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Abstract. An essential goal in medical image registration is, the for-
ward and reverse mapping matrices should be inverse to each other, i.e.,
inverse consistency. Conventional approaches enforce consistency in de-
terministic fashions, through incorporation of sub-objective cost function
to impose source-destination symmetric property during the registration
process. Assuming that the initial forward and reverse matching matrices
have been computed and used as the inputs to our system, this paper
presents a stochastic framework which yields perfect inverse consistency
with the simultaneous considerations of the errors underneath the regis-
tration matrices and the imperfectness of the consistent constraint. An
iterative generalized total least square (GTLS) strategy has been devel-
oped such that the inverse consistency is optimally imposed.

1 Introduction

One of the most desirable properties for registration is inverse consistency or
source-destination symmetry in which the correspondence is one-to-one and also
unambiguous. Consistent transformations maintain the topology of the register-
ing pair. This is important in medical image registration for generating biologi-
cally meaningful results [I]. The inverse consistent constraint has been enforced
with other information such as image intensity and geometric characteristics to
become part of the optimization criterion in medical image registration [I] or
to act as a sub-objective cost function in point set matching [3]. Since the in-
verse consistency in the latter case is only part of the metric which needs to be
minimized, the resulting transformation matrices are, in general, not perfectly
inverse consistent. Furthermore, all the above approaches solve the transforma-
tions in a deterministic nature, meaning that the stochastic properties of these
matrices are not considered.

We propose a stochastic framework for registration problems which generates
perfect source-destination symmetric mapping between the data sets. Instead of
imposing inverse consistency in a deterministic and imperfect sense, we enforce
the inverse consistent property optimally with the systematic considerations of
the stochastic uncertainties of the input forward and reverse transformation
matrices to achieve perfect source-destination symmetry. The adoption of the
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Generalized Total Least Square(GTLS) technique [6] allows simultaneous con-
siderations of the errors in the input transformation matrices and the inverse
consistent constraint during a post-registration fitting process to solve a set
of new forward and reverse transformations iteratively until they are perfectly
inverse to each other. This framework can be used with any registration algo-
rithms which have already shown their validity in establishing forward/reverse
mappings for different matching problems.

2 Inverse Consistency in Medical Image Registration

2.1 Discrete Nature of the Information Sources

Due to the discrete nature of data, either the point representation or the digital
medical image of the biological objects and the discrete optimization process,
correspondences extracted from conventional registration algorithms are always
ambiguous, i.e., the forward and reverse mapping is not consistent. Fig.1(g) and
(j) show 2 simple 1D examples to illustrate the point: A,, and B,, are discrete
version of the original continuous signals A and B which B is shifted to right
by 0.5s from A=sin(x). A. and B, are the reconstructed signals for registration.
Notice that A, and B, on the above examples are unable to represent the original
signals perfectly due to the inadequate sampling rate of A,, and B,,. Conventional
optimization processes initialize one way to start climbing the hill (the matching
criteria curve), e.g. from left to right. In Fig.1(h), the possible forward and
reverse registration results would be an ambiguous pair (-1.1,-0.5) instead of
the ground truth pair (-0.5,0.5). In Fig.1(k), the matching criteria curves give a
consistent pair (-1,1), however, it is not the ground truth transformation).

2.2 Deterministic Inverse Consistent Constraint

One typical scheme to incorporate inverse consistency for registration is to assign
a cost metric Econs for the inverse consistent property as part of the matching
cost function E, i.e., E = Fgim + Econs where Eg;i,, measures the similarity
(i.e. image intensity and geometrical properties) between the data sets. Since
the consistency is only part of the overall cost function, the optimal solution to
Equ. 1 in general would not produce the perfect source-destination symmetry
one desires.

Moreover, this type of formulation didn’t consider the underlying stochastic
uncertainties such that the forward transformation 775 and the reverse trans-
formation T5; are solved in deterministic nature in order to get a one-to-one
consistent mapping (consistent correspondence), i.e.,

T12 * T21 =1. (].)

! It should be noticed that inverse consistency can always be automatically achieved if
the registering pair is continuous (Fig.1(a),(b)) or the digital signal is sampled under
very high sampling rate such that the original continuous signal can be perfectly
reconstructed (Fig.1(d),(e)).
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(8) (h) (i)
Fig.1. Column 1 and 4: A; and B, are the registering pair reconstructed from A,
and B, which are the sampled version of A and B respectively (in (a): Ac=A, B.=B).
Column 2 and 5: the blue curve (NMIf) shows the forward matching criteria (regis-
tering B. to A.) while the red one (NMIr) for registering A. to B.. Column 3 and 6:
The combined matching criteria curve (NMlIc) from the forward and reverse registra-
tion process, here the combination is simple addition. NMI is the normalized mutual
information [5].

2.3 Role of Inverse Consistency in Registration

In one dimensional, imposing inverse consistency deterministically means the
hill climbing process should be in pairwise nature: (1,-1)...(8,-8) for the testing
signal over the reference signal. Equivalently, there would be a new matching
criteria curve that is a combination of the forward and reverse matching criteria
curve. The simplest way is to have a non-weighted linear combination [4], which
is equivalently a simple addition, as shown column 3 and 6 in Fig.1. Here, a
critical rule for combining the forward and reverse matching criteria curves un-
der a deterministic sense is that they should be combined in the corresponding
transformation position, i.e. the NMIf value at 0.5 translation have to combine
with the NMIr value at 0.5 translation also. In fact, deterministic consistency
will only give better registration results if a new peak closer to the ground truth
is formed as shown in Fig.1(i), which the transformation pair corresponding to
optimum will be around (-0.8,0.8) instead of (-1.1,-0.5) and also closer to the
ground truth (-0.5,0.5).

3 Stochastic Inverse Consistency in Medical Image
Registration

3.1 Stochastic Inverse Consistent Constraint

As we have stated above, the discrete nature of the information source makes the
matching criteria drive to incorrect maximum, simply combine them determin-
istically will not be an optimal way to utilize the information from the forward
and reverse process. In this paper, we are arguing that one should model inverse
consistency stochastically with the simultaneous consideration of the underlying
stochastic uncertainties within the forward and reverse transformation matrices
and hence the imperfectness of the inverse consistent constraint, i.e,
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(Tho + Ery,) % (To1 + Enyy) = T+ R; (2)
Br, = |Tia —To'| Bpoi = [T —T1y'| ®3)

We adopt a simple absolute difference approach for Er,, and Er,, (Er, is ob-
tained from ET o which will be explained later) to model the stochastic error

properties of the transformation matrix 7o and 7o E respectively since the for-
ward and inverse of the reverse transformation has already set up a loose upper
bound of the error. R; is the error imposed on the imperfectness of the inverse
consistent constraintd. Under this formulation, we can provide more flexibility
on imposing source-destination symmetry between the forward and reