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Abstract. Object reconstruction from 3D point clouds has achieved
impressive progress in the computer vision and computer graphics research
field. However, reconstruction from time-varying point clouds (a.k.a. 4D
point clouds) is generally overlooked. In this paper, we propose a new
network architecture, namely RFNet-4D, that jointly reconstruct objects
and their motion flows from 4D point clouds. The key insight is that
simultaneously performing both tasks via learning spatial and temporal
features from a sequence of point clouds can leverage individual tasks,
leading to improved overall performance. To prove this ability, we design
a temporal vector field learning module using unsupervised learning
approach for flow estimation, leveraged by supervised learning of spatial
structures for object reconstruction. Extensive experiments and analyses
on benchmark dataset validated the effectiveness and efficiency of our
method. As shown in experimental results, our method achieves state-of-
the-art performance on both flow estimation and object reconstruction
while performing much faster than existing methods in both training
and inference. Our code and data are available at https://github.com/
hkust-vgd/RFNet-4D.
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1 Introduction

Literature has shown several breakthroughs in deep learning for reconstruction
of 3D models from point clouds. Recently, the research community has seen
great successes in neural representations using implicit fields [27,32,5,28], which
pave an effective way on how 3D data can be represented by neural networks.
Unlike traditional representations that are often realised in discrete forms (e.g.,
discrete grids of pixels in image representation, discrete grids of voxels in 3D
object representation), the neural implicit representation parameterises a signal
as a continuous function via a neural network. This function maps a signal
from its original domain, which can be queried at any resolution, to an output
domain that captures some properties of the query. Most existing methods focus
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on neural representation of 3D data in static conditions. However, in reality,
real-world objects exist in a dynamic environment that changes over time and
space, and thus cannot be well modelled using implicit representations applied
to static shapes. Approaches for 4D reconstruction (i.e., reconstruction of a 3D
object over time) have been explored but they often need expensive multi-view
settings [22,7,29,30]. These settings rely on a template model (of the object) with
fixed topology [1,18,40,47], or require smooth spatio-temporal input [33,42], and
thus limiting their applicability in practice.

To enable object reconstruction directly from 4D data without predefined
templates, OFlow [31], a pioneering method for 4D reconstruction, was developed
to calculate motion fields of 3D points in a 3D point cloud in space and time
to implicitly represent trajectories of all the points in dense correspondences
between occupancy fields. To learn the motion fields in both space and time
domain, OFlow made use of a spatial encoder to learn the spatial structure of
the input point cloud and a temporal encoder to learn the temporal changes of
the point cloud in time. Despite impressive reconstruction results, this paradigm
has a number of drawbacks. First, its spatial encoder does not take geomet-
ric attributes from numerous frames into consideration, impairing the capacity
to precisely reconstruct geometric surfaces. Neither does its temporal encoder
take into account temporal correspondences, which are critical for accurately
capturing temporal dynamics. Second, errors in prediction of temporal conti-
nuity and reconstructed geometries are accumulated by integral of estimated
instantaneous findings. Third, OFlow is trained using supervised learning. This
requires correspondence labelling for all 3D points across frames in training data,
leading to high labelling cost and low scalability. Fourth, the method exhibits
low computational efficiency in both training and inference phase. This is due
to expensive computations required to sequentially determine trajectories of 3D
points throughout time by solving complex ordinary differential equations.

To address the aforementioned challenges, we propose a network architecture,
namely RFNet-4D, for 4D reconstruction and flow estimation of dynamic point
clouds. Our key idea is to jointly perform two tasks: 4D reconstruction and
flow estimation with an intention that each task can leverage the other one to
improve the overall performance. Specifically, our network takes a sequence of
3D point clouds of an object over time as input, then encodes the point clouds
into spatio-temporal representations using a compositional encoder. These spatio-
temporal representations are formed inclusively. In particular, the spatio-temporal
representation of a point cloud at a time step is calculated from the spatial layout
of points in that point cloud and the temporal changes of the points in the point
cloud throughout time. The spatio-temporal representations are then decoded
by a joint decoder which jointly reconstructs the object and predicts a motion
vector for each point in the reconstructed object throughout time. The entire
network can be trained end-to-end, where the reconstruction and flow estimation
task are trained with supervised and unsupervised learning, respectively. Our
method also allows fast computations of spatial and temporal features as those
computations can be performed in parallel. This is another advantage of our
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Fig. 1: Summary of our method. Given a sequence of time-varying 3D point
clouds (first row), we jointly reconstruct corresponding 3D geometric shapes
(second row) and estimate their motion fields for every point cloud (third row).

