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Abstract—Radiometrically calibrating nonlinear images from Internet photo collections makes photometric analysis applicable not only
to lab data but also to big image data in the wild. However, conventional calibration methods cannot be directly applied to such photo
collections. This paper presents a method to jointly perform radiometric calibration for a set of nonlinear images in Internet photo
collections. By incorporating the consistency of scene reflectance of corresponding pixels across nonlinear images, the proposed
method first estimates radiometric response functions of all the nonlinear images up to a unique exponential ambiguity using a rank
minimization framework. The ambiguity is then resolved using the linear edge color blending constraint. Quantitative evaluation using
both synthetic and real-world data shows the effectiveness of the proposed method.
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1 INTRODUCTION

OR a popular landmark, millions of pictures are recorded
Fand shared through the Internet. Such Internet images and
community photo collections serve as a comprehensive image
resource for computer vision research, because they contain
images captured from different viewpoints, at different times,
under different illumination conditions, and using diverse types of
cameras and settings. By exploring the interrelationship of these
images, geometric analyses such as geometric camera calibration
and 3D reconstruction, which are generally infeasible using a
single image, become tractable by establishing correspondences
across multiple images. Recent progress on structure from motion
(SfM) [8] and multi-view stereo (MVS) [9, 10] shows successful
applications using Internet photos.

Photometric analysis is another important problem for ana-
lyzing images from Internet photo collections organized by a set
of cameras and images sharing similar contents, and radiometric
calibration is a key prerequisite for photometric analysis. Many
computer vision problems, such as intrinsic image decomposi-
tion [11] and photometric stereo [12], when they are to be applied
to Internet photos, require input images to be radiometrically
linearized (linear images). However, a commercial camera usually
maps the scene radiance to its pixel values in a nonlinear manner
(nonlinear images) for compressing the dynamic range and an
aesthetic purpose. Such a mapping is unknown in most cases
and treated as business secrets of camera manufactures. The goal
of radiometric calibration is to estimate the camera’s (inverse)
radiometric response function so that the observed pixel values
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linearly relate the scene radiance.

Traditional radiometric calibration approaches capture a static
scene under various exposure times [1]. For an outdoor scene with
illumination changes, given a nonlinear image sequence from a
fixed viewpoint, the problem could also be solved by modeling
the image formation and using the assumption of consistent scene
albedo across linearized images [7]. Radiometrically calibrating
Internet photos shares a similar spirit to [7], but it exhibits further
challenge due to that (1) the scenes are captured from multiple
diverse viewpoints, (2) each nonlinear image is captured by an
unknown camera with unknown settings, e.g., white balance and
exposure times, and (3) a set of distinct response functions needs
to be estimated simultaneously.

Theoretically, single image based methods [13, 14] can be
applied to calibrate the response functions of all nonlinear images
in an Internet photo collection one by one. But the constraints they
rely on such as linear edge color blending [13] and symmetric
distribution of noise [14] can only be observed in high-quality
images without compression artifacts. Therefore, in practice, it is
not straightforward to apply these methods for Internet photos that
are mostly degraded.

This paper proposes a method to jointly perform radiometric
calibration of all cameras using a collection of Internet photos of
the same scene. Our key assumption is that the scene reflectance
(albedo) is the same for corresponding pixels across linearized
images, and we have an access to the geometric information of the
scene that are computed by SfM and MVS. By selecting pixels
that correspond to the same surface normal in a pairwise manner
in each nonlinear image, we compute a vector of ratios of the
observed pixel values. The ratio operation cancels the influence of
different white balance settings, exposure times, and environment
illumination conditions. By stacking the ratio vectors of all the
nonlinear images, we form a matrix. If correct inverse radiometric
response functions are applied to all the nonlinear images, the
matrix should exhibit a rank-1 structure. Capitalizing on this
observation, we develop a method for estimating the inverse
response functions, up to a unified exponential ambiguity, based
on rank minimization.
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TABLE 1
A unified summarization of various radiometric calibration methods.
[ Assumption [ Equation [ Solution [ Ambiguity
Unified representation | g(Bm) = KmR, g(Bn) = KnR (Non)linear equations (EQ) | Exponential

= g(Bm)/g(Bn) = Km/Kn

Rank minimization (RM)

Additional constraint

K, n: different py, ,, with the same n

Different exposure R: radiance values as a row vector EQ: [1-3] Exponential

K, n: exposure time for m-,n-th image RM: [4, 5] Known exposure ratio
Local smoothness R: matched patch radiance EQ: [6] Exponential

Km,n: approx. linear scale for patch m,n | RM: N. A. One linear image
Photometric image R:cjt;(nT1) EQ: [7] Exponential

RM: Our method

Known albedo ratio, linear edge color blending, efc.

Such a unified ambiguity consists of only one unknown
parameter. We develop a method for resolving the ambiguity by
adapting the method of [13] to Internet photos. The method of [13]
assumes a linear blending of edge color triplets in the RG' B space
when a response function is linear for noise-free images. To work
well with heavily degraded Internet photos, we develop an outlier
rejection method by taking the advantage of many photos. We
show that the disambiguation problem for a set of inverse response
functions in our context reduces to a 1D search problem, and
present a stable estimation technique for obtaining the ambiguity-
free solution. Figure 1 illustrates key ideas and the pipeline of our
method.

This paper extends its preliminary version [
three aspects:

]in the following

e We propose the ambiguity-free solution for radiometric
calibration of Internet photo collections given the unified
exponential ambiguity [15] by developing a robust 1D
search method.

e We analyze the applicability of single image radiometric
calibration method to images with compression noise and
adapt the linear edge color blending constraint [13] to
Internet photos by selecting reliable edge color triplets.

e We summarize a unified framework for existing radio-
metric calibration methods with similar formulation and
constraint for deeper understanding the nature of relevant
problems.

The rest of the paper is organized as follows. Section 2
reviews related work. In Sections 3 and 4, we introduce the image
formation model and the proposed method with ambiguity-free
solution. Section 5 shows quantitative results of our approach on
various synthetic and real-world datasets. We conclude this paper
in Section 6.

2 RELATED WORK

Our work is related to conventional radiometric calibration meth-
ods and computer vision applications to Internet photo collections.

2.1 Radiometric calibration

A Gretag Macbeth twenty-four patch color checker, whose re-
flectance value for each patch is known, is a commonly used tool
for radiometric calibration [16]. Single image calibration without
calibration chart is possible by assuming different constraints. Lin
et al. [13] assume color blending at edge pixels so the radiance
distribution for pixels along the edge in RGB space should be
linear. This assumption is also useful for gray images by calcu-
lating the histogram of radiance for edge pixels [!7]. Matsushita
and Lin [14] propose to use the symmetric distribution of noise

on imaging process. Other single image constraints like the linear
intensity profiles of locally planar irradiance points [18] and skin
structure and pigment components [19] are also introduced in
recent works.

Using multiple images with different exposure times is a
popular and practical approach for radiometric calibration. Classic
methods include Debevec and Malik’s approach fitting a non-
parametric, smooth response function [20], and Mitsunaga and Na-
yar’s method adopting a polynomial model [1]. The problem in [1]
can be formulated as a rank minimization one to achieve superior
robustness [4]. The response functions can also be represented
using a more realistic model by using the database of measured
response functions (DoRF) [3]. Such a representation can also be
used in log-space to deal with moving cameras [2, 21], varying
illumination conditions [7], and dynamic scenes in the wild [5].
In addition to multiple exposure constraint, other constraints such
as the statistical model of CCD imaging [22], temporal mixture
of motion blur [23], image vignetting effect [24], known albedo
ratio of two-colored surface under near-lighting condition [25],
multiple directional lighting [26] and polarization effect [27] are
proposed for different imaging setups and applications. Note in all
these approaches only one camera is calibrated using one image or
multiple images, and the camera is controlled to adjust its settings
(e.g., manual mode with fixed white balance, ISO, but varying ex-
posure times) for calibration purpose. Instead of only considering
the radiometric response function, the in-camera processing can
be modeled in more comprehensive pipelines [28-30], but these
models require more complicated calibration procedures as well.

There are existing works that perform radiometric calibration
for Internet photos. Kuthirummal ef al. [31] explore priors on
large image collections. By assuming the same camera model
has a consistent response function and some radiometrically
calibrated images of that camera model are available, a camera-
specific response function could be estimated for the nonlinear
image collection according to the deviation from statistical
priors. Due to the improvement of 3D reconstruction techniques
on Internet-scale image sets, radiometric calibration becomes
feasible by using the scene geometry estimated from SfM [&]
and MVS [9, 10]. Diaz and Sturm [32, 33] jointly solve for the
albedos, response functions, and illuminations by using nonlinear
optimization and priors from DoRF. A more recent work by
Li and Peers [6] assume a local smoothness of image patch
appearances and a 1D linear relationship over corresponding
image patches, so that the radiometric calibration for multi-view
images under varying illumination could be recast as the classic
multiple exposure one [2], which could potentially be applied to
Internet photos.
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Fig. 1. Pipeline of our method. We estimate the (inverse) radiometric response functions for each nonlinear image {g1,g2,---,gq} by rank
minimization over the stacks of pixel pairs up to a unified exponential ambiguity. The o operator applies each intermediate inverse response
function g to both the numerator and denominator of ratio terms in the same row. The correct g transforms each row of the matrix to the same vector
(up to a scale) to make the matrix rank-1. Then, the nonlinear image with highest quality from the photo collection is selected to extract patches.
Only inlier patches are kept to find edge color triplets, among which the triplet with linear distribution tells the correct value of ~ for the unified

exponential ambiguity above. Finally, we obtain inverse radiometric response functions for all photos free from ambiguity as {g1, g2, - - -

2.2 A unified framework.

We found many methods mentioned in Sec. 2.1 fall into a unified
framework and summarize some representative methods in a
coherent manner in Table 1 to compare their similarities and
differences.

Unified representation: The unified representation summa-
rizes the common form used in different radiometric calibration
methods. The equation g(B,,) = K,,R and g(B,) = K,R
indicate that the correct inverse response function transforms
the observation values to a vector R multiplied by a scalar K
where R encodes some intrinsic information of the scene and
K is a camera-dependent factor. By taking the ratio between
two linearized images, R is canceled out so that the ratio
K,,/K, connects the left and right side of the equation as
9(Bm)/g9(B,) = K,,/K,, where g is encoded on the left side.
Different methods use different terms for K and R. Such ratio
constraints could be used to build nonlinear or linear optimization
problems, or solved by rank minimization. Since both sides of the
equation are ratios, one can take both ratios to an arbitrary power
and keep the equality, i.e., g(Bm)/9(Brn) = Kpn/K, implies
that g7(Bp,) /9" (Bp) = (K /K,)" for any «. So all methods
adopt such a representation suffer from the exponential ambiguity,
and additional constraints have to be introduced to remove such
an ambiguity.

Different exposure times: Given a sequence of nonlinear im-
ages with different exposure times, R is vectorized scene radiance
for all pixels, and K is the exposure time. Since all nonlinear
images are naturally aligned, millions of pixels in R provide more
than enough equations than unknowns. The problem can be solved
using nonlinear optimization [I, 3] or linear least squares [2]

1 9Q}

or rank minimization [4, 5]. The exact exposure time ratios are
required to remove the exponential ambiguity.

Local smoothness: A typical example is the method in [6]
where K is a constant for a small patch of pixels. The problem can
be solved by solving linear equations. The exponential ambiguity
should be removed by using a radiometrically calibrated image
(“example” image as mentioned in [6] with K = 1).

Photometric image formation: The 3D points sharing the
same surface normal and receiving the same amount of lighting
are used to compose R, which are further scaled by different
albedos K. For single-view method [7], the nonlinear images are
naturally aligned and surface normals are estimated by appearance
clustering. It solves linear equations in the log-space for only
one response function per image set, but an alternative rank
minimization formulation can be similarly applied [4]. [7] requires
additional constraint, such as true albedo values or linear edge
color blending, to resolve the ambiguity.

2.3 Computer vision meets Internet photos

Various computer vision problems could be extended to deal with
Internet photos. Successful applications include scene comple-
tion [34], virtual tourism [35], weather estimation [36], composing
pictures from sketches [37], image restoration [38], generating
face animations [39], image colorization [40], intrinsic image
decomposition [11], color consistency [41, 42], 3D reconstruction
using multi-view stereo [43], and photometric stereo [12], 3D face
reconstruction [44], synthesizing time-lapse video [45], and so on
and so forth. In many of these applications, the arbitrary nonlinear
response functions for all cameras are simply approximated as
a global Gamma correction, or even completely ignored as a
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linear one. So we believe the radiometric calibration solution for
Internet photos is a very important technique that could potentially
benefit miscellaneous application scenarios relying on photometric
analysis.

3 IMAGE FORMATION MODEL

We assume the scene reflectance follows the Lambertian model,
and we know the scene geometry (surface normal) from SfM and
MVS. The correspondence between 3D scene points and 2D pixels
in all images are also obtained from 3D reconstruction. We take
the j-th nonlinear image in the image collection as an example,
in which the scene is illuminated under the j-th natural lighting
Lj(w). Then the scene radiance of the i-th 3D point is determined
by the interaction of lighting with its surface normal n; € R3*!
scaled by Lambertian albedo p; as

R;; = /Q Vi (W)pi Lj(w) max((n; w), 0)dw, (1)
where w € R3*! is a unit vector of spherical directions €2,
and L;(w) is the environment map for the j-th nonlinear image
which encodes the light intensity from the direction w. v;;(w) is
the visibility function which is set to O if the illumination from
direction w is not visible for the ¢-th 3D point projected to the j-th
nonlinear image or 1 otherwise. For any n; with visibility function
being equal to 1, it receives the light from its visible hemisphere
);, and the integration over the visible hemisphere is simplified
as

2

where 1; = Ja, Lj(w)dw.

When a scene is captured by the j-th camera, the image
irradiance for the ¢-th pixel in the k-th color channel (e.g., RGB)
can be represented as

k k k(T7
I = cjtip; (n; 1), 3)
where c* is the white balance scale and t; is the exposure time
for the j-th camera. Due to a nonlinear mapping of the camera
radiometric response function f(-), the observations are distorted
as

Bl = fR(IE) = fE(cFtipf(n]T;)). @)

The response function is a monotonic function, so there exists a
unique inverse function g = £~ to map the observation values to
image irradiance values. By applying the inverse response function
g to both sides of Eq. (4), we obtain

gy (Bf) = cjtipr(n]1)). (5)

Radiometric calibration could be performed for three different
color channels independently, so we drop the k-related terms
thereafter. Denote q; = c;t; as the image-dependent scaling
factor, then Eq. (5) is simplified as
T

9i(Bij) = 4jpi(n; 1;). 6)
In the context of radiometric calibration for Internet photos, each
nonlinear image in the photo collection has its own g. Our goal
is to simultaneously estimate g for all the nonlinear images in a
photo collection.

4 RADIOMETRIC CALIBRATION METHOD

Our method first identifies pixel pairs with same normal and
different albedos across nonlinear images using 3D information
obtained from 3D reconstruction (SfM [8] and MVS [10]). By
stacking these pixel pairs into a matrix, we are able to solve
all the inverse response functions up to the same ambiguity via
rank minimization. The ambiguity is further removed by assuming
linear color edge blending [13]. The above operation and process
is illustrated in Fig. 1.

4.1

With the scene 3D information available, it is possible to find
points with the same surface normal, receiving the same amount
of light, but with different albedos in each nonlinear image. We
assume such pixels are identified for now, and the pixel selection
method will be introduced in Sec. 4.4. Let a pair of such 3D points
have normal n and lighting 1, and their albedo values be Pm and
Pn (Pm # prn) respectively. Substituting these two points into
Eq. (6) and taking the ratio between them, we obtain

Formulation

gj(ij) _ ijm(nTl) _ p7m

9i(Bnj)  4jpn(n’l)  pp
The albedo ratio consistency above is the key constraint we
employ for radiometric calibration. Given a sufficient number of
observation values B that cover a broad intensity range, we can
build a system of equations solved by nonlinear optimization [1].
Recent progress in radiometric calibration shows that the rank
minimization could solve such a problem in a more robust manner
and effectively avoid overfitting [4]. Therefore, we formulate our
problem in a matrix form, whose minimum rank corresponds to
the correct estimates of inverse response functions.

Denote P as the total number of pixel pairs with the same
normal (and lighting) but different albedos, and @) as the total
number of nonlinear images, or equivalently pairs of lighting
conditions and cameras. We arrange these pixels according to the
ratio format of Eq. (7) and stack them as the following matrix:

)

g1(B11) 91(Ba21) 91(Bp1)
g1(Bo1) 91(B11) 91(Bp—1)1)
92(Bi2)  g2(B22) . 92(Bpa2
Agup = 92(.302) 92(.312) !]2(B<1.371)2) )
gcz(él@) QQ(.BZQ) QQ(éPQ)
9@(Boq)  9q(Biq) 9Q(B(p-1)Q)

The optimal inverse response function g; for each row transforms
each pixel ratio in the matrix to its corresponding albedo ratio, so
that each row of A becomes (£-, 22 ... —LP_)! which obvi-

NpPo’ P P(p-1)7 " . .
ously makes A a rank-1 matrix. Thus, our radiometric calibration

problem becomes the following rank minimization one:

{1,G2,--- ,Go} = argmin rank(A). 9)
{91,92, ,QQ}
Similar to existing radiometric calibration methods [1-5, 7],

the results generated by directly optimizing Eq. (9) also suffer
from the exponential ambiguity. This is because for a set of
optimized solution g, g7 for any unknown -y also keeps the ratio
consistent in Eq. (7) and makes A rank-1. Note there only exists
one <y for all nonlinear images. In the following to subsections, we

1. For easy representation, we only show one option for arranging the pixel
pairs (there could be ratio terms like Z—g, Z—I;, and so on). Given P41 different

p values, there are 0123 1 Possible combinations of taking the ratio.
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will first introduce how to solve the problem up to the v ambiguity,
and then resolve the ambiguity by incorporating the linear edge
color blending constraint [13].

