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Abstract—Riemannian optimization has been widely used to
deal with the fixed low-rank matrix completion problem, and
Riemannian metric is a crucial factor of obtaining the search
direction in Riemannian optimization. This paper proposes a
new Riemannian metric via simultaneously considering the
Riemannian geometry structure and the scaling information,
which is smoothly varying and invariant along the equivalence
class. The proposed metric can make a tradeoff between the
Riemannian geometry structure and the scaling information
effectively. Essentially, it can be viewed as a generalization of
some existing metrics. Based on the proposed Riemanian met-
ric, we also design a Riemannian nonlinear conjugate gradient
algorithm, which can efficiently solve the fixed low-rank matrix
completion problem. By experimenting on the fixed low-rank
matrix completion, collaborative filtering, and image and video
recovery, it illustrates that the proposed method is superior to
the state-of-the-art methods on the convergence efficiency and
the numerical performance.

Index Terms—Collaborative filtering, fixed low-rank matrix
completion, image recovery, Riemannian metric, Riemannian
optimization.

I. INTRODUCTION

THE PROBLEM of low-rank matrix completion is viewed
as an interesting work in which the missing elements of a

low-rank matrix need to be estimated and completed just based
on the limited known elements of this matrix. Its pivotal issue
is that the matrix must be low-rank or approximatively low-
rank. Otherwise, it is impossible to figure out without some
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additional information [1]. In [2], this problem is traced to the
early rank minimization problem (RMP), shown as

min
X

rank(X)

s.t.
∥
∥
∥X − X̂

∥
∥
∥

F
≤ ε (1)

where X̂ ∈ R
m×n is the original matrix, X ∈ R

m×n is the
variable, and rank(X) denotes the rank of X. By (1), a matrix
X with the lowest rank is to approximate X̂ in Frobenius norm
with a tolerance of ε. Thereafter, RMP is extended to the
general affine rank minimization problem (ARMP) [3]–[7],
defined as

min
X

rank(X)

s.t. A(X) = b (2)

where A expresses the affine transformation: R
m×n → R

d×1

and b ∈ R
d×1. In general, ARMP is a challenging nonconvex

optimization problem which cannot be directly solved within
an acceptable time whether in theory or in practice.

Although both ARMP and its approximation [8] are NP-
hard, the convex relaxation method with the trace norm
minimization has been introduced early in [2], by which the
rank constraint is relaxed to a convex function, such as the
trace norm. Thus, ARMP can be relaxed as follows:

min
X

‖X‖∗
s.t. A(X) = b (3)

where ‖X‖∗ indicates the trace norm of X. Recently, con-
vex relaxation methods [9]–[14] based on the trace norm have
attracted a lot of attentions, because its theoretical perfor-
mance is guaranteed under some conditions and consistency
analysis [1], [3], [15]–[17]. However, there is an important
bottleneck that the rank of the minimizers will be large in
intermediate iterations while the final minimizer of the trace
norm minimization is a low-rank matrix. Coinciding with
the requirement of solving large-scale problem and mini-
mum memory, the rank estimation of the low-rank matrix
is needed. At present, some simple rank estimation strate-
gies of the low-rank matrix have been provided by some
researchers [11], [18], [19], but it is still an open problem.

Fortunately, an alternative approach mentioned in [4] and [5]
recasts RMP into the low-rank matrix approximation problem
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with the rank inequality constraint, and several algo-
rithms [6], [20] have been addressed to solve this problem
recently. Actually, the low-rank matrix completion problem is
a special case of ARMP, shown as

min
X

‖X‖∗

s.t. P�(X) = P�

(

X̂
)

(4)

where � is a subset of the complete set of indices {1, . . . , m}×
{1, . . . , n}, P�(X)ij = Xij when (i, j) ∈ �, and P�(X)ij =
0 when (i, j) /∈ �. In this paper, we focus on its another
formulation

min
X

1

|�|
∥
∥
∥P�(X) − P�(X̂)

∥
∥
∥

2

F

s.t. X ∈ {

X ∈ R
m×n

∣
∣rank(X) = r

}

(5)

where |�| denotes the cardinality of the set �. Unlike the
problem proposed in [4]–[6], the rank constraint of the prob-
lem (5) is the equality constraint, and it is named as the fixed
low-rank matrix completion problem. It is well-known that the
matrix factorization idea as a popular way has been utilized
to solve [19, eq. (5)] and [21, eq. (4)]. Even in the com-
puter vision field, the matrix factorization model is also widely
used [22]–[30]. However, the nonuniqueness of the matrix fac-
torization easily makes the solving procedure to fall into the
local minimum.

In order to effectively overcome the nonuniqueness of the
matrix factorization, many algorithms [18], [31]–[38] are pro-
posed based on the Riemannian quotient manifold by virtue
of the introduction of the equivalence class to solve the
problem (5). Specially, it is a prominent feature of some
algorithms that the underlying Riemannian geometry struc-
ture derived from the matrix factorization model of the search
space is considered, for example, the Riemannian submani-
fold is adopted on the tangent space of the product space or
total space in [32]. Moreover, both Ngo and Saad [34] and
Mishra et al. [35] have introduced how to use the scaling infor-
mation in solving the problem (5). Because of considering the
scaling information, the scaled gradient direction outperforms
the canonical gradient direction under the gradient-based
optimization.

Inspired by Mishra et al. [35] and Meyer et al. [36], it is
known that both the Riemannian quotient manifold structure
and the scaling information play indispensable roles in con-
structing a proper Riemannian metric. Actually, a Riemannian
metric defines the search space of tangent vectors in tan-
gent space. Riemannian geometry structure and the scale
information constrain this search space from different angles,
respectively. In well-conditioned problems, Riemannian geom-
etry structure guarantees the global optimal solution. However,
most practical problems in system recommendation and com-
puter vision are not well-conditioned. When only Riemannian
geometry structure behind the specific matrix factorization
model is considered, it can not gain an acceptable solution
for the ill-conditioned problems. By virtue of the adaptive
preconditioning character, the scale information assures an
acceptable solution in ill-conditioned problems. But, while
considering only the scale information of the cost function of

the matrix completion problem, an insufficient performance
may be gained because of the lack of the intrinsic structure of
data. It is a worth considering problem that how to construct
a more general Riemannian metric.

Based on the above analyses, we propose a new Riemannian
metric which can simultaneously consider the Riemannian
geometry structure behind the full-rank matrix factorization
model and the scaling information derived from the hessian
information of the cost function of the low-rank matrix approx-
imation problem in this paper, and we prove the proposed
metric is smoothly varying and invariant along the equiv-
alent class. With the proposed metric, we also propose an
efficient algorithm under the framework of the Riemannian
manifold optimization to solve a more general matrix com-
pletion problem, such as the collaborative filtering, image and
video recovery. Simply speaking, the proposed Riemannian
metric is equivalent to an additive metric characterized with
a linear combination of the Riemannian geometry and the
scaling information, where a weight coefficient is used to bal-
ance their contributions, but it can bring a wonderful result
when it is applied to the gradient-based Riemannian opti-
mization algorithm. More specifically, the proposed metric
can make tradeoff between the Riemannian geometry struc-
ture and the scaling information by adjusting the weight
coefficient.

Compared with some previous works [34]–[36] the research
contributions of this paper are summarily listed as follows.

1) A novel Riemannian metric is proposed, which is the
first work of simultaneously considering the structure
of the Riemannian quotient manifold and the scaling
information, and it can effectively realize mutual com-
pensation of advantages attributed to the Riemannian
structure and the scaling information.

2) The full-rank matrix factorization model can be extended
by our proposed Riemannian metric, because its corre-
sponding product space can be equipped with not only
other Riemannian metrics but also our metric.

3) A Riemannian nonlinear conjugate gradient algorithm
with our proposed metric is designed to verify the
effectiveness of our metric, which can gain better per-
formance compared with state-of-the-art algorithms.