method, compared with OFlow which estimates the motion flows sequentially
and thus often experiences time lags. We illustrate several results of our method
in Fig. 1. In summary, the contributions of our work are as follows:

– RFNet-4D: a network architecture for joint object reconstruction and flow
estimation from a sequence of time-varying 3D point clouds.
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– A joint learning method for training the proposed RFNet-4D using both
supervised and unsupervised learning, and in both forward and backward
time direction. To the best of our knowledge, this learning mechanism is
novel, and its benefit is verified throughout experiments.

– Extensive experiments and analyses that prove the effectiveness and efficiency
of our proposed method on two tasks: 4D reconstruction and flow estimation.

2 Related Work

3D Reconstruction. Numerous studies have been conducted with the goal
of reconstructing a continuous surface from a variety of input, including RGB
images [39,46,19], point clouds [20]. Thanks to advances in deep learning, recent
3D object reconstruction approaches have resulted in significant progress. Early
attempts represent reconstructed objects in regular grid of 3D voxels [45,11] or
point clouds [35,10]. However, those representations cannot well capture surface
details and suffer from low resolutions. Alternatively, there are methods, e.g.,
[44,23,17] reconstructing triangular meshes (including vertices and faces) of 3D
objects. In these methods, an initial template with fixed topology is employed
and the reconstruction is performed using regression. For surface representation,
several methods focus on learning an implicit field function that allows more
variable topology in reconstructed objects [6,4,9,16].

To extend the ability of implicit functions on representations other than
traditional forms (i.e., voxels, points, meshes), occupancy maps [27,34] and
distance fields [32,4] are proposed. An occupancy map of a 3D point cloud
contains indicators that indicate being foreground of points in the 3D space. A
distance field provides the distance from every point to its nearest surface. Since
the implicit function models objects in a continuous manner, more information
is preserved and more complicated shapes can be well described. For instance,
Occupancy Network in [27] described a 3D object using continuous indicator
functions that indicate which sub-sets of 3D space the object occupies, and an
iso-surface retrieved by employing the Marching Cube algorithm [25].

4D Reconstruction. Despite being less studied compared with 3D reconstruc-
tion, literature has also shown recent attentions of the research community to 4D
reconstruction, i.e., reconstruction of a sequence of 3D objects from time-varying
point clouds [22,29,30]. In this section, we limit our review to only learning-based
4D reconstruction methods.

A crucial component in 4D reconstruction is motion capture and modelling.
Niemeyer et al. [31] introduced a learning-based framework that calculates the
integral of a motion field specified in space and time to implicitly represent the
trajectory of a 3D point to generate dense correspondences between occupancy
fields. Jiang et al. [15] proposed a compositional representation for 4D capture, i.e.,
a deformable representation that encloses a 3D shape and velocity of its 3D points
over time. Such representation was composed of encoder-decoder architectures.
Specifically, to simulate the motion in time-varying 3D data, a neural Ordinary
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Differential Equation was trained to update the starting state of motion based on
a learnt motion representation, and a decoder was used to reconstruct a 3D model
at each time step using a shape representation and the updated state. They also
introduced an Identity Exchange Training technique to motivate their system to
learn how to decouple each encoder-decoder successfully. Tang et al. [38] proposed
a pipeline for determining the temporal evolution of the 3D shape of the human
body using spatially continuous transformation functions between cross-frame
occupancy fields. By explicitly learning continuous displacement motion fields
from spatio-temporal shape representations, the pipeline aims to construct dense
correspondences between projected occupancy fields at different time steps.

Motion Transfer. Traditional techniques for 3D pose transfer often use discrete
deformation transfers. An example of mesh deformation is described in [43], where
spatially adaptable instance normalisation [14] was used to modify 3D meshes.
However, this method requires a dense triangular mesh of an object to be given
in advance, while there is specific mechanism to depict continuous flows in both
spatial and temporal domain.

