specular indirect reflection observed will also be classified

as highlight. It happens when caustics and total internal re-

flection behind the surface appear as bright as specular re-

flection, especially a low-dynamic-range digital video cam-

era is used in image capture (Figure 4(b)). Obvious true or

false highlights can be marked up by user for disambigua-

tion if needed.

Data availability. Given the limited data capture range,

some pixels will have no highlight, or the observed inten-

sity is not high enough to be considered a highlight (Fig-

ure 4(c)).

Normal clusters. The normals transferred from the chrome

sphere after applying orientation consistency will form dis-

tinctive clusters at a pixel over the time frames (Figure 5),

one of which corresponds to direct specular highlights

whereas the rest are due to indirect illumination. In all of

our experiments, we found that a pixel location observes at

most two salient normals clusters over all the frames cap-

tured. A third cluster, if it exists, is too weak to be detected

as highlight. This two-cluster observation, however, is not

critical: as long as the strongest is detected or identified as

direct specular highlight, the exact number of clusters does

not matter.
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Figure 5. [color figure] The normal clusters at a particular pixel over time.

4. Normal Optimization

We propose to solve the optimization problem by inte-

grating the rough shape given by an object’s silhouette, and

the normals transferred via orientation consistency. To re-

solve severe highlight ambiguity as stated in the previous

section, a limited amount of user specification is employed.

This improves not only the initialization but also the opti-

mization process. The optimization can be mapped to one

similar to image segmentation and solved via graph-cut op-

timization.

4.1. Initialization

Since an object’s silhouette on an image is easily avail-

able, a rough overall shape can be derived from shape from

silhouette. Normals derived from the resulting shape give a

reasonable initial guess.

To improve the quality of initial normals, the user may

indicate true highlights on keyframes. Automatic tracking

technique is applied to trace the corresponding locations in-

between frames. With the true highlights being tracked, we

can transfer the normals from a chrome sphere, and these

normals are considered as hard constraints in shape-from-

silhouette for computing the initial rough shape.

Given a sparse set of normals, consisting of transferred

normals obtained from user’s markups and the silhouette

normals, we compute the surface normal nF for all pixels

within the object’s silhouette via a standard MRF formua-

tion for which a stable implementation is available [14].

4.2. Shape Refinement by Graph Cuts

After estimating initial normals, the next step is to in-

tegrate the information given by the dense highlight col-

lected. As discussed in previous section, given a total of T

image frames, the possible situations at a given pixel are: 1)

no highlight, 2) highlights form a single normal cluster, 3)

highlights form two or more normal clusters. So our prob-

lem is translated into a labeling problem, that is, given a

normal cluster, determine if it corresponds to one that pro-

duces direct specular reflection on the exterior surface. Our

idea is to utilize the data measurement given by applying

orientation consistency to refine the initial surface. The ini-

tial shape also gives us relevant cues for rejecting wrong

measurements due to false highlights.

Normal clustering. The shape optimization problem can

be posed as a binary labeling problem, by assigning ev-

ery cluster as exterior surface normal or otherwise. Since

each pixel can observe direct and indirect reflections, we

adopt the following method to extract the two representa-

tive normals: Given T observations per pixel, we threshold

the pixel intensities to discard weak intensities. It results in

M usable observations, where 0 ≤ M ≤ T . If M = 0,

it means that this pixel contains no useful information and

initial normal will be used instead. Otherwise, we apply K-

means clustering to extract all normal clusters. The process

with K = 2 is illustrated in Figure 6(a). Using Minimum

Description Length principle [4, 3] the value of K can be

estimated automatically.

Graph formulation. Next, we construct a graph

G = 〈V , E〉, where V is the set of all nodes and E is the

set of all edges connecting adjacent nodes. In our case, the

nodes contain labels to the two most salient normals clus-

tered, and the edges represent adjacency relationships. The

graph can have up to 2N nodes for N processing pixels and

every node can have 9 edges as shown in Figure 6(b). For

pixel locations with only one cluster, we duplicate the clus-

ter in the other node to simplify the implementation (Fig-

ure 6(c)).

The labeling problem is to assign a unique label si for

each node i ∈ V , i.e., si ∈ {exterior surface normal (= 1),
otherwise (= 0)}. The solution S = {si} corresponding to

the final frontal surface normals can be obtained by mini-

mizing a Gibbs energy E(S) [9]:

E(S) =
∑

i∈V

E1(si) +
∑

{i,j}∈E

E2(si, sj) (1)

where E1(si) is the likelihood energy, denoting the cost
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Figure 6. (a) For every pixel location, we cluster the transferred normals into two salient clusters given the T image frames. (b) A dual-

layered graph G = 〈V, E〉 is built where each pixel has a green node and a blue node. V is the set of all nodes representing the clustered

normals, E is the set of all edges connecting adjacent nodes. (c) For pixels with only one cluster, one can duplicate the cluster to simplify

the implementation. The final graph can have up to 2N nodes for N processing pixels. Every node can have up to 9 edges connected to

their neighboring nodes. Pixel locations with no observation will be completed by their initial estimation.

NORMAL IMAGE

OPTIMIZATION SEGMENTATION

Labels Exterior/ Foreground/

Interior Background

Nodes Clustered normals Pixels

Processing token Gradients Colors

Table 1. Analogy of our problem to image segmentation (e.g., [17,

9]).

when the label of node i is si, and E2(si, sj) is the prior

energy, encoding the cost when the labels of adjacent nodes

i and j are si and sj respectively. Our problem becomes

a graph-cut energy minimization problem [7] and is very

similar to the image segmentation problem using graph

cuts [17, 9]. An analogy of our problem to image segmen-

tation is shown in Table 1. The main difference with seg-

mentation is that our graph is dual-layered as shown in Fig-

ure 6(b), since the exterior and non-exterior surface(s) can

be observed at the same time as the object is transparent.

Likelihood energy and counter normal. In Eqn (1), E1

encodes at each node the normal similarity between the

clustered normal observed from the collected highlights

and the initial normal. However, simply using the ini-

tial normals from silhouette is not adequate to encode E1,

since the information on the non-exterior surface should

also be considered. This is analogous to image segmen-

tation where color cues from foreground and background

should be available for processing. We introduce the idea

of counter normalwhich is a normal dissimilar to the initial

normal, in order to define the affinity and hence the energy

of assigning an observed normal to non-exterior surface.

The idea is as follows: If an observed normal ni does

not belong to the exterior surface, it will not be similar

to the initial normal nF
i . In other words, we may say ni

is similar to a normal that is dissimilar to the initial nor-

mal. Let us call it counter normal. Since our captured

normals must be facing upward, it is meaningless to con-

sider normals with nz < 0. Therefore, we set the corre-

sponding counter normal by flipping the gradient of nF
i , i.e.

{pCi , qCi } = {−pFi ,−qFi }, where pCi and qCi are the x and

y gradient of nC
i , and pFi and qFi are the x and y gradient

of nF
i . Basically, this strategy adopts the most dissimilar

surface normal (with z-axis as the reference) with upward

direction as the counter normal.

With the initial normal and the counter normal, we can

now define our energy term E1. For each node i, we com-

pute the difference of the corresponding gradients with the

frontal gradient and the counter (non-frontal) gradient by

dFi = |pi − pFi |+ |qi − qFi | and dCi = |pi − pCi |+ |qi − qCi |
respectively. Notice that for pixel locations with no high-

light observation, we set the labels of two nodes at each of

these pixels to correspond to the initial pFi values and set

E1(0) = E2(0) = 0.5 so the smoothness term takes over

in the optimal labeling problem. Therefore, E1(si) can be

defined as following:



























E1(si = 1) = 0 E1(si = 0) = ∞ ∀i ∈F

E1(si = 1) = ∞ E1(si = 0) = 0 ∀i ∈C

E1(si = 1) =
dF

i

dF

i
+ dC

i

E1(si = 0) =
dC

i

dF

i
+ dC

i

∀i ∈U1

E1(si = 1) = 0.5 E1(si = 0) = 0.5 ∀i ∈U2

(2)

where U1 and U2 are the set of nodes from region with and

without normal observation, respectively, and {U1 ∪ U2} =
V − {F ∪ C} is the set of uncertain nodes to be labeled.

Eqn (2) is similar to [9] except for i ∈ U2. F is the set of

nodes labeled as exterior surface normals, which are avail-

able in the initialization. C is the set of nodes corresponding

to non-exterior normal observations, which are specified by

the user in a similar manner as the exterior surface normals,



(a) (b) (c) (d) (e)
Figure 7. Objects with known geometry (SPHERE and CYLIN-

DER) for quantitative evaluation. (a) Photo of the object. (b)–(c)

Lambertian-shaded Normal map from [2] and integrated surface.

(d)–(e) Our normal map and surface.

e.g., by marking up false instead of true highlights.

Notice that since our graph is dual-layered, nodes in F
and C can have the same pixel location. This is the main

difference in the graph construction as compared to works

in image segmentation [17, 9] where nodes in F and C must

have different locations. The first two equations guarantee

the nodes in F or C always have the label consistent with

user inputs. If we ignore the E2 term in Eqn (1), minimiz-

ing the energy E1 produces a “winner-takes-all” labeling

strategy based on normal similarity only.

Prior energy. We use E2 to encode the smoothness con-

straint between neighboring nodes. Define the normal sim-

ilarity function between two nodes i and j as an inverse

function of the smoothness constraint:

E2(si, sj) = |si − sj | · g(|pi − pj| + |qi − qj |) (3)

where g(ξ) = (ξ + 1)−1. Note that |si − sj | allows us

to capture the smoothness information when the adjacent

nodes have different labels. In other words, E2 is a penalty

term when neighboring nodes are assigned with different

labels. So if the neighboring normals are similar, assign-

ing them with different labels will increase the energy of

the graph and vice versa. This energy term encourages in-

tegrable normals to be grouped into the same surface.

We use the max-flow algorithm [7] to minimize the en-

ergy E(S) in Eqn (1). Readers may notice that we do not

enforce the two nodes at the same pixel location (recall our

graph is dual-layered) to have different labels in our graph

formulation. Although in our examples, pixel originally

having two clusters will always have one labeled as exterior

surface normal, we cannot guarantee that the two clusters

may both come from false highlights.

5. Experimental Results

The data sets tested and running times of normal map re-

construction are summarized in Table 2. The running times

(a) (b) (c) (d) (e)

Figure 8. JUG. The top shows eight captured images. The bottom

shows the recovered normal maps N, displayed as N · L with

L = (− 1√
3
, 1√

3
, 1√

3
)T . (a) Normal map by [2]. (b) Normal map

by [15]. (c) Normal map using our method. (d) and (e) compare

the reconstructed surfaces from our normal maps with the real

object.

shown exclude those of surface integration, where we use

the source codes from [14] to produce the final surfaces.

Setup. To capture a dense image set, similar in fashion

to [5, 2], we use an off-the-shelf DV camera with a fixed

viewpoint to simultaneously capture the reference chrome

sphere and the target object. A moving spotlight is used to

mimic a distant light source at varying directions.

Quantitative Evaluation. In order to evaluate the perfor-

mance of our system, we capture two real data sets whose

analytical geometries are known (namely, a hemisphere and

a cylinder). They can be served as the ground truth for

quantitative comparison. We compute the average differ-

ence of our computed surface normals with SPHERE and

CYLINDER respectively. The results are depicted in Table 3.

We also generate the surface normals by using a winner-

takes-all strategy such as [2]. We implemented this strategy

as the sum of second order moments followed by eigen-

decomposition. The corresponding visual results are shown

in Figure 7. From the results, we can see that our final re-

constructed shape is more faithful compared with the one

using the winner-takes-all strategy. Without proper label-

ing, the normals from the true highlight will be mixed up

with the wrong normals transferred due to false highlights,

making the final optimized normals fail to integrate into a

reasonable surface as shown in Figure 7(c).

Qualitative Evaluation. Figure 8 shows the single-view

reconstruction result on a transparent glass JUG. This ex-

ample is simple as the initial shape is already close to the

final solution. We show one view of the surface reconstruc-

tion alongside with the real object in a similar view.