4) Our Riemannian metric is more general for the fixed
low-rank matrix completion, and some metrics are
equivalent to special cases1 of our metric, such as
qGeomMC, Right inv. GHT , LMaFit.

This paper is organized as follows. We review the
Riemannian structure and the scaling information in Section II.
Sections III and IV show the details of constructing the pro-
posed Riemannian metric and recalculating the components
of the optimization on Riemannian quotient manifold, respec-
tively. In Section V, a nonlinear conjugate gradient algorithm
(RiemSScRNCG) is introduced. Section VI shows the experi-
mental results. Finally, the conclusion remarks and the future
work are presented in Section VII.

1The detailed discussions of the connection between them are shown in the
supplementary material.
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II. RIEMANNIAN STRUCTURE OF QUOTIENT MANIFOLD

AND SCALING INFORMATION OF THE PROBLEM

The equivalence class is the basis of the structure of the
Riemannian quotient manifold. By introducing the concept
of equivalence class, the nonuniqueness of the matrix factor-
ization is avoided so that the global minima can be gained.
Moreover, the scaling information of the specific problem
[such as (5)] derives from the hessian information of the cor-
responding objective function according to [35] which is used
in this paper.

A. Geometry Structure of Riemannian Quotient Manifold

Before the discussion of Riemannian manifold geome-
try structure, we will review the two-factor factorization of
the fixed low-rank nonsymmetric matrix, also called matrix
bi-factorization [39]. Note that this paper focuses on the two-
factor factorization. Given a fixed low-rank nonsymmetric
real matrix X ∈ R

m×n which satisfies rank(X) = r and
r � min(m, n), a well known factorization is derived from the
thin singular value decomposition (SVD): X = U�VT , where
� ∈ R

r×r is a diagonal matrix, and columns of U ∈ R
m×r and

V ∈ R
n×r satisfy the orthogonality, respectively. Furthermore,

it is easily rearranged as follows:

X = U�VT = (U�
1
2 )(�

1
2 VT) = GHT (6)

where G = U�(1/2) ∈ R
m×r, H = V�(1/2) ∈ R

n×r and
rank(G) = rank(H) = r. Let R

m×r∗ denote the set of all
matrices with m × r whose columns are linearly independent,
and then we have G ∈ R

m×r∗ . Similarly, we get H ∈ R
n×r∗ .

Therefore, (6) is also called as full-rank matrix factorization.
However, the factorization of (6) is not unique, because there
is an equation for any invertible matrix D ∈ R

r×r∗

GHT = GD−1DHT =
(

GD−1
)(

HDT)T
. (7)

A more general mathematical description of (7) is a
mapping

(G, H) 	→
(

GD−1, HDT
)

,∀D ∈ R
r×r∗ . (8)

In view of G and H, the subspace span(G) spanned by
columns of G is equivalent to the subspace span(GD−1)

spanned by columns of GD−1 for D. The matrix X leaves
unchanged via the mapping (8). This invariance takes root
in the fact that the column spaces of G and H are invari-
ant to the transformation of coordinates (e.g., the rotation of
coordinates). Thus, the equivalence class of X is defined as

[X] = [(G, H)]

=
{(

GD−1, HDT
)∣
∣
∣G ∼ GD−1, H ∼ HDT , D ∈ R

r×r∗
}

(9)

where ∼ denotes the equivalence relation on R
m×r∗ or R

n×r∗ ,
(G, H) represents the full-rank factorization of X, D is any
invertible matrix, and R

r×r∗ is also called as the general linear
group GLr in [40]. Moreover, let R

m×r∗ × R
n×r∗ be a prod-

uct space denoted by X̄ , also called as the total space [40].

By virtue of the equivalence class and the product space, it is
natural to introduce the quotient manifold, and we have

X = X̄
/

GLr (10)

where X is called the quotient space or quotient manifold.2

A mapping π : X̄ → X constructs the relationship between
the total space X̄ and the quotient manifold X , named as the
quotient map or canonical projection map [33].

An element x of X is denoted by x = π([x̄]), where x̄ ∈ X̄ is
the matrix representative of [x̄] in X̄ . Furthermore, the tangent
vector ζx in TxX needs a matrix representative in X̄ to calcu-
late effectively, where TxX expresses the tangent space of X at
x. Specifically, there is a unique horizontal lifted representative
of ζx, denoted by ζ̄x̄

3 in Tx̄X̄ , where Tx̄X̄ expresses the tan-
gent space of X̄ at x̄. In other words, the matrix representative
(ζ̄G, ζ̄H) of ζx is only restricted to the horizontal direction in
Tx̄X̄ , which means it remains unchanged along the equiva-
lence class [x̄] in that direction. The set of those directions
constructs a subspace of Tx̄X̄ , named as the horizontal sub-
space Hx̄X̄ , and the complementary space of Hx̄X̄ is tangent
to [x̄], named as the vertical subspace Vx̄X̄ . Then, we have
Vx̄X̄ ⊕ Hx̄X̄ = Tx̄X̄ .

Furthermore, an inner product varied smoothly on the hor-
izontal subspace of Tx̄X̄ is presented by the way of a metric
ḡx̄(ζ̄x̄, η̄x̄) defined on X̄ . Since ḡx̄(ζ̄x̄, η̄x̄) is independent of
x̄ ∈ [x̄], it defines a valid Riemannian metric gx(ζx, ηx) in
TxX of X , shown as follows:

gx(ζx, ηx) = ḡx̄
(

ζ̄x̄, η̄x̄
)

(11)

where ζx and ηx are the tangent vectors in TxX , and their
horizontal lifted representatives are ζ̄x̄ and η̄x̄ in Hx̄X̄ .
Additionally, the product structure of X̄ naturally inher-
its the metric from each factor (such as R

m×r∗ and R
n×r∗ )

in [40]. Therefore, X equipped with gx(ζx, ηx) is named as a
Riemannian quotient manifold of X̄ . Moreover, more details
can be referenced in [33] and [41].

B. Scaling Information of the Matrix Approximation

It is well-known that the Newton algorithm of the second-
order optimization method is a classical scaling gradient
descent algorithm. For X = GHT , let G ∈ R

m×r∗ vector-
ize, and a vector g ∈ R

mr×1 is obtained by stacking the
columns of G below on another. Similarly, a vector h ∈ R

nr×1

is gained for H. Then they are stacked as [ gT hT ]T ∈
R

(m+n)r×1 whose full hessian matrix is a symmetric matrix
with (m + n)r × (m + n)r. Although the objective function of
the matrix approximation problem

f̄ (G, H) = 1

2

∥
∥
∥X̂ − GHT

∥
∥
∥

2

F
(12)

is nonconvex because of including the product of two vari-
ables G and H, it is strictly convex on G when H is fixed

2It resembles Euclidean space locally and defines the differential structure
globally. It is equipped with an inner product varied smoothly on the horizontal
subspace of the tangent space.

3Here, for convenience, we abuse the notation by denoting ζ̄x̄ as the tangent
vector in the tangent space Tx̄X̄ of the total space X̄ at x̄ as well as the
horizontal lifted representative of the tangent vector in Tx̄X̄ .
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and vice versa. In order to reduce the complexity, a diagonal
approximation matrix is adopted instead of the full hessian
information, whose diagonal elements are chosen from the
full hessian matrix of (12). Moreover, the diagonal approx-

imation hessian matrix has the form

[

Hessg 0mr×nr

0nr×mr Hessh

]

∈
R

(m+n)r×(m+n)r, where Hessg ∈ R
mr×mr and Hessh ∈ R

nr×nr

are two diagonal matrices. According to [22], the scaling
gradients with the diagonal elements of the diagonal approx-
imation hessian matrix have the forms Hess−1

g (∂ f̄ /∂g) and
Hess−1

h (∂ f̄ /∂h), where (∂ f̄ /∂g) and (∂ f̄ /∂h) are the Euclidean
gradients in vectorized form. Therefore, a particular metric
equipped with scaling information on Tx̄X̄ is addressed in [35],
shown as

ḡx̄
(

ζ̄x̄, η̄x̄
) = Tr

((

HTH
)

ζ̄ T
Gη̄G

) + Tr
((

GTG
)

ζ̄ T
Hη̄H

)

(13)

where x̄ = (G, H) and ζ̄x̄, η̄x̄ ∈ Tx̄X̄ .