3D motion transfer is another technique for creating 3D objects from a
pair of source and target object sequences. It operates by causing the target
object sequence to undergo the same temporal deformation in the source object
sequence. This technique can be applied to model continuous transformation of
an object’s pose over time. For instance, OFlow [31] transmitted motion across
sequences of source and target human models by applying motion field-based
representations to the targets in a predetermined manner. However, since OFlow
does not explicitly differentiate the representations of pose and shape, we found
that it only produces reasonable motion transfer results when the identities and
initial poses of both the source and target objects are similar.

Shape Correspondence Modelling. Modelling of point-to-point correspon-
dences between two 3D shapes is a well-studied topic in computer vision and
computer graphics [2]. The goal of modelling time-varying occupancy fields is
strongly related to the goal of field-based deformation [26], which we have previ-
ously discussed. However, most of these works describe the motion fields only
on object surfaces. To better describe the motion flow, we argue to model the
correspondences between 3D shapes in the entire 3D space.

When modelling the growth of a signed distance field, Miroslava et al. [37]
chose to implicitly provide the correspondences rather than explicitly yielding
them. They optimised an energy function capturing the similarity between
the Laplacian eigenfunction representations of the input and the target shape.
However, we found that their method is sensitive to noise, probably due to lack
of capability of providing correspondences accurately from signed distance fields.
In contrast, we learn the rich correspondences between time-varying occupancy
fields based on a intuitive insight, that the occupancy values of points are always
invariant during the temporal evolution of the occupation field.
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Fig. 2: Overview of our method. An input 3D point cloud sequence is fed
into a spatio-temporal encoder to extract spatio-temporal representations. The
representations are then passed via two distinct decoders, occupancy and motion
decoders. In each data frame, the occupancy decoder aims to predict an occupancy
field of the point cloud in the frame. Simultaneously, the motion decoder predicts
the correspondences between points in the current frame and its preceding frame.

3 Our Method: RFNet-4D

3.1 Overview

Our network takes as input a sequence of sparse, incomplete, and noisy 3D point
clouds {Pt|t = 1, ..., T} where T is the length of the sequence, and each point
cloud Pt is a set of 3D locations. Our aim is to simultaneously perform the
following tasks:

– Reconstruct a sequence of occupancy maps {Ot|t = 1, ..., T} where each Ot

is an occupancy map of a point cloud Pt, i.e., Ot(p) = 1 if p is a 3D point
on the reconstructed surface of Pt, and Ot(p) = 0, otherwise;

– Estimate a sequence of vector fields {Vt|t = 1, ..., T} where each Vt is a
3D vector field capturing motion flows of reconstructed points of Pt, i.e.,
Vt(p) ∈ R3 represents the motion flow of a reconstructed point p at time
step t given a point cloud Pt.

Both tasks benefit by a compositional encoder that learns spatio-temporal
representations from time-varying point clouds. The temporal features contained
in these spatio-temporal representations capture holistic motion information and
are computed once on the entire input point cloud sequence. This allows fast
computations in following operations as spatio-temporal data can be processed at
any arbitrary frame. The spatio-temporal representations are processed by a joint
decoder including two decoders, each of which extracts relevant information for
its downstream task (i.e., reconstruction and flow estimation). These decoders do
not operate independently but co-operate closely to fulfill their tasks. To further
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exploit the benefit of temporal information, we couple the reconstruction and
flow estimation task in both forward and backward time direction. We present an
overview of our method in Fig. 2. We describe main components of our method
in the following sections.

3.2 Compositional Encoder

The compositional encoder includes a temporal encoder and a spatial encoder.
There exist several manners to encode 4D point clouds. For instance, Liu et
al. [24] applied spatio-temporal neighbourhood queries in representing 4D point
clouds. However, this method requires high computational complexity. Inspired
by the success and efficiency of the point cloud representation used in OFlow [31]
and LPDC [38], we adopt the parallel ResNet [13] variant of PointNet [36] for
both the spatial and temporal encoder (see Fig. 3). These encoders are basically
similar in their architectures. The difference between them is that while the
spatial encoder processes each point cloud Pt individually at a time t to generate
a representation st, the temporal encoder acquires the whole point cloud sequence
to calculate a holistic temporal representation h once. These spatial and temporal
representations are finally concatenated to form a spatio-temporal representation
et that encodes the geometric information of a point cloud Pt in space with regard
to its temporal changes (see Fig. 2). Our encoders share similar structures with the
encoders in LPDC [38]. However, instead of using a complicated fusion method,
we empirically found that a simple concatenation of the spatial and temporal
features is good enough to effectively create spatio-temporal representations.