4.2 Solution up to unified exponential ambiguity

We solve the above rank minimization using a similar approach as
in [4], which is represented by the condition number as

g2 (A)
(A)’

argmin
{g1.92, .90} 91

{91,392, 9o} = (10)
where {1, g2, - - - , Go } denote the set of intermediate results with
unified exponential ambiguity and o;(A) is the i-th singular value
of A.

We choose to use the polynomial representation for g as sug-
gested by [4]. The main consideration is that polynomial represen-
tation is more appropriate for gradient-based convex optimization
because of its smoothness. Both irradiance and observation values
are normalized in the range of O to 1. Then the polynomial
representation of g becomes

S—1
g(B)=B+B(B-1)Y pB, (11
i=1
where {p1,p2, -+ ,ps_1} are the polynomial coefficients to be
estimated. Such an expression uses only S — 1 unknowns to
represent an S-order polynomial. The end point constraints for
inverse response functions are explicitly enforced, since Eq. (11)

satisfies g(0) = 0 and g(1) = 1.

Note that we only borrow the optimization strategy from [4]
to solve Eq. (10). In fact, our problem is much more challenging
than [4] due to the joint estimation of many different response
functions, and the structure of the matrix whose rank needs to be
minimized is completely different due to pixel ratios. We find that
directly solving such a problem like [4] for all g simultaneously
is quite unstable, because each g, transforms one row of A
independently and this significantly increases the search space
for minimum rank. So we solve this issue by using a pairwise
optimization followed by a global refinement.

The pairwise optimization means we select two rows as base
image pair and align all the other rows to the base in an incre-
mental manner. The base image pair is selected as the two rows
of A with the minimum difference after applying the estimated
inverse response functions, through solving Eq. (10) for all Cé
submatrices composed by two rows of A. Then we add one row
at a time to solve for the remaining () — 2 rows for submatrices
with three rows. The estimated inverse response functions here
are denoted as ¢°. The global refinement takes ¢° as initial values
to solve for all g simultaneously using Eq. (10). This section is
summarized in Algorithm 1.

4.3 Ambiguity-free solution

Algorithm 1 successfully unifies all intermediate results of inverse
response functions up to the same exponential ambiguity. Now
we only need to solve the unified exponential ambiguity, and we
adopt the linear edge color blending constraint in [13].

Linear edge color blending. To be self-contained, we briefly
summarize the definition of linear edge color blending here’.

2. Please refer to [13] for further details.

Algorithm 1 Solution up to unified exponential ambiguity
1: INPUT: Input nonlinear images, with pixels selected and
stacked as the matrix of Eq. (8).

: // Pairwise optimization:

: for all pairwise combinations using two rows of A do

Solve for two g using Eq. (10);

Apply these two g to the corresponding rows in A;

: end for

. Select g0 and ¢° that make corresponding rows of A have
the minimum difference;

cfor k={1,2,--- ,Q} Nk # {m,n} do

9:  Build a matrix with the {m,n, k}-th rows of A and solve

gg using Eq. (10), with g?n and gg fixed;

oo

10: end for

11: // Global refinement:

12: Solve Eq. (10) for all g simultaneously using
{97,99,- - , 94} as initial values;

13: OUTPUT: Intermediate results with unified ambiguity
{91,392, . 9o}

Suppose that we have a rectangular local patch S(x) centered
at = and x is an edge pixel that separates S(z) into two regions
S (x) and Sy () whose radiance values are I; (\) and I2 (). The
radiance I for edge pixel x can be represented as:

./IWMM:/ hmm+/ L(\)da
a€S(x) a€Sy(x) a€Sa(x)
— ali(N) + (1 — a) (),

(12)

where a = [ cS(z) da and A is the light wavelength.

Eq. (12) indicates that the radiances for edge pixels are the
linear combination of radiances of two distinct regions S and S
in the patch. Any nonlinear response function will damage this
property and make observed brightness B, By, By not a linearly
weighted summation like Eq. (12). This is called linear edge color
blending constraint as proposed in [13] and it will be adapted to

our problem.

Image quality vs. linear edge color blending. We define
an edge color triplet extracted from a local patch S(z) as
T = {My, My, M,} where My = {IF I¢ IB} and My =
{IR I$, 1P} are the RG B radiance in each region and M, is
the RG B radiance of an edge pixel. In a noise-free environment,
T forms a straight line in the RG'B space, as illustrated at bottom
right of Fig. 1. So the method in [13] works well if high-quality
nonlinear images are captured using a high-end DLSR under good
lighting conditions. Such a condition is hardly satisfied for nonlin-
ear images in an Internet photo collection, where compressed and
degraded nonlinear images are commonly uploaded.

We illustrate how compression distorts the linear distribution
of an edge color triplet in Fig. 2. We use the Matlab built-in
function “imwrite” to compress a raw image” to different levels
by setting the “quality” parameter to {100,75,50,25,10}
sequentially with 100 meaning lossless compression. As demon-
strated in Fig. 2, the linear blending property of edge color triplet
becomes harder to observe with an increased compression rate,
as stronger compression blurs the edge color by fusing pixels
along the edge. This is one of the main reasons we cannot directly

3. Collected from a professional photo sharing website: https://www.
dpreview.com/.
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Fig. 2. Compression (a raw image compressed at different levels) distorts the linear edge color blending property. Close-up views of part of the
compressed image (in blue box; multiplied by 6 for better visualization) are demonstrated in the top row. The image patches below (in red box;
multiplied by 6 for better visualization) show the distributions of edge color triplets in the RG B space (the three red dots are pixels of an edge color

triplet with the green line as the corresponding edge).

Algorithm 2 Ambiguity-free solution
1: INPUT: Input nonlinear images and intermediate results with
unified exponential ambiguity {g1,ge, - ,Jg} from Algo-
rithm 1.

: // Image selection and edge color triplets extraction:

cfork={1,2,--- ,Q} do

Calculate per-pixel storage space;

: end for

: Return a nonlinear image Ir with the biggest per-pixel
storage space;

: Extract edge color triplets {14, 15, ..., Tr } from I g;

8: // Coarse search (treat RG B as the same):

9: Use R channel as base and set {ggr,d¢,JB} =

{9r: Ir: IR}

10: for t = {1,2,...,T} do

11:  1-D search of ~y that minimizes Eq. (14);

12:  if A non-degenerated local min. v* (Figure 3 left) exists

~

then
13: t is a reliable edge color triplet;
14:  end if
15: end for

16: Return y* as the average across all reliable triplets;
17: // Fine search (update fach channel independently):
18: Setvy =", §g = §ZER?

Set 7 = argmin||g; — g7/ and 7 = argmin |3 — g7
¥ ¥
19: while not converged do
*

20:  Fix 7§ and v} and perform 1-D search of v € [V —
A, ~%, + A] that minimizes Eq. (14);

21:  Fix 75 and v} and perform 1-D search of v € [v& —
A, v& + Al that minimizes Eq. (14);

22 Fix 4} and v and perform 1-D search of v € [v5 —
A, ~v% + A] that minimizes Eq. (14);

23: end while

24: Return {5, v&, Y5}

25: OUTPUT: Inverse response functions {g1, g2, - , 9Q}-

apply [13] to Internet photo collections for each nonlinear image
one by one.

Thanks to the problem definition of working with multiple
nonlinear images and the unified ambiguity, we can avoid the
distortion due to compression by using higher-quality nonlinear
images in the photo collection whose linear edge color blending
properties are better preserved. We simply assume the quality of

edge color triplet is proportional to the image quality represented
by per-pixel storage space (the size of the compressed image
divided by the number of pixels in the image). We then order
nonlinear images in the photo collection according to their per-
pixel storage space and choose the largest one for the following
computation.

Edge color triplet extraction. Given the highest-quality nonlinear
image, we extract edge color triplets using the same method as
in [13]. Given a triplet T = {M;, M, M.}, we define the
distance function similarly to [13] as:

lg(My) — g(M2)] x [g(M.)

lg(My) — g(M2)

Substituting the intermediate results from Algorithm 1 into the
distance function, we can rewrite Eq. (13) as:

g7 (My) — g7 (M3)] x [§7 (M) — 57 (Ms)]|

|97 (My) — g7 (M) ’
where § = {Jr,Jc,gp} are the intermediate results in RGB
channels and v = {yr, V¢, 75 }" are the solution of exponential
ambiguities in RGB channels, i.e., §3° = gr, 3.’ = g, and
3%’ = gp, respectively.

Our problem is different from [13] that needs to solve all
parameters in response functions from scratch, and we are dealing
with a better constrained problem with only three unknowns
(Yr,va, and 7vp). So we only need several highly reliable
edge color triplets to ensure the robustness against noise in
Internet images, while the original problem in [13] needs much
more triplets that are expected to cover the whole intensity
range. Therefore, instead of minimizing the sum of distances
of all triplets as in [13], we evaluate each edge color triplet
independently using the distance calculated from Eq. (14) to
select the most reliable estimates, as we will introduce in the next
step.

D(T) = - g(Mz)H' (13)

D(T) =

(14)

Search for v using reliable triplets. We assume that inverse
response functions are the same for RG'B channels for now and
use one channel as base to start the search. In this case the search
space are reduced from three-dimensional to one-dimensional and
we can easily identify reliable and discard unreliable triplets by
analyzing the shape of distance functions as shown in Fig. 3.
For a reliable edge color triplet, a clear local minimum point

4. The ambiguity for each channel across nonlinear images in the photo
collections are unified, but ambiguities in different channels can be different.
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Fig. 3. Reliable edge color triplet is marked with the blue box and
unreliable ones are marked with red boxes, and their corresponding
distance values (according to Equation (14)) varying with the searching
of ~ are plotted in the bottom row. The reliable triplet observes a local
minimum not appearing at the extreme values.

can be found in the middle of its distance function curve while
unreliable triplets do not show distance curves with such a shape.
In extreme condition, when the ambiguity term < is set to O
or 400, the disambiguated inverse response functions will map
observed colors to extreme radiance colors as (0,0,0) or (1, 1,1).
Such extreme values also make the cost of Eq. (14) approach zero,
which should be discarded. Without losing generality, we use the
average of estimated -y obtained from all reliable triplets as initial
guess of yr and set initial guess of g and p by applying vr to
disambiguate the intermediate results in G and B channels.

To refine the initial guess in RG B channels, we perform an
iterative update. In each iteration there will be three rounds of one-
dimensional search in RG B channels independently, and in each
round of search one channel will be refined while the other two
channels remain unchanged. Given the initial guess, the fine search
is performed centered at current 7y value within [y — A,y + A]
(A = 0.5 in our experiments) to find an updated - that minimizes
Eq. (14). We set current 7 to its initial value if the extreme values
are encountered. The iteration is stopped when < is no longer
changed (usually after two or three iterations). The complete
solution to resolve the exponential ambiguity is summarized in
Algorithm 2.

4.4 Implementation details

3D reconstruction. To build the matrix in Eq. (8), we need to
extract corresponding pixels in all nonlinear images that have the
same surface normal, under the same lighting condition, but with

7

different albedos. We first perform 3D reconstruction (SfM [8]
and MVS [10]) using the input photo collection. The 3D points
with the same surface normal are selected and projected onto 2D
images. We then calculate pairwise ratio for these pixels as initial
guess of albedo ratios. The selected pixels in each pair should
receive the same amount of environment illumination, if their
visibility function v;; defined in Eq. (1) were the same. However,
the visibility information cannot be accurately estimated through
sparse 3D reconstruction and unknown environment illumination,
due to the noise in real data brought by cast shadow and local
illumination variations. Therefore, we propose a simple outlier
rejection approach to deal with this issue. We find that the
majority of such initially selected pixel pairs show similar ratio
values, and any noisy pixels appearing in either numerator or
denominator cause the ratio significantly different from others.
Such outliers could be easily identified and discarded by a line
fitting using RANSAC. Finally, remaining pixel pairs observed
in all nonlinear images are stacked as the matrix in Eq. (8) for
optimization.

Details of optimization. In practice, we only require dozens of
images as input for the 3D reconstruction by SfM and MVS.
According to Algorithm 1, it is not necessary to optimize @
response functions simultaneously, since we use an incremental
approach to estimate all response functions except for the two that
are selected as base. Given a complete set of nonlinear images,
we divide it into several subgroups (e.g., 10 images in each
subgroup), and solve for each subgroup using Algorithm 1. We
empirically find such a divide-and-conquer strategy gives a more
stable solution, and this property potentially allows the parallel
processing of large amount data.

We use a Matlab build-in function “1sgnonlin” to solve
our nonlinear optimization. The initial guess for inverse response
functions are chosen as a linear function for all nonlinear images in
the pairwise optimization step. A monotonicity constraint is added
to penalize non-monotonic estimates similarly as adopted in [4].
We further add a second-order derivative constraint by assuming
most response functions have either concave or convex shapes.
There are response functions with more irregular shapes according
to [3], but they are rarely observed in common digital cameras.

For coarse search, we set the range to [0, 5] and the step size
to 0.1, and the step size is set to 0.01 for fine search. The current
implementation of our method takes about 5 minutes for image
size of 2000 x 1334 with an unoptimized Matlab implementation
running on a single core of i7 8700 processor (4.3 GHz) and we
only need to search the unified ambiguity once for one set of
Internet photo collection.

Degenerate case. One obvious degenerate case for our problem is
a scene with uniform albedo. Because the uniform albedo causes
Pm = pn in Eq. (7), and every element in A becomes one thus A
becomes rank-1. Therefore, we need at least two different albedo
values in the scene. However, if pixels with two different albedos
are all on the same plane (assuming there is no shadow in the
scene, so that the same surface normal receives the same amount
of environment lighting), it falls into a similar degenerate case.
Therefore, the minimum requirement to avoid the degenerate case
is a pair of different albedos on two different planes. This is
because even if the albedo ratio is the same after optimization, if
two pixel pairs are scaled by different shading terms n ' 1and then
nonlinearly mapped by the same response function, their ratios
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become different before optimization. Fortunately, a wild scene
may contain much more variations in either albedo or normal
than our minimum requirement. Since the problem formulation
is highly nonlinear, it is non-trivial to provide analytical proof for
the number of different albedo or surface normal required, but we
will experimentally analyze such an issue in the next section.

Another degenerate case of our method is the same as in [13].
When the distribution of extracted edge color triplets lies along
the R = G = B line and sensor response functions are the same
in three color channels, the distribution of edge color triplets will
always be linear, thus they will not provide any useful cue for
solving the ambiguity.

5 EXPERIMENTAL RESULTS

We conduct quantitative evaluation of our method using both
synthetic and real data. The error metric used for evaluation is
the rooted mean square errors (RMSE) of the estimated inverse
response function w.r.t. the ground truth and the disparity, i.e.,
the maximum absolute difference between the estimated and the
ground truth curves.

5.1 Verification for Algorithm 1

We first evaluate Algorithm 1 using synthetic data. Since
Algorithm 1 can only solve all the inverse response functions up
to the same exponential ambiguity, we remove such ambiguity by
directly aligning our results with ground truth.

Number of pixel pairs vs. order of polynomial. Our method
is expected to be more stable and accurate given more diverse
values of pixel pairs (albedo and normal variations) and fitted
with higher order polynomials. We use synthetic data to verify the
accuracy under different number of albedo values and polynomial
orders by testing 6 types of pixel pairs and 6 different polynomial
orders. The 6 groups of input data are generated by changing the
number of different albedo values multiplied by different normals
as {1 x2,2x3,3x4,4x6,5x 10,6 x 15}. Here, 1 x 2
means one pair of different albedo values on two different planes.
We then apply 10 different lighting conditions and 10 different
response functions from the DoRF database [3] to generate our
observation values and the RMSE and disparity are summarized
in Fig. 4.

As expected, the average errors show a row-wise decreasing
tendency due to more diverse input data variations. It is interesting
to note that only 24 pairs of points from each image (four pairs of
albedo values on six different planes) produce reasonably small
error (RMSE around 0.01) for a joint estimation of 10 different
response functions. From Fig. 4, we can also see our method is
not sensitive to the choice of polynomial order and in general a
polynomial order larger than 5 works well. We fix the polynomial
order to 7 in all experiments as a trade-off between accuracy and
complexity.

Performance with various noise. We first add quantization to
mimic the 8-bit image formation, and then we add Poisson noise
as suggested in [4, 46], which describes the imaging noise in a
more realistic manner by considering signal-dependent shot and
dark current noise. The noise level is controlled by the camera
gain parameter C'y, and larger C'; means more severe noise. Please
refer to Egs. (9)-(11) in [4] for the noise model representation. We
perform 20 trials and each test contains 10 randomly selected
response functions from DoRF with 4 X 6 pixel pairs.

Polynomial order

v

3 4 5 6 7 8
o | 1x2 | 0.0761 | 0.0433 | 0.0539 | 0.0566 | 0.0554 | 0.0522
‘% | 2x3 | 0.0662 | 0.0224 | 0.0185 | 0.0171 | 0.0149 | 0.0168
o | 3xa 0.0167 | 0.0162 | 0.0194 | 0.0170 | 0.0149
X | 4x6 | 00742 | 0.0144 | 0.0144 | 0.0130
+ | 5%10 | 0.0628 | 0.0159
6x15 | 0.0665 | 0.0194
Polynomial order R
5 6 7 8
w | %2 0.0940 | 0.1014 | 0.0990 | 0.0925
=1 2x3 0.0351 | 0.0329 | 0.0287 | 0.0319
2 3xa 0.0312 | 0.0377 | 0.0339
% 4x6 | 0.1334 | 0.0288 | 0.0288 | 0.0260 | 0.0195
« | 5%10 [ 0.1117 | 0.0325
6x15 | 0.1174 | 0.0398

Fig. 4. The average RMSE/disparity w.r.t. the number of pixel pairs (row-
wise) and order of polynomials (column-wise). “Red” means larger and
“blue” means smaller errors.