III. NEW RIEMANNIAN METRIC ON THE HORIZONTAL

SUBSPACE OF THE RIEMANNIAN QUOTIENT MANIFOLD

Most researches construct a metric based on either the
Riemannian geometry structure or the scale information of
a problem. In [33], a metric is constructed based on the
geometry structure of Riemannian quotient manifold, and the
metric [35] shown by (13) is designed based on the scale infor-
mation of the cost function without the geometry structure.
In order to distinguish three metrics in the following part,
we use ḡgeom

x̄ (ζ̄x̄, η̄x̄), ḡscal
x̄ (ζ̄x̄, η̄x̄), and ḡeucl

x̄ (ζ̄x̄, η̄x̄) to denote
them, respectively, where ḡeucl

x̄ (ζ̄x̄, η̄x̄) is an Euclidean metric
equipped in the product space R

m×r∗ × R
n×r∗ in [36]:

ḡx̄
(

ζ̄x̄, η̄x̄
) = Tr

(

ζ̄ T
Gη̄G

) + Tr
(

ζ̄ T
Hη̄H

)

(14)

where x̄ = (G, H) and ζ̄x̄, η̄x̄ ∈ Tx̄X̄ .
Although the good performance obtained by the constructed

metrics has demonstrated the significant of the Riemannian
geometry and the scale information, there are still some
disadvantages in them. For example, for the ill-conditional
problems, an acceptable solution cannot be obtained while
only considering the Riemannian geometry structure; when
only using the scale information, an insufficient performance
may be gained. Hence, we designed one novel Riemannian
metric on the tangent space4 Tx̄X̄ of X̄ based on both
the Riemannian geometry structure and the scaling informa-
tion. By considering them simultaneously, a matrix 	1 is
constructed

	1 = α

((

GTG
)−1 0r×r

0r×r
(

HTH
)−1

)

+ (1 − α)

(

HTH 0r×r

0r×r GTG

)

where α is a weight coefficient and 	1 ∈ R
2r×2r. Interestingly,

it is found that 	1 is equivalent to a linear combination of the
Riemannian geometry and the scaling information, where α

is used to adjust the significance of the Riemannian geometry

4Indeed, the constructed Riemannian metric is on the horizontal subspace
Hx̄X̄ of the tangent space TxX for the Riemannian quotient manifold.

and the scaling information. For 	1, Lemma 1 is given and
its proof is shown in the supplementary material.

Lemma 1: Given two matrices G ∈ R
m×r∗ and H ∈ R

n×r∗
and α ∈ [0, 1], the matrix 	1 is a positive definite matrix.

Then, by using the block matrix and the properties of matrix
trace [42], we obtain a new Riemannian metric ḡaddi

x̄ (ζ̄x̄, η̄x̄)

on Tx̄X̄ , shown as

ḡaddi
x̄

(

ζ̄x̄, η̄x̄
) = Tr

((

α
(

GTG
)−1 + (1 − α)HTH

)

ζ̄ T
Gη̄G

)

+ Tr

((

α
(

HTH
)−1 + (1 − α)GTG

)

ζ̄ T
Hη̄H

)

.

(15)

From (15), it is obvious that ḡaddi
x̄ (ζ̄x̄, η̄x̄) = ḡscal

x̄ (ζ̄x̄, η̄x̄) if α =
0 and ḡaddi

x̄ (ζ̄x̄, η̄x̄) = ḡgeom
x̄ (ζ̄x̄, η̄x̄) if α = 1, which indicates

that ḡgeom
x̄ (ζ̄x̄, η̄x̄) and ḡscal

x̄ (ζ̄x̄, η̄x̄) are equivalent to two special
cases of the proposed new metric in fact.

According to the analysis in Section II, given a tangent
vector ζx in TxX at x ∈ X , it is uniquely represented
by the horizontal lifted representative ζ̄x̄ ∈ Hx̄X̄ in Tx̄X̄
endowed with a horizontal subspace Hx̄X̄ , satisfied with ζx =
Dπ(x̄)[ζ̄x̄], where Dπ(x̄)[ζ̄x̄] means the directional derivative
of π(x̄) along the direction ζ̄x̄. For the proposed Riemannian
metric (15), we can gain Proposition 1.

Proposition 1: Let x̄ ∈ X̄ be represented by (G, H) ∈
R

m×r∗ × R
n×r∗ and ζx be a tangent vector in TxX of X =

R
m×r∗ × R

n×r∗ /GLr at x = π([(G, H)]), where π is a quotient
map5 π : X̄ → X . The horizontal lifts of ζπ([(G,H)]) at points
(G, H) and (GD−1, HDT) have a relationship with each other,
shown as

(

ζ̄GD−1 , ζ̄HDT
) =

(

ζ̄GD−1, ζ̄HDT
)

, ∀D ∈ GLr.

Then, the metric (15) is smoothly varying on the horizon-
tal subspace and invariant along the equivalence class. Thus,
we have

gx(ζx, ηx) = ḡaddi
(G,H)

((

ζ̄G, ζ̄H
)

, (η̄G, η̄H)
)

= ḡaddi
(GD−1,HDT)

((

ζ̄GD−1 , ζ̄HDT
)

,
(

η̄GD−1 , η̄HDT
))

.

The proof of Proposition 1 is shown in the Appendix.

IV. COMPONENTS OF THE OPTIMIZATION ON

RIEMANNIAN QUOTIENT MANIFOLD

To the best of our knowledge, the domain of numerical opti-
mization on smooth manifolds has been advanced significantly
in the past few years [31]–[33], [35], [40], [41]. In this sec-
tion, we need reconsider and recalculate the components of
the optimization algorithm for the proposed new metric, e.g.,
projections onto subspaces, retraction, and vector transport.

A. Projections Onto the Tangent Space and the
Horizontal Subspace

Since we focus on the total space X̄ , the tangent space Tx̄X̄
has the product structure: Tx̄X̄ = TGR

m×r∗ × THR
n×r∗ , where

5The mapping π is the continuous surjective, called as Riemannian submer-
sion. In other words, a Riemannian submersion is a submersion of Riemannian
manifolds such that Dπ maintains the inner products of vectors which are
orthogonal to equivalence classes.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAO et al.: NOVEL RIEMANNIAN METRIC BASED ON RIEMANNIAN STRUCTURE AND SCALING INFORMATION 5

x̄ = (G, H) ∈ X̄ and X̄ = R
m×r∗ ×R

n×r∗ . Additionally, as R
m×r∗

and R
n×r∗ are an open subset6 of R

m×r and R
n×r, respectively,

we have Tx̄X̄ = R
m×r × R

n×r. Hence, for an arbitrary point
x̂ = (�G, �H) ∈ R

m×r ×R
n×r in Euclidean product space, the

projection operator ϒx̄ onto Tx̄X̄ is the identity map, shown as

ϒx̄(�G, �H) = (�G, �H). (16)

Based on the previous analyses, Tx̄X̄ is decomposed into
the vertical and horizontal subspaces which are denoted as
Vx̄X̄ and Hx̄X̄ , respectively. In order to obtain the projection
operator 
x̄ onto Hx̄X̄ , we need Lemma 2.