Since h is computed once on the entire input point cloud sequence, et can be
extracted at any arbitrary time step t without time lags, as opposed to methods
processing point clouds sequentially, e.g., OFlow [31]. Thanks to this advantage,
the processing time RFNet-4D can be optimised by calculating spatio-temporal
representations et in parallel.

3.3 Joint Decoder

The joint decoder takes a spatio-temporal representation et and the original
point cloud sequence as input, then passes this input into two decoders (tem-
poral decoder and occupancy decoder) to perform flow estimation and object
reconstruction. Our temporal decoder and occupancy decoder are built upon the
architecture from LPDC [38]. However, instead of decoupling the decoders as
in [38], we hypothesized that jointly addressing two tasks by sharing information
between corresponding decoders can leverage individual tasks. As a consequence,
the close collaboration of flow estimation and object reconstruction allows some
relaxation in the supervision need.

The temporal decoder operates as follows (see Fig. 4(a)). We first extract
a spatio-temporal representation e1 for the first point cloud P1 from the input
sequence, using the compositional encoder. For each following point cloud Pt, we
compute its spatio-temporal representation et, then concatenate et with e1. This
concatenated representation captures temporal changes of Pt in relative to P1,
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Fig. 3: Architecture of the spatial/temporal encoder. The input dimension
d is set accordingly to a corresponding encoder. In particular, d = 3 (i.e., (x, y, z)-
coordinates) for the spatial encoder and d = 4 (i.e., (x, y, z)-coordinates and
time variable) for the temporal encoder. ⊕ indicates a concatenation operation.
Output of the spatial and temporal encoder are st and h, respectively.

and is again concatenated with all points in Pt to be processed by a series of five
ResNet residual blocks [13]. Each block consists of two fully connected layers
with skip connections and ReLU activation functions [12]. The outcome of these
blocks is a feature map, namely ft. This feature map is finally passed to a fully
connected layer, returning a motion field Vt describing the motion of Pt.

The occupancy decoder is slightly different from the temporal decoder (see
Fig. 4(b)). Also different from all existing methods, our occupancy decoder works
collaboratively with the temporal decoder. Particularly, input for the occupancy
decoder to reconstruct the object at time step t includes a point cloud Pt, a
spatio-temporal representation et (obtained from the compositional encoder),
and a flow feature map ft (returned by the temporal decoder). The point cloud
Pt is first processed by a fully connected layer to extract a feature map. Similarly,
the spatio-temporal representation et is fed to two different fully connected layers
to obtain feature maps β and γ. These output feature maps (from Pt and et) are
passed to a series of five residual blocks, similar to those used in the temporal
decoder. Following ONet [27], we apply Conditional Batch Normalization (CBN)
introduced in [8,41] to β and γ. Finally, the flow feature map ft is injected into
the occupancy decoder to produce an occupancy map Ot(p), where Ot(p) = 1 if
the point p belongs to the object at time step t, and Ot(p) = 0 otherwise.

3.4 Joint Learning

Our RFNet-4D is trained by jointly performing two optimisation processes:
unsupervision for flow estimation and supervision for object reconstruction.
Existing works train flow estimation using supervised learning [10,27,31,38,15],
requiring fully annotated point correspondences in training data. In this paper,
we propose to learn point correspondences in a point cloud sequence via an
unsupervised manner, thus opening ways to new applications and more training
data. Specifically, let Vt be a motion field (i.e., a set of 3D vectors) at Pt, Vt is
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Fig. 4: Architecture of the temporal and occupancy decoder; ⊕ indicates
a concatenation operation. The temporal decoder returns both a motion field Vt

and a motion feature map ft, which is then inputted to the occupancy decoder.