Noise Level (Cg): m0 m0.1 m0.2 m0.5

R

Diaz13-RMSE Ours-Disparity Diaz13-Disparity

5
"
& 000 e

Ours-RMSE

Fig. 5. Evaluation under various noise levels and comparison between
our method and Diaz13 [33]. The box-and-whisker plot shows the mean
(indicated as “x”), median, the first and third quartile, and the minimum
and maximum values for RMSE and disparity for 200 (20 x 10) estimated
response functions.

We evaluate another photometric image formation based
method [33] (denoted as “Diaz13”) implemented by ourselves
using the same data. We find a joint estimation to all variables
(albedos, lighting and response function coefficients) produces
unreliable results, due to the nonlinear optimization over too
many variables. Therefore, we provide the ground truth lighting
coefficients in our implementation of Diaz13 [33] and use this
as the stable performance of Diaz13 [33] for comparison. The
results under various Cy = {0,0.1,0.2,0.5} (where C; = 0
means only quantization noise) for both methods are plotted in
Fig. 5. Our method outperforms Diaz13 [33] for most noise levels,
but Diaz13 shows more stable but less accurate performance
under these noise levels. When the noise is large, our method
shows degraded performance partially due to that ratio operation
magnifies the noise. Note that in real case, Diaz13 [33] requires
the dense reconstruction for lighting estimation, while we can
only work on a few selected pixel pairs.

Results on single-view images. A single-view synthetic test
is performed to provide an intuitive example with quantitative
analysis, which is free of errors from 3D reconstruction. We use
the data from [I1], which is generated using a physics-based
renderer. Given the ground truth reflectance and shading images,
as show in the upper part of Fig. 6, we manually select 10 pairs
of pixels with the same surface normal but different albedo values
(labeled using yellow numbers on the reflectance and shading
images). We randomly apply 10 different response functions to
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Fig. 6. Radiometric calibration results using a synthetic dataset. The up-
per row shows the ground truth reflectance, shading images, and the ten
selected pixel pairs (yellow numbers) with the same normal but different
albedo values. Two example results of the estimated inverse response
functions and the ground truth curves are plotted, with the RMSE and
disparity values shown in the legend. The nonlinear observations (“With
RF”), linearized images (“With IRF”) and their absolute difference maps
w.r.t. the “Original” images are shown next to the inverse response curve
plots.

produce 10 observation images, and then use the selected pixels
as input to perform radiometric calibration. Two typical results
of the estimated inverse radiometric response functions w.r.t. the
ground truth curves are shown in Fig. 6. We further apply the
inverse response functions to the observation images, and the
close appearances between the linearized images and the original
images show the correctness of our radiometric calibration
method.

5.2 Verification for Algorithm 2

We use similar data as being tested in Figure 2, which compress
raw images to different levels, for this verification. Such pro-
fessionally captured images provide clean observation of linear
edge color blending. Randomly selected response functions from
DoRF [3] are added to compressed images to introduce the
nonlinearity. We then obtain intermediate results from Algorithm 1
by manually selecting pixel pairs on the color checker and resolve
the exponential ambiguity using Algorithm 2. We compare our
method with a single image calibration method [13]° (denoted as
“Lin04”). The quantitative results are shown in Fig. 7.

5. Implemented by Jean-Francois Lalonde and available at: https://github.
com/jflalonde/radiometricCalibration
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As we can observe from the results, “Lin04” [13] works well
on non-compressed image (quality set to 100), but it is very
sensitive to image quality degradation as shown by the increasing
errors in calibration results. Our method outperforms “Lin04” [13]
in all situations mainly because we are able to discard unreliable
edge color triplets distorted by compression and only use the
reliable ones for optimization. While our method shows tolerance
to certain levels of compression, for Internet photo collection, we
only choose one highest-quality image for resolving the unified
ambiguity to ensure the most stable solution.

5.3 Performance on Internet photo collections

To perform quantitative evaluation using real data, we create
datasets containing mixture of Internet photos and images captured
using controlled cameras for three different scenes. The total
numbers of images are 55 for the dataset used in Fig. 8, 44 for the
dataset used in Fig. 9, and 31 for the dataset used in Fig. 10. We
use three controlled cameras (O Sony Alpha7, @ Nikon D800, and
® Canon EOS M2) for all datasets, and calibrate their response
functions using multiple exposure approach [4]. We perform 3D
reconstruction and radiometric calibration for all images in each
dataset. Two (out of three) captured images are used as the base
image pair for pairwise optimization. After applying Algorithm 1
and obtain intermediate results which share the same exponential
ambiguity, we first use the calibrated response functions to remove
the exponential ambiguity for all intermediate results, to provide
upper bound references for our method, before evaluating the
ambiguity-free solution. The exponential ambiguity is then solved
using Algorithm 2. In addition to comparing with “Lin04” [13],
we also run our own implementation of “Diaz13” [33] on the
same dataset. This time the lighting coefficients are also part of
the optimization which are initialized randomly, since they cannot
be fixed to ground truth as using the synthetic data.

The quantitative results (estimated inverse radiometric re-
sponse functions and their RMSE/Disparity w.r.t. the ground truth)
on RGB channels of three images (captured by three different
camera models) from all three scenes are plotted in Fig. 8, Fig. 9,
and Fig. 10, respectively. All our estimates (both the intermediate
results aligning to the ground truth and the ambiguity-free solu-
tion) show closer shapes of estimated inverse response functions
(with smaller RMSE/Disparity) to the calibrated ground truth than
other methods, which indicates that our method is able to jointly
estimate the inverse response functions for a set of Internet images
reliably.

By a closer check between the results generated using our
ambiguity-free pipeline (Algorithm 1 and Algorithm 2) and the re-
sults generated by aligning our intermediate results (Algorithm 1)
to ground truth, the average RMSE between the two results for
three datasets are 0.0053, 0.0078, and 0.0029, respectively, which
proves the effectiveness of Algorithm 2 in resolving exponential
ambiguities.

“Lin04” [13] tends to generate unstable results because their
method uses all extracted edge color triplets which contain many
triplets violating their assumptions due to compressed and de-
graded images from the Internet. For “Diaz13” [33], the unstable
estimation mainly comes from joint estimation of too many
unknown parameters.

To further investigate the reason for poor performance of
“Lin04” [13] on Internet photo collections, we conducted an
experiment by providing only reliable color triplets to “Lin04”
[13]. Images with inverse response functions that are obtained
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Fig. 7. Comparison of our method and “Lin04” [13] with different image qualities. Three examples (applied with different response functions in R
channel) are shown for each image quality level in each column. The RMSE and Disparity are in the legend of each plot.

by the multiple exposure approach [4] are used for quantitative
evaluation. We first compress high-quality images to different
levels using Matlab built-in function “imwrite” so that both our
method and “Lin04” [13] can be evaluated under different image
qualities. Note that this operation only changes image qualities
and the response functions are not affected. Then Algorithm 1 is
performed to obtain intermediate results. Incorporating these inter-
mediate results, Algorithm 2 is partially performed until Line 15 to
obtain reliable color triplets. The selected reliable color triplets are
then used to resolve the inverse response function using “Lin04”
[13]. We show the results in Fig. 11. With unreliable color triplets
discarded, “Lin04” [13] produces comparable results to ours on

high-quality images (Fig. 11 left), but its performance greatly
degrades with the image quality getting worse (Fig. 11 middle
and right), since lower-quality images have fewer reliable color
triplets along edges. This is the main reason that “Lin04” [13]
cannot be reliably applied to Internet images where compressed
images widely exist. Instead, our method utilizes relationship of
images in a set, thus performs much more robust than calibrating
each single image one by one.

5.4 Radiometric alignment

Finally, we show how our calibration results benefit radiometric
alignment [47] using Internet images. We first apply the estimated
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Fig. 8. Estimated inverse radiometric response functions (denoted with “W”, Algorithm 1 and Algorithm 2) using an image collection mixed with
Internet photos and captured images (in red box). The results compared with the intermediate results generated by Algorithm 1 (aligned with
ground truth and denoted with “P”), “Diaz13” [33] and “Lin04” [13] on RG B channels of three images and calibrated ground truth are shown. The

RMSE and Disparity are in the legend of each plot.

inverse response function to each nonlinear image to linearize the
image intensities. The linearized images may still show different
color appearance due to different and unknown exposure time and
white balance settings for Internet images. To visualize the effect
of radiometric alignment, we warp all images to the same refer-
ence viewpoint using the method in [12], and a linear radiometric
alignment is further conducted on RGB channels independently
to get rid of the influence from different exposure time and white
balance settings. The results are shown in Fig. 12. The image color
appearances look rather consistent after removing the nonlinear
response function using our method, and the remaining differences
are mainly caused by different illumination (shading and shadow).

We use RMS intensity difference as error metric [47] to
evaluate the radiometric alignment results. The average error
dropped from 0.1165 (without applying inverse response function)
to 0.0558 (with our estimated inverse response function applied)
on the first dataset and from 0.1919 to 0.0897 on the second
dataset.

6 DISCUSSION

We present a method to perform radiometric calibration for images
from Internet photo collections. Compared to the conventional
radiometric calibration problem, the Internet photos have a wide
range of unknown camera settings and response functions, which
are neither accessible nor adjustable. We solve this challenging
problem by using the scene albedo ratio, which is assumed to

be consistent in all images. We develop an optimization method
based on rank minimization for jointly estimating multiple re-
sponse functions. We further combine our intermediate results
with linearity of edge color blending to resolve the exponential
ambiguity, which is a common problem for radiometric calibration
methods using ratio constraints. The effectiveness of the proposed
method is verified quantitatively using both synthetic and real-
world data.

Currently, we need to assume the 3D reconstruction is suffi-
ciently reliable for extracting points with the same surface normal
under the same visibility condition. With radiometric calibration
problem solved, it will be interesting to combine with photometric
3D reconstruction using Internet photos [12] to further improve
the quality of 3D reconstruction. Current method requires at least
one high-quality image in the dataset, so it cannot handle a photo
collection with all images containing severe noise. An even more
robust solution that compensates the noise magnification issue
caused by ratio operation may help further improve the accuracy
of the proposed method. Explicitly inferring the white balance
and exposure time settings of Internet photos is another interest-
ing future topic, which could provide additional information to
unorganized Internet photo collections. Our method could also
be applied to calibrate multi-spectral cameras and images by
extending the linearity constraint from RGB space to a multi-
dimensional space, except for a degenerate case where the spectral
channels contain all-zero observations.
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Fig. 9. Estimated inverse radiometric response functions (denoted with “W”, Algorithm 1 and Algorithm 2) using an image collection mixed with
Internet photos and captured images (in red box). The results compared with the intermediate results generated by Algorithm 1 (aligned with
ground truth and denoted with “P”), “Diaz13” [33] and “Lin04” [13] on RG B channels of three images and calibrated ground truth are shown. The
RMSE and Disparity are in the legend of each plot.
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Fig. 10. Estimated inverse radiometric response functions (denoted with “W”, Algorithm 1 and Algorithm 2) using an image collection mixed with
Internet photos and captured images (in red box). The results compared with the intermediate results generated by Algorithm 1 (aligned with ground
truth and denoted with “P”), “Diaz13” [33] and “Lin04” [13] on RG B channels of three images and calibrated ground truth are shown. The RMSE
and Disparity are in the legend of each plot.
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Fig. 11. Comparison between our method and “Lin04” [13] using reliable
color triplets. The RMSE and Disparity are in the legend of each plot.
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