Lemma 2: The Riemannian quotient manifold R
m×r∗ ×

R
n×r∗ /GLr equipped with the Riemannian metric (15) admits

a set of horizontal tangent vectors (ξ̄G, ξ̄H) ∈ R
m×r × R

n×r

which meets the condition

GT ξ̄G

(

α
(

GTG
)−1 + (1 − α)HTH

)

= −
(

(1 − α)GTG + α
(

HTH
)−1

)

ξ̄T
HH. (17)

The proof of Lemma 2 is shown in the supplementary mate-
rial. Thus, the vertical subspace has the expression Vx̄X̄ =
V(G,H)X̄ = {(G�, H�T)|� ∈ R

r×r}, and the horizontal sub-
space has the expression

Hx̄X̄ =
{(

ξ̄G, ξ̄H
)∣
∣GT ξ̄G

(

α
(

GTG
)−1 + (1 − α)HTH

)

= −
(

(1 − α)GTG + α
(

HTH
)−1

)

ξ̄T
HH

ξ̄G ∈ R
m×r, ξ̄H ∈ R

n×r
}

.

Projecting any tangent vector ζ̄x̄ ∈ Tx̄X̄ onto the horizontal
subspace is performed by the projection operator


x̄
(

ζ̄x̄
) = (

ζ̄G − G�, ζ̄H − H�T)

(18)

where � ∈ R
r×r can be uniquely obtained by solving a

Lyapunov equation. The calculation of � is detailed in the
supplementary material.

B. Retraction and Vector Transport

In the iterative optimization method, it always involves
computing a search direction (such as the gradient) and then
moving along this direction with the step size. In the search
process, the next iteration point is still in the search space. In
the geometric sense, the exponential mapping is the most nat-
ural retraction on the Riemannian quotient manifold. But its
calculation cost [43] is too expensive to implement in many
practical applications. Fortunately, a mapping Rx̄ : Hx̄X̄ → X̄
is adopted to make a retraction from horizontal subspace to
the total space in [33] and [40], which locally approximates
the exponential mapping Expx̄ : Hx̄X̄ → X̄ , and it can be
numerically calculated corresponding to an abstract retraction
Rx : TxX → X on the Riemannian quotient manifold. Thus,
we have the retraction of the product space corresponding to
the full-rank matrix factorization here

x̄new = Rx̄old

(

soldξ̄x̄old

)

= (

G + soldξ̄G, H + soldξ̄H
)

(19)

6Since its complement {Ḡ ∈ R
m×r| det(ḠT Ḡ) = 0} is closed.

Fig. 1. Visualization of the retraction. The horizontal subspace Hx̄old X̄
defines an unique horizontal lifted space for the abstract tangent space TxoldX .
The retraction Rx̄old maps a horizontal tangent vector sold ξ̄x̄old with the step
size sold onto the point x̄new. ξ̄x̄old denotes the horizontal lift of a tangent
vector ξxold on the Riemannian quotient manifold X . The red lines denote
the equivalence classes on the total space X̄ . The red solid points are denoted
as the points on X . The blue dotted lines are the geodesics on X and X̄ .

where sold is the step size, ξ̄x̄old ∈ Hx̄oldX̄ denotes a search
direction, and x̄new ∈ X̄ is a gained new iteration corre-
sponding to x̄old = (G, H). As follows, a visualization of the
retraction is given in Fig. 1. In brief, the retraction is a map-
ping from the horizontal subspace to the total space of the
Riemannian quotient manifold. Actually, the purpose of intro-
ducing the operation of retraction is to ensure that the next
iteration point is still on the quotient manifold.

As the Euclidean space is the flat space, the parallel trans-
port of a vector does not change its own direction. But, on the
Riemannian quotient manifold, if a tangent vector is moved
from one point to the next iteration point by the parallel
transport, it will not be a tangent vector generally. Thus, we
transport the tangent vector from one point to the next itera-
tion point along the path on the Riemannian quotient manifold
by removing the component of the transported tangent vector
in the space [40]. Specifically, this space is the orthogonal
complement space of the tangent space. The vector trans-
port Tx→z from x to z on X can be viewed as a mapping
Tx→z : TxX → TzX , where z = Rx(sηx) and s is a step
size. By virtue of the horizontal lifted representatives of ζ̄x̄

and the search direction η̄x̄ in X̄ , the horizontal lift Tsηx(ζx)

of the vector transport Tsηx(ζx) can be given in terms of the
operator (18) as

Tsηx(ζx) = 
x̄+sη̄x̄

(

ζ̄x̄
)

. (20)

In fact, the horizontal lift Tx→x+sηx of the vector transport
Tx→x+sηx can be viewed as a mapping Tx→x+sηx : Hx̄X̄ →
Hx̄+sη̄x̄X̄ , and Fig. 2 is a visualization of the vector transport.

C. Complexity Analysis

Supposed m 
 r, n 
 r, we have G ∈ R
m×r∗ , H ∈ R

n×r∗ ,
ζ̄G, η̄G ∈ R

m×r and ζ̄H, η̄H ∈ R
n×r according to the previous

analyses. For the proposed Riemannian metric ḡaddi
x̄ (ζ̄x̄, η̄x̄), its

numerical complexity is O(mr2 + nr2) based on (15). Given
ζ̄G ∈ R

m×rand ζ̄H ∈ R
n×r, we have ϒx̄(ζ̄G, ζ̄H) = (ζ̄G, ζ̄H),

which is the identity map, and thus there is no computa-
tional cost in practical. For the projection operator 
x̄(ζ̄x̄)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 2. Visualization of the vector transport. The vector transport Tsηx (ζx) on
the Riemannian quotient manifold X is performed actually on the total space
X̄ by the horizontal lifts, and it is denoted by Tsηx (ζx). The tangent vector ζ̄x̄
is transported “parallelly” from the point x̄ ∈ X̄ to the point z̄ = Rx̄(sη̄x̄) ∈ X̄
and we obtain Tsηx (ζx) on the horizontal subspace Hz̄X̄ eventually.

onto the horizontal subspace Hx̄X̄ shown in (18), the numer-
ical complexity is O(mr2 + nr2). The computational cost of
Rx̄ shown in (19) is O(mr + nr). The numerical complexity
of 
x̄+sη̄x̄(ζ̄x̄) in (20) includes the complexity O(mr2 + nr2)

of forming the Lyapunov equation and the complexity O(r3)

of solving it. The detailed analyses are shown in the supple-
mentary material.

V. RIEMSSCRNCG ALGORITHM

With the proposed metric, we design a Riemannian nonlin-
ear conjugate gradient algorithm based on the additive metric
of Riemannian structure and scaling information to solve the
fixed low-rank matrix completion problem in this paper, named
as RiemSScRNCG algorithm, and it is outlined in Algorithm 1.
As follows, we introduce some details of RiemSScRNCG.

On the Riemannian quotient manifold X , a smooth function
f : X → R is induced by the corresponding smooth cost
function f̄ : X̄ → R which is invariant along the GLr. The
Riemannian gradient gradxf of f at a point x can be uniquely
represented by its horizontal lift gradxf . Since f̄ is constant on
each equivalence class, we get gradx̄ f̄ belongs to the horizontal
subspace. Actually, the projection operator 
x̄ mentioned in
(18) is implicitly included. Naturally, we have

gradxf = gradx̄ f̄ . (21)

Specifically, the matrix representative of gradx̄ f̄ can be
obtained from the definition of the Riemannian gradient. In
other words, the Riemannian gradient gradx̄ f̄ is the unique
tangent vector of Tx̄X̄ , which meets Df̄ [η̄x̄] = ḡx̄(gradx̄ f̄ , η̄x̄)

for all η̄x̄ ∈ Tx̄X̄ , where Df̄ [η̄x̄] denotes the standard Euclidean
directional derivative of f̄ along the direction η̄x̄, and ḡx̄(•, •)

is the Riemannian metric defined on Tx̄X̄ of X̄ .
For the fixed low-rank matrix completion problem (5), it

can be rewritten as

min
(G,H)∈R

m×r∗ ×R
n×r∗

1

|�|
∥
∥
∥P�

(

GHT) − P�(X̂)

∥
∥
∥

2

F
. (22)

Thus, we have the cost function

f̄ (G, H) = 1

|�|
∥
∥
∥P�

(

GHT
)

− P�

(

X̂
)∥
∥
∥

2

F
.

Algorithm 1 RiemSScRNCG Algorithm

Input: Matrix P�(X̂), �, fixed rank r, α.
Output: Matrices G ∈ R

m×r∗ and H ∈ R
n×r∗ gained via (22).

1: Initialize two matrices G0 ∈ R
m×r∗ and H0 ∈ R

n×r∗ ,
β0: = 0, i: = 0;

2: Compute gradx̄i f̄ = (

gradGi f̄ , gradHi f̄
)

;
3: Let the search direction ζ̄x̄i be

(

ζ̄Gi , ζ̄Hi

)

and have
(

ζ̄Gi , ζ̄Hi

) = −(

gradGi f̄ , gradHi f̄
);

4: repeat
5: if i == 0
6: then Guess the initial step size s◦

i via exact line-search;
7: else Adopt the adaptive step size strategy mentioned in

[20] to get s◦
i .

8: end if
9: Obtain the Armijo step size si by satisfying the Armijo

condition with s◦
i ;

10: Compute Gi+1 and Hi+1 according to the retraction
(19), and the update steps are shown as

Gi+1 = Gi + siζ̄Gi , Hi+1 = Hi + siζ̄Hi;
11: Compute gradx̄i+1 f̄ = (

gradGi+1 f̄ , gradHi+1 f̄
)

;
12: Compute the coefficient βi+1 by (23);
13: Compute the search direction ζ̄x̄i+1 = (

ζ̄Gi+1, ζ̄Hi+1

)

,
where

ζ̄Gi+1 = −gradGi f̄ + βi+1
Gi+si ζ̄Gi

(

ζ̄Gi

)

,

ζ̄Hi+1 = −gradHi f̄ + βi+1
Hi+si ζ̄Hi

(

ζ̄Hi

);
14: if ḡaddi

x̄i+1

(

ζ̄x̄i+1, gradx̄i+1 f̄
)

> 0
15: then

ζ̄Gi+1 = −gradGi+1 f̄ , ζ̄Hi+1 = −gradHi+1 f̄ ;
16: end if
17: i: = i + 1;
18: until convergence.

For the cost function f̄ (G, H), its numerical complexity mainly
comes from the term P�(GHT). By the ingenious use of
the sparse structure, the computational cost of P�(GHT) is
|�|r. Thus, the numerical complexity of f̄ (G, H) is O(|�|r).
Additionally, the partial derivative (∂ f̄ /∂ x̄) of f̄ with respect
to x̄ is obtained by (∂ f̄ /∂ x̄) = ((∂ f̄ /∂G), (∂ f̄ /∂H)) ∈ R

m×r ×
R

n×r, where (∂ f̄ /∂G) = (2/|�|)(P�(GHT) − P�(X̂))H and
(∂ f̄ /∂H) = ((2/|�|)(P�(GHT) − P�(X̂)))TG. Therefore, the
matrix representative of gradx̄ f̄ is calculated on the horizon-
tal subspace equipped with the proposed Riemannian metrics
ḡaddi

x̄ (ζ̄x̄, η̄x̄), and we have
(

gradG f̄ , gradH f̄
) =

(

QHA−1, QTGB−1
)

where A = α(GTG)−1 + (1 − α)HTH, B = α(HTH)−1 +
(1 − α)GTG, and Q = (2/|�|)(P�(GHT) − P�(X̂)). By the
computational deduction, the numerical complexity of gradG f̄
and gradH f̄ are all O(|�|r + mr2 + nr2).

The introduction of the vector transport Tsηx(ζx) is ready for
the nonlinear conjugate gradient algorithm on the Riemannian
quotient manifold. The search direction ζ̄x̄i+1 can be computed
by the variant of the classical Polak-Ribière-Polyak (PRP)
which is generalized to the Riemannian manifold in [40].
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For the Riemannian metric ḡaddi
x̄ (ζ̄x̄, η̄x̄), the calculation of the

coefficient βi+1 is done as follows:

βi+1 =
ḡaddi

x̄i+1

(

gradx̄i+1 f̄ , gradx̄i+1 f̄ − Txi+1

(

ζxi

))

ḡaddi
x̄i

(

gradx̄i f̄ , gradx̄i f̄
) . (23)

VI. EXPERIMENT AND ANALYSIS

In order to validate the performance of our Riemannian
metric, three experiments are performed on synthetic datasets,
real-world recommendation system datasets, and image and
video recovery, respectively, and their details are shown in
the following parts. From (22), the fixed-rank constraint is
embedded into the full-rank factorization model, and this opti-
mization problem has attracted a lot of attention in recent
years. Thus, some state-of-the-art algorithms are compared
with the proposed method in our experiments. The compared
algorithms are roughly summarized into three categories based
on optimization methods, shown as follows.

1) Trace Norm Minimization: The representative algorithms
are SVT [9], FPCA [10], APGL [11], SOFT-IMP [44],
and IALM [45].

a) SVT7: The step size δ is set to 1.2(mn/|�|) and
the parameter τ is set to τ = 5n as suggested by
Cai et al. [9].

b) FPCA8: The parameter ημ is set to 0.25 and τ is set
to 1 as suggested in [10]. We set the parameter μ̄ =
10−30μ0, where μ0 = ‖A∗(b)‖2 and A∗ denotes
the adjoint operator of A.

c) APGL9: The parameter μ̄ is set to 10−30μ0, where
the definition of μ0 is the same as in FPCA. For
APGL, a quadratic approximation function of the
objective function is constructed.

d) IALM10: The parameter μ0 is set to (1/‖X̂‖2), and
the parameter has ρ = 1.2172 + 1.8588ρs men-
tioned in [45], where ρs = (|�|/mn). IALM is the
representative of the alternating direction method
(ADM) [46].

e) SVP11: The step size ηt is set to (1/(1 + δ)p) as
suggested in [4], where p denotes the density of
sampled entries, p = (|�|/mn), and δ = (1/3).

The PROPACK [47] is used to compute a partial SVD
in all above mentioned algorithms except FPCA. For
FPCA, a fast Monte Carlo algorithm [48] is applied to
compute an approximate SVD. Although SVP [4] does
not belong to the trace norm minimization algorithm,
the partial SVD needs to be computed by PROPACK.
Thus, we list SVP above.

2) Matrix Factorization Model: The representative algo-
rithm is LMaFit [19].

7http://statweb.stanford.edu/∼candes/svt/
8http://www1.se.cuhk.edu.hk/∼sqma/FPCA.html
9http://www.math.nus.edu.sg/∼mattohkc/NNLS.html
10http://perception.csl.illinois.edu/matrix-rank/sample_code.html
11http://www.cs.utexas.edu/∼pjain/svp/

a) LMaFit12: The parameter γ1 is set to 0.7 and
ω̃ = 50 suggested in [19]. LMaFit is an efficient
nonlinear successive over-relaxation algorithm.

3) Manifold Optimization: The representative algorithms
are OptSpace [18], ScGrassMC [34], LRGeomCG [32],
qGeomMC [35], Right inv. GHT [33], UBVT [33], and
UYT [33].

a) OptSpace13: We set the parameter τ = 10−3 as
suggested by authors. The MATLAB implemen-
tation without regularized term is adopted in our
experiments.

b) ScGrassMC14: It is a gradient-based method
equipped with scaled metric on the bi-
Grassmannian manifold for low-rank matrix
completion.

c) LRGeomCG15: The iterative points move on the
embedded submanifold conceptually, and the
numerical implementation is done by using
the matrix factorization model, such as SVD. The
Euclidean metric is adopted.

d) qGeomMC16: The scaling information is consid-
ered to construct a proper Riemannian metric on
the Riemannian quotient manifold.

e) Right inv. GHT 17: Its metric is constructed by the
structure of Riemannian quotient manifold and is
invariant along the equivalence class in the product
space.

f) UBVT: It comes from the polar factorization
model, where B is a r × r symmetric positive
definite matrix.

g) UYT: It comes from the subspace-projection fac-
torization model. The total space is defined as
St(m, r) × R

n×r∗ .
In experiments, all reported times are wall-clock time that

contains the setup phase of the solvers but excludes the setup
phase of the problems. For the fair comparison, all other mani-
fold optimization methods (except OptSpace) adopt the Armijo
line-search to compute an Armijo-optimal step size on non-
linear conjugate gradient algorithm. For the initial guess of
the step size, the exact line-search is employed in all meth-
ods, and the adaptive step size strategy mentioned in [33] is
also applied. Additionally, the maximum number of iterations
is set to 250 for all methods unless otherwise specified, the
parameter α is set to 0.1 or 0.2 for RiemSScRNCG, and the
parameters are set to the optimal values mentioned in relevant
works for other methods.

A. Experiments on Synthetic Datasets

In this experiment, we have two settings for the fixed low-
rank matrix completion problem: 1) well-conditioned random
low-rank matrices whose singular values change smoothly, and

12http://lmafit.blogs.rice.edu/
13http://web.engr.illinois.edu/∼swoh/software/optspace/code.html
14http://www-users.cs.umn.edu/∼thango/
15http://web.math.princeton.edu/∼bartv/matrix_completion.html
16http://www.montefiore.ulg.ac.be/∼mishra/softwares/qGeomMC.html
17http://www.montefiore.ulg.ac.be/∼mishra/codes.html

http://statweb.stanford.edu/~candes/svt/
http://www1.se.cuhk.edu.hk/~sqma/FPCA.html
http://www.math.nus.edu.sg/~mattohkc/NNLS.html
http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://www.cs.utexas.edu/~pjain/svp/
http://lmafit.blogs.rice.edu/
http://web.engr.illinois.edu/~swoh/software/optspace/code.html
http://www-users.cs.umn.edu/~thango/
http://web.math.princeton.edu/~bartv/matrix_completion.html
http://www.montefiore.ulg.ac.be/~mishra/softwares/qGeomMC.html
http://www.montefiore.ulg.ac.be/~mishra/codes.html
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TABLE I
MEAN RESULTS FOR FIVE RANDOM INSTANCES FOR LOW-RANK MATRIX COMPLETION WITH A FIXED RANK

Fig. 3. Convergence behaviors for all algorithms for the small well-
conditioned fixed low-rank matrix completion. (a) Convergence time curves
of all algorithms. (b) Convergence iteration curves of all algorithms.

the condition number (CN) is 1.4 at most and 2) ill-conditioned
random low-rank matrices whose singular values are exponen-
tial decay, and the CN reaches 200 at most. Each low-rank
matrix is set as an m×n random matrix with rank r generated
like [9], and two matrices ML ∈ R

m×r and MR ∈ R
n×r are

generated with independent and identically distributed stan-
dard Gaussian entries. Then, the well-conditioned matrix X̂
with rank r is gained by X̂ = MLMT

R. The set of observa-
tions � is uniformly sampled from all sets of cardinality |�|
at random. The degree of freedom (DOF) of m × n matrix
with rank r is r(m + n − r). The over-sampling (OS) coef-
ficient is defined as OS = |�|/r(m + n − r). Thus, sampling
rate (SR) is determined by SR = OS ∗ DOF/mn. Additionally,
because the synthetic data are in noiseless case, we set that
each algorithm is terminated when the cost function f̄ is below
tol = 10−20 or the number of iterations exceeds the given
maximum.

First, we perform the experiment on the small well-
conditioned problem which is a 300 × 300 matrix with

rank = 5, OS = 5 and CN = 1.2936. Actually, this
experiment can effectively help choose some appropriate
algorithms for the comparison in follow-up experiments.
The convergence behavior is illustrated over one random
independent instance in Fig. 3. From Fig. 3, it is seen that
the convergence performance of the trace norm minimization
algorithms is roughly inferior to the manifold optimiza-
tion algorithms except OptSpace. Particularly, our proposed
RiemSScRNCG method outperforms other compared man-
ifold optimization methods in aspect of time and number
of iterations. Additionally, like the block-coordinate descent
algorithm, LMaFit has a smaller computational cost at each
iteration and it has a better convergence than the trace norm
minimization algorithms. Thus, LMaFit is always preserved in
the follow-up experiments.

Second, the experiment of the large well-conditioned prob-
lems is implemented, and its results are shown in Table I. In
Table I, we report on the mean running time and the number of
iterations18 over five random independent instances, where the
best results are bolded and the second best ones are italicized.
Since the numerical computational problem emerges when the
adaptive step size strategy is applied in ScGrassMC, we also
adopt the exact linear search during the whole algorithm pro-
cedure for ScGrassMC, denoted as ScGrassMC(EL). Note that
OptSpace and trace norm minimization algorithms are not
included, because their computational costs are unacceptable
on large matrix completion compared with other methods.

From Table I, it is obvious that RiemSScRNCG spends the
least time compared with other methods, even if its number
of iteration (the second best) is more than ScGrassMC(EL)
(the best of all). Moreover, we also find that Right inv.
GHT gains the worst results in methods of Riemannian
structure from small-scale to large-scale problems, but it is
still superior to LRGeomCG. It indicates the metric with
Riemannian structure is better than the Euclidean metric.
In addition, the convergence performance of qGeomMC and
ScGrassMC(EL) is better than Right inv. GHT , LMaFit,
UBVT , and UYT except RiemSScRNCG, which indicates the
scaling information is also of superiority and indispensabil-
ity. In short, RiemSScRNCG obtains the least computational

18In Tables I and II, the number in the parenthesis shows the number of
stopping the algorithm when the maximum of the iterative number is arrived
or the local minimum is obtained, and its higher value indicates the worse
global convergence performance.
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TABLE II
MEAN RESULTS FOR FIVE RANDOM INSTANCES WITH DIFFERENT CONDITION NUMBERS

cost on well-conditioned low-rank matrix completion problems
(rank = 10) from small-scale to large-scale, which verifies
that RiemSScRNCG is more efficient than other state-of-the-
art algorithms, and it is attribute to consider the Riemannian
geometry structure behind the full-rank matrix factorization
model and the scaling information derived from the hessian
information of the cost function of fixed low-rank matrix
completion problem simultaneously in RiemSScRNCG.

Third, for the ill-conditioned random low-rank matrices, let
Û = qf(ML) and V̂ = qf(MR) be semi-orthogonal matrices,
where qf(•) denotes the Q factor in the QR factorization, and
�̂ is a r × r diagonal matrix whose diagonal elements are the
singular values sorted by descending order. Specifically, the
singular values obey exponential decay and are obtained by
�̂ = 100 ∗ diag(logspace(− log 10(CN), 0, r)) in MATLAB,
where CN is given a large number. Thus, the matrix X̂ =
Û�̂V̂T is a random ill-conditioned matrix with rank r. In this
experiment, CN is 200, and the detailed numerical results are
reported in Table II.