estimated using the temporal decoder. We measure the correspondences between
points in Pt and Pt+1 via the Chamfer distance between Pt+1 and a translated
version of Pt made by Vt (i.e., Pt + Vt). We define our flow loss as follow,

Lflow =
∑
t

max

{
1

|Pt|
∑

p∈Pt+Vt

min
p′∈Pt+1

∥p− p′∥2,

1

|Pt+1|
∑

p′∈Pt+1

min
p∈Pt+Vt

∥p′ − p∥2
}

(1)

Reconstruction task can be trained using supervised approach. We use con-
ventional binary cross entropy (BCE) loss to measure the difference between
predicted occupancy maps and corresponding ground truth maps. Specifically,
we define our reconstruction loss as follow,

Lreconstruction =
∑
t

∑
p∈Pt

LBCE

(
Oi (p) , O

gt
i (p)

)
(2)

where Ogt
i represents the ground truth occupancy map of the point cloud Pt.

Finally, we use the following loss to train the entire RFNet-4D,

L = Lflow + λLreconstruction (3)

where λ is a hyper-parameter.
To further exploit the benefit of temporal information, we train our RFNet-4D

in both forward and backward direction in time. Particularly, we calculate the
holistic temporal representation h for two sequences {P1, ..., PT } (forward) and
{PT , ..., P1} (backward), and use h to encode the spatio-temporal representations
et in both forward and backward time direction. As shown in our experiments,
this training strategy improves the performance of our network in both object
reconstruction and flow estimation task.
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4 Experiments

4.1 Experimental Setup

Dataset. We trained and evaluated our method on the pre-processed data of
D-FAUST dataset [3], a benchmark dataset commonly used in state-of-the-art.
D-FAUST dataset contains raw-scanned and registered meshes for 129 sequences
of 10 human subjects (5 females and 5 males) with various motions such as
“shake hips”, “running on spot”, or “one leg jump”. We followed the train/test
split used in [31]. Specifically, we divided all the sequences in D-FAUST dataset
into three sets: training set (105 sequences), validation set (6 sequences), and
test set (21 sequences). Since each sequence is relatively long (with more than
1,250 time steps) and in order to increase the size of the dataset, we sub-sampled
each sequence into smaller sub-sequences of 17 to 50 time steps.

Implementation Details. We implemented our method in Pytorch. We adopted
Adam optimizer [21] where the learning rate γ was set to 10−4 and decay was
set to 5,000 iterations. We empirically set λ to 0.1 in our experiments. Our
RFNet-4D was trained with a batch size of 16, and on a single NVIDIA RTX
3090 GPU. We evaluated all the variants of our network (see Ablation study)
on the validation set for every 2,000 iterations during the training process, and
used the best model of each variant on the validation set for evaluation of the
variant on the test set. The training process was completed once there were no
further improvements achieved. For calculating the losses during training, we
randomly sampled a fixed number of 512 points in 3D space and time interval
for reconstruction loss, and uniformly sampled trajectories of 100 points for flow
estimation loss. More details can be found in our supplied code.

We also followed the evaluation setup used in [31]. Specifically, for each
evaluation, we carried out two case studies: seen individuals but unseen motions
(i.e., test subjects were included in the training data but their motions were not
given in the training set), and unseen individuals but seen motions (i.e., test
subjects were found only in the test data but their motions were seen in the
training set).

Evaluation Metrics. To measure the performance of 4D reconstruction, we
applied the common volumetric IoU (Intersection over Union) and the Chamfer
distance reflecting the coincidence of reconstructed data and ground-truth data.
To evaluate flow estimation, we used ℓ2-distance to measure the correspondences
between estimated flows and ground-truth flows.