Figure 9 shows the results a glass figurine FISH, which

is very similar to the one used in [13] and our result looks

comparable. Note that the image sequence contains a lot

of shadows and highlight. The figurine contains internal

structures of varied colors. However, it is highly specular

and thus can produce sufficient specular observations. The

zoom-in views illustrate the details preserved in our recon-



no. of images image dimensions total running time (sec)

SPHERE 8000 251 × 221 31.6

CYLINDER 4226 146 × 384 35.3

JUG 3870 279 × 419 50.5

FISH 1512 259 × 252 10.9

WINE GLASS 3133 153 × 324 13.2

WATER GLASS 3383 153 × 279 15.1

Table 2. Running times are measured on a desktop computer with Dual-Core 2.6 GHz CPU and 3.0 GB RAM.

SPHERE CYLINDER

data region whole region data region whole region

Our method 0.096 0.145 0.071 0.106

[2] 0.738 0.768 0.386 0.406

Table 3. The mean errors of the computed surface normals using our method and [2] are shown (where the error is defined as sum of the

squared difference of three normal components). Data region consists of pixel locations with highlight observations. Whole region includes

all processing pixels.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 9. FISH. The top shows the normal maps N displayed as

N ·L. The lighting directions are: (a)–(c) L = (− 1√
3
, 1√

3
, 1√

3
)T ,

(d) L = (0, 0, 1)T , (e) L = ( 1√
3
, 1√

3
, 1√

3
)T . The middle row

shows the reconstructed surface. (a) “winner-takes-all” strat-

egy [2]. (b) user-supplied normal cues and silhouettes [15]. (c)

Our result in frontal view. (d)–(e) Our results in other views. The

bottom shows the comparison of the reconstructed surface with

the real object at similar viewpoint. (h) Zoom-in view of (f). (i)

Zoom-in view of (g). The figurine is a solid transparent object with

complex colors inside the object.

struction of the object’s exterior surface. Although there are

some errors due to shadows, overall the surface reconstruc-

tion result is quite robust to the complex color, texture and

internal structure. The initial shape-from-silhouette in (b)

lacks the level of details in comparison with our final sur-

face result shown in (c) and other views in the figure.

We tested our approach using two complex transpar-

ent objects WATER GLASS and WINE GLASS. Figure 10

shows the reconstruction result on a transparent WATER

GLASS which has a complex shape. The result is accept-

able in regions where salient highlights can be detected.

Note the faithfulness of the recovered shape using our ap-

proach where true highlights are picked and false ones are

suppressed. Figure 11 shows another result on a transparent

WINE GLASS where a lot of orientation discontinuities are

present. Note in the normal map the fine details of the wine

glass preserved. Two views of the reconstructed surface,

alongside with the real object in similar views are shown.

Note that a similar glass was also used in fluorescent im-

mersion range scanning [6]. Our surface generated using

our shoestring budget looks reasonable and comparable in

many ways.

6. Conclusion and Future Work

This paper presents a practical approach for reconstruct-

ing the normal map of the exterior surface of a transpar-

ent object. While inadequate for high-precision graphics

rendering, our detail-preserving output is a faithful recon-

struction of the transparent object, as demonstrated by our

convincing results, and should be useful in a range of vi-

sion applications. Our approach makes use of an initial

shape, normals transferred using orientation consistencies,

and sparse user markups if needed. The problem was trans-

lated into one similar to image segmentation, and the op-

timization can be formulated using graph cuts on a dual-

layered graph. This alternative approach is desirable for

quick 3D prototyping of existing transparent objects with

details adequately preserved. Our current system produces

a depth map for the exterior surface of a transparent object.

To generate a full 3D reconstruction, it is possible to merge

overlapping depth maps which will be the future work.



(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 10. WATER GLASS. The top shows ten captured input

images and normal maps N displayed as N · L: The lighting

directions respectively are: (a)–(c) L = (− 1√
3
, 1√

3
, 1√

3
)T , (d)

L = (0, 0, 1)T , (e) L = ( 1√
3
, 1√

3
, 1√

3
)T . (a) “winner-takes-all”

strategy [2]. (b) user-supplied normal cues and silhouettes [15].

(c)-(e) our results. (f)–(i) show the comparison of our recon-

structed surfaces with the real object at novel viewpoints, along-

size with the corresponding zoom-in views.
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