From Table II, we find that most algorithms except
RiemSScRNCG and qGeomMC are unable to obtain the global
optimum when the maximum number of iterations is arrived.
It illustrates that the scaling information of the cost func-
tion of the specific problem has played an important role in
obtaining an optimal solution and the good convergence for
ill-conditioned problems, because it can be interpreted as an
adaptive preconditioning step. Thus, RiemSScRNCG and qGe-
omMC which consider the scale information can obtain the
global optimum for most problems. But, we can still see that
RiemSScRNCG outperforms qGeomMC and obtains the best
performance, which indicates combining Riemannian struc-
ture with scaling information is better than only using scaling
information. Although ScGrassMC and ScGrassMC(EL) also
consider preconditioning step, they are unable to get the opti-
mum solution of problems due to use the Euclidean metric,
which also indicates that the Riemannian metric is more suit-
able and effective than the Euclidean metric. Additionally,
the huge-scale well-conditioned fixed low-rank matrix comple-
tion problem and the large-scale ill-conditioned fixed low-rank
matrix completion problem are also experimented, and the
experimental results illustrates that the proposed method can
obtain the best performance compared with other methods,
detailedly shown in the supplementary material.

For our proposed Riemannian metric, it is constructed by
combining the Riemannian geometry structure and the scaling

Fig. 4. Convergence behaviors of RiemSScRNCG with the different param-
eters for fixed low-rank matrix completion. (a) Large-scale well-conditioned
problem. (b) Small-scale ill-conditioned problem.

information based on a parameter α, and we also find using
a proper parameter enables RiemSScRNCG to obtain a bet-
ter convergence performance in experiments. Thus, finally, we
make an analysis for the parameter α (α ∈ [0, 1]) in this part,
where α is given {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. In
addition, qGeomMC and Right inv. GHT are also implemented
in this experiment, because they are essentially equivalent to
two special cases of RiemSScRNCG, corresponding to α = 0
and α = 1, respectively. Fig. 4 shows experimental results of
the large-scale well-conditioned problem and the small-scale
ill-conditioned problem, respectively, and a clearer version is
shown in the supplementary material.

From Fig. 4(a), it is obviously seen that the convergence
behavior of RiemSScRNCG is superior to qGeomMC and
Right inv. GHT , when α = {0.2, 0.3, 0.4}. In Fig. 4(b), when
α = {0.1, 0.2, 0.3}, RiemSScRNCG is superior to other two
methods. In experiments, we find that the higher the weight
value of scaling information is than the Riemannian geome-
try structure, the more it will improve convergence efficiency
for ill-conditioned problems, which means a small α is bet-
ter. Meanwhile, the Riemannian geometry structure is also not
ignored. For well-conditioned problems, the requirement of the
scaling information is not more urgent than the former. Hence,
in order to simplify the parameter choice, α = 0.1 is adopted
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TABLE III
MEAN RESULTS FOR TEN RANDOM INDEPENDENT PARTITIONS ON FOUR DATASETS

for ill-conditioned synthetic datasets, real-word recommenda-
tion datasets, image and video datasets, and α = 0.2 is adopted
for well-conditioned synthetic datasets in our experiments.

B. Experiments on Real-World Recommendation System

In this part, four real-world large-scale collaborative fil-
tering datasets are applied to verify the performance of
RiemSScRNCG.

1) The Epinions Dataset19 [49], it comes from the
Epinions.com website and contains 664 824 reviews
from 49 290 users on 139 738 different items.

2) The MovieLens-10M Dataset,20 it comes from the online
movie recommender service MovieLens and contains
10 000 054 ratings from 71 567 users on 10 681 movies.

3) The Jester-All Dataset,21 it derives from the Jester
Joke Recommender System and contains 4.1 million
continuous ratings of 100 jokes from 73 496 users.

4) The Netflix Prize Dataset,22 it contains 100 480 507
ratings from 480 189 users on 17 770 movies.

In real-world problems, the datasets are very noisy. Unlike
noiseless cases in which the value of the cost function is
as the stopping criterion, we terminate the iteration via a
small relative residual ‖P�(X) − P�(X̂)‖F ≤ ε1‖P�(X̂)‖F

here. However, while the matrix that will be recovered is
not exact low-rank, the small relative residual is not ade-
quate. According to the Armijo convergence theorem [50],
Armijo condition [51], and the convergent analysis of
Riemannian conjugate gradient method [52], it is known that
RiemSScRNCG monotonically decreases in the value of cost
function (22). Thus, we also provide a difference in cost func-
tion values as the stopping condition, |�|(f (Xi) − f (Xi+1)) ≤
ε2‖P�(X̂)‖2

F , where f (Xi) = (1/|�|)‖P�(Xi) − P�(X̂)‖2
F ,

and ε1 and ε2 are the predefined tolerances. In the performance

19http://www.trustlet.org/wiki/Downloaded_Epinions_dataset
20http://www.grouplens.org/datasets/movielens/
21http://www.ieor.berkeley.edu/∼goldberg/jester-data/
22http://archive.ics.uci.edu/ml/noteNetflix.txt

comparison, the root-mean-square error (RMSE) and the
mean absolute error (MAE) of the testing dataset are
used as the criterions in real-world applications, defined as
RMSE = (1/

√|�test|)‖P�test(X
∗) − P�test(X̂)‖F and MAE =

(1/|�test|) ∑ |P�test(X
∗
ij) − P�test(X̂ij)|, where X̂ denotes the

original matrix, P�test(X̂) indicates the independent observed
entries for testing, X∗ is the recovered matrix, and �test
expresses the index set of the testing partition of observed
entries, i, j ∈ �test. The training and testing partitions of the
datasets are divided similarly to [21], [53], and [54]. In this
experiment, the rank of the recovered matrix X∗ is fixed at 10,
ε1 is set to 10−5, ε2 is set to 10−6, the maximum number of
iterations is 500, and α = 0.1 for RiemSScRNCG.

In Table III, we report the RMSE and MAE of nine algo-
rithms over ten random independent 80/20 training/testing
partitions. Obviously, it is seen that RiemSScRNCG performs
best in terms of RMSE, MAE, and the computational time
compared with other methods, and it is inferior to LMaFit and
ScGrassMC only on the computational time of Epinions and
Netflix, respectively. We also find that RMSE and MAE for
Jester-All are higher than other three datasets, which indicates
that the Jester-All problem may not be a good test problem for
low-rank matrix completion, because the matrix to be recov-
ered has only 100 columns to begin with. However, Right inv.
GHT gains a better performance than other methods except
RiemSScRNCG for Jester-All, which illustrates the metric
with Riemannian structure plays an important role in opti-
mization on this dataset. Thereby, RiemSScRNCG can gain
the best performance for Jester-All. Additionally, we find that
LMaFit has the least computational cost on the Epinions, but
its performance is worse than others, and this phenomenon
also emerges on the Netflix for ScGrassMC, which is caused
because they may fall into the local minimum.

C. Experiments on Image and Video Recovery

In this part, we apply nine algorithms for grayscale image
and color video recovery (similar to [10] and [19]) to verify

http://www.trustlet.org/wiki/Downloaded_Epinions_dataset
http://www.grouplens.org/datasets/movielens/
http://www.ieor.berkeley.edu/~goldberg/jester-data/
http://archive.ics.uci.edu/ml/noteNetflix.txt
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TABLE IV
IMAGE RECOVERY RESULTS [PSNR (TIME COST/S)] MEASURED BY THE PEAK SIGNAL-TO-NOISE RATIO (dB)

TABLE V
IMAGE INPAINTING RESULTS [RERR (TIME COST/S)] MEASURED BY RELATIVE ERROR

Fig. 5. Results of videos recovered by different algorithms on the Xylophone (measured by rel.err and time).

the performance. The task is to complete the missing pixel
values of an image or a video at given pixel values whose
positions have been determined. Specifically, when the missing
pixel positions are not randomly distributed, it is also called
inpainting. If the image or video is of low-rank or numerical
low-rank, that problem can be solved as a matrix completion
problem. The relative error of recovered image or video is
given by rel.err = ‖X∗ − X̂‖F/‖X̂‖F , and the stopping tol-
erances are the same as in Section VI-B. In experiments, we
set α = 0.1 for RiemSScRNCG. For the image recovery, the
maximum number of iterations is set to 300, and it is set to
250 for the video recovery. Note that SVP is added instead of
UBVT in this experiment, because UBVT falls into a serious
numerical problem on image and video recovery.