4.2 Results

We report the performance of our RFNet-4D in two case studies in Table 1. As
shown in experimental results, our method performed better in the seen indi-
viduals case study, for both object reconstruction and flow estimation. However,
our method works consistently, and the differences in all performance metrics
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Methods
Seen Individuals
Unseen Motions

Unseen Individuals
Seen Motions

IoU↑ Chamfer↓
(×10−3)

Corres.↓
(×10−2)

IoU↑ Chamfer↓
(×10−3)

Corres.↓
(×10−2)

PSGN-4D [10] - 0.6189 1.1083 - 0.6877 1.3289

ONet-4D [27] 0.7712 0.5921 - 0.6827 0.7007 -

OFlow [31] 0.8172 0.1773 0.8699 0.7361 0.2741 1.0842

LPDC [38] 0.8511 0.1526 0.7803 0.7619 0.2188 0.9872

4DCR [15] 0.8171 0.1667 - 0.6973 0.2220 -

RFNet-4D 0.8547 0.1504 0.8831 0.8157 0.1594 0.9155

Table 1: Quantitative evaluation of our method and existing methods on seen
and unseen individuals test splits, in both reconstruction and flow estimation
task. We report the volumetric IoU (higher is better), Chamfer distance (lower is
better) and correspondence ℓ2 distance (lower is better). The notation ’-’ means
no results, e.g., PSDN-4D does not perform reconstruction, ONet-4D and 4DCR
do not predict point correspondences across time. For each evaluation metric,
best performance is highlighted.

between the two case studies are marginal. For instance, the IoU difference
between the two case studies is less than 4%, the differences in Chamfer distance
and ℓ2 correspondence between these case studies are about 0.009× 10−3 and
0.03× 10−2 respectively.

In addition to evaluation of our method, we also compared it with existing
methods including PSGN-4D [10], ONet-4D [27], OFlow [31], LPDC [38], and
4DCR [15]. For the previous works, we used their published pre-trained models
which had also been trained on the same training data from D-FAUST dataset.
Note that we also re-trained the previous models using their released source
code. However, we were not able to achieve the same results as reported in their
papers. We show comparison results in Table 1. It can be seen that RFNet-4D
outperforms all existing works in 4D reconstruction using both IoU and Chamfer
distance metrics. For flow estimation, RFNet-4D achieves comparable performance
with state-of-the-art on seen individuals, e.g., there is a slight difference (about
0.1× 10−2) in ℓ2-distance from the first ranked method (i.e., LPDC). However,
our RFNet-4D is trained using unsupervised fashion requiring no labels for
learning point correspondences, while existing works follow supervised paradigm.
Furthermore, as shown in Table 1, our method stands first in flow estimation on
unseen individuals sequences, showing its robustness to novel object shapes.

We visualise several results of our methods and existing ones in Fig. 5. To
illustrate these results, we apply the Multiresolution IsoSurface Extraction (MISE)
algorithm [27] and Marching Cubes algorithm [25] on reconstructed occupancy
maps to generate surface meshes. Compared with existing methods, our RFNet-
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4D achieves higher reconstruction quality with better geometry recovery, e.g.,
the reconstructed hands produced our method are more complete. In addition,
by coupling both spatial and temporal information, the poses of body parts,
e.g., the head, the lower arms, are well reserved by our method (in reference to
corresponding ground truth meshes). The results also show that our method is
better than existing works (e.g., OFlow, LPDC) in flow estimation, as clearly
shown in the predicted flows in the two hands. More qualitative results are
provided in the supplementary material.

4.3 Ablation Studies

In this section, we present ablation studies to verify different aspects in the design
of our model. In particular, we verified our joint learning of spatio-temporal
representations for 4D point clouds reconstruction and flow estimation, compared
with tackling these two tasks independently. We proved the improvement of
learning flows in both forward and backward direction. We compared different
distance metrics including the sliced Wasserstein distance (SWD) and the Haus-
dorff distance (HD), for the implementation of the flow loss in Eq. (1), and proved
that our choice, i.e., the Chamfer distance, is the best. We experimented our
model in both unsupervised and supervised fashion though it is intentionally
designed for unsupervised learning, showing the flexibility our model.

We summarise results of our ablation studies in Table 2. Note that, in each
ablation study, only one change was applied at a time while other settings
remained unchanged. For settings using either temporal or spatial information
(see the first two rows in Table 2), only the corresponding encoder and decoder
(i.e., spatial/temporal encoder and decoder) were activated while the counterpart
encoder and decoder were frozen. These settings correspond to solving the flow
estimation and reconstruction task separately. To experiment our RFNet-4D
with supervised learning for flow estimation, we followed the settings used in
OFlow [31]. In particular, we used ground-truth point correspondences from the
training data and ℓ2 distance for the motion loss, i.e., replacing the Chamfer
distance in Eq. (1) by ℓ2 distance. Note that, D-FAUST dataset is fully annotated
with point correspondences and thus also supports supervised learning. When
training our model in unsupervised manner, those point correspondences were not
used. Experimental results in Table 2 clearly confirm the design of our RFNet-4D
in both object reconstruction and flow estimation.