For the image recovery, we use the benchmark images23

which include Barbara, Boat, Cameraman, Lena, Man,
Mandrill, and Peppers, and the size of each image is 512×512.
In experiments, two situations are considered: one is the gen-
eral image recovery, where the image is randomly masked on
50% pixels and the remaining ones are applied as the obser-
vations; the other is inpainting, where the benchmark image
is masked nonrandomly and the number of affected pixels is

23http://www.utdallas.edu/%7Ecxc123730/mh_bcs_spl.html

seldom large. We perform ten random independent instances
and obtain the mean of the peak signal-to-noise ratio (PSNR)
and the relative error (RERR). Table IV presents the numerical
results of image recovery in terms of the PSNR and the mean
costs of time, and Table V presents the numerical results of
image inpainting in terms of the relative error and the mean
costs of time.

From Tables IV and V, it is obviously seen that
RiemSScRNCG can obtain better performance for most test
images than other compared methods, while only qGeomMC
gains the best results for Cameraman and Man images
in Table IV and only LRGeomCG gains the best results
for Man images in Table V. Actually, RiemSScRNCG also
gains the second lowest error which is only slightly worse
than qGeomMC and LRGeomCG for Cameraman and Man
images. Moreover, the results of time cost also illustrate that
RiemSScRNCG can obtain lower computational cost on most
images than others. In compared methods, only LMaFit has a
better computational efficiency in Boat and Man images than
RiemSScRNCG.

For the color video recovery, we use the benchmark video
sample which comes from the MATLAB Image Processing
Toolbox, shortened from the Xylophone in the following parts.
In fact, each frame of the video is represented by an image

http://www.utdallas.edu/%7Ecxc123730/mh_bcs_spl.html
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stored in the RGB format, and thus the Xylophone video is
reshaped into a 76 800 × 423 matrix in our experiment. In
our experiment, 50% of the entries of the Xylophone are ran-
domly marked, and other entries are used for the observations.
In addition, the rank of the recovered matrix X∗ is fixed at 80.
Fig. 5 shows the results of the color video frames recovered by
nine algorithms on the Xylophone video, where the numerical
performance of each algorithm is shown at the bottom of its
picture. Visually, it is seen that RiemSScRNCG and other algo-
rithms (except Right inv. GHT and UYT ) can not only restore
the low-rank part (static part, such as background) of the
video but also recognize the detailed part (moving part, such
as hands) while recovering the low-rank part of video quite
successfully. But, RiemSScRNCG obtains the best numeri-
cal performance (the lowest error 6.14e−2 and the least time
173.949 s) and computational efficiency compared with others,
when it gains the roughly same visual effect as qGeomMC and
LMaFit.

VII. CONCLUSION

Inspired by the deficiency derived from considering only
the Riemannian geometry structure or the scaling informa-
tion, we propose a new Riemannian metric by simultaneously
considering the Riemannian geometry structure and the scal-
ing information on the horizontal subspace of the quotient
manifold for fixed low-rank matrix completion in this paper.
Meanwhile, based on this metric, we also propose an effi-
cient algorithm under the framework of Riemannian nonlinear
conjugate gradient method. Experimental results illustrates the
proposed method outperforms the compared state-of-the-art
methods, which demonstrates that simultaneously considering
them is more effective than only considering one. By using
our proposed method, more general practical problems can
be solved to obtain better performance with more efficient
way. Moreover, our method can be expanded to Riemannian
similarity learning.

Although it is validated that the proposed metric can obtain
better performance, there is still several worthy studied issues
starting from the proposed method in the future. For exam-
ples, how to adaptively choose a proper parameter α, how
to develop the second order optimization algorithm on the
Riemannian quotient manifold equipped with the proposed
Riemannian metric, how to construct a new metric with
both the Riemannian geometry and the scaling information
based on a nonlinear way, and how to combine discriminative
information.

APPENDIX

PROOF OF PROPOSITION 1

Proof: Given an arbitrary smooth function
f : R

m×r∗ × R
n×r∗ /GLr → R on the Riemannian quo-

tient manifold X , by using the quotient map π , a new
function f̄ = f ◦ π : R

m×r∗ × R
n×r∗ → R on the total space

X̄ is also smooth. Reviewing the mapping (8) mentioned in
Section II, we have l : (G, H) → (GD−1, HDT),∀D ∈ GLr.
By virtual of π(l(G, H)) = π(G, H) for any (G, H), we
get f̄ (l(G, H)) = f̄ (G, H) for any (G, H). Let us take the

differential of both sides

Df̄ (l(G, H))
[

Dl(G, H)
[(

ζ̄G, ζ̄H
)]] = Df̄ (G, H)

[(

ζ̄G, ζ̄H
)]

.

(24)

From the definition of (ζ̄G, ζ̄H), we know

Df̄ (G, H)
[(

ζ̄G, ζ̄H
)] = Df (π(G, H))

[

ζπ([G,H])
]

.

Furthermore, under the known condition of Proposition 1, we
have

Dl(G, H)
[(

ζ̄G, ζ̄H
)] =

(

ζ̄GD−1, ζ̄HDT
)

, ∀D ∈ GLr.

Then, we are going to plug them into (24) and obtain

Df̄
(

GD−1, HDT
)[(

ζ̄GD−1, ζ̄HDT
)]

= Df
(

π
(

GD−1, HDT
))[

ζπ([G,H])
]

.

This equation is hold for any smooth function f , we educe that

Dπ
(

GD−1, HDT
)[(

ζ̄GD−1, ζ̄HDT
)]

= ζπ([G,H]).

By the definition of horizontal lift, we find that
(ζ̄GD−1, ζ̄HDT) is the unique horizontal lift of ζπ([G,H])
at (GD−1, HDT). Specifically, by applying the Lemma 2
at point (GD−1, HDT) and the horizontal tangent vector
(ζ̄GD−1, ζ̄HDT), we have

(

GD−1
)T

ζ̄GD−1

(

α

((

GD−1
)T(

GD−1
))−1

)

+
(

GD−1
)T

ζ̄GD−1
(

(1 − α)
((

HDT)T
)(

HDT))

= D−TGT ζ̄G

(

α
(

GTG
)−1 + (1 − α)HTH

)

DT

−
(

(1 − α)
(

GD−1
)T(

GD−1
))(

ζ̄HDT
)T

HDT

−
(

α
((

HDT)T
HDT

)−1
)

(

ζ̄HDT)T
HDT

= −D−T
(

(1 − α)GTG + α
(

HTH
)−1

)

ζ̄ T
HHDT .

Since

D−TGT ζ̄G

(

α
(

GTG
)−1 + (1 − α)HTH

)

DT

= −D−T
(

(1 − α)GTG + α
(

HTH
)−1

)

ζ̄ T
HHDT

then we get

GT ζ̄G

(

α
(

GTG
)−1 + (1 − α)HTH

)

= −
(

(1 − α)GTG + α
(

HTH
)−1

)

ζ̄ T
HH.

Obviously, (ζ̄GD−1, ζ̄HDT) is the unique horizontal lift of
ζπ([G,H]) at (GD−1, HDT). Using the known condition

(

ζ̄GD−1 , ζ̄HDT
) =

(

ζ̄GD−1, ζ̄HDT
)

, ∀D ∈ GLr

and the above results, we have

ḡaddi
(G,H)

((

ζ̄G, ζ̄H
)

, (η̄G, η̄H)
)

= ḡaddi
(GD−1,HDT)

((

ζ̄GD−1 , ζ̄HDT
)

,
(

η̄GD−1 , η̄HDT
))

.
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