4.4 Complexity Analysis

In this section, we provide a complexity analysis on the memory footprint and
computational efficiency of our RFNet-4D and several existing models including
OFlow [31] and LPDC [38] (current state-of-the-art). In this experiment, we
trained all the models with a batch size of 16, using a sequence of 17 time steps
with consistent intervals. All the models were run on a single NVIDIA RTX 3090.
We report the memory footprint, training and inference time in Table 3. For the
training time, we computed the average of batch training time throughout the
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Variant IoU ↑ Chamfer (×10−3) ↓ Corr. (×10−2) ↓

RFNet-4D (only temporal flows) - - 1.5519

RFNet-4D (only spatial points) 0.7712 0.5921 -

RFNet-4D (only FW motion) 0.4988 2.4887 3.5868

RFNet-4D (SWD loss) 0.4305 4.4621 4.0711

RFNet-4D (HD loss) 0.7953 0.2103 1.3017

RFNet-4D (supervised) 0.8656 0.0927 0.8125

RFNet-4D (unsupervised) 0.8547 0.1504 0.8831

Table 2: Ablation studies on of various settings of our method. For each
evaluation metric, best performance is highlighted.

Method Memory Training (sec/iter) Inference (sec/seq)

OFlow [31] 3.96GB 4.65s 0.95s

LPDC [38] 11.90GB 2.09s 0.44s

RFNet-4D 14.20GB 1.33s 0.24s

Table 3: Space and time complexity of our method and existing ones.

first 100k iterations of training (seconds per iteration). For the inference time,
we reported the average time required to infer using a batch size of 1 for 1k test
sequences (seconds per sequence). As shown in Table 3, despite our model takes
larger memory footprint for training, its training time is approximately 3.5 times
and 1.6 times faster than that of OFlow and LPDC respectively. Similarly, our
model performs 1.9 times and 4 times faster than OFlow and LPDC in inference.
We found that OFlow take much longer time for training since OFlow makes use
of an ODE-solver requiring intensive computations and gradually increasing the
number of iterations to fulfill error tolerance.

5 Discussion and Conclusion

This paper proposes RFNet-4D, a network architecture for jointly reconstruction
of objects and estimation of temporal flows from dynamic point clouds. The
proposed network is built upon a compositional encoder effectively capturing
informative spatio-temporal representations for 4D point clouds, and a joint
learning paradigm leveraging sub-tasks to improve overall performance. We
extensively evaluated our proposed RFNet-4D and compared it with existing
works on benchmark dataset. Experimental results demonstrated the effectiveness
and efficiency of our method in comparison with current state-of-the-art.
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Fig. 5: Qualitative evaluation of our method and existing methods. The first
row includes (from left to right): input point cloud, ground truth mesh of entire
body, ground truth mesh of upper/lower body, and ground-truth flows (darker
vectors show stronger motions). Each following row represents corresponding
reconstruction and flow estimation results. Severe errors are highlighted.

There is also room for future research. First, we found that existing 4D
reconstruction methods often suffer from large displacements between data
frames. Second, their reconstruction quality tends to drop over time due to
accumulated errors. It is also worthwhile to study 4D reconstruction for different
types of objects, and with more challenging input data types, e.g., LiDAR point
clouds that are commonly used in autonomous driving applications.
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23. Liao, Y., Donné, S., Geiger, A.: Deep marching cubes: Learning explicit surface
representations. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2018) 4

24. Liu, X., Yan, M., Bohg, J.: MeteorNet: Deep learning on dynamic 3D point cloud
sequences. In: IEEE/CVF International Conference on Computer Vision (ICCV)
(2019) 7

25. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface con-
struction algorithm. SIGGRAPH Comput. Graph. (1987) 4, 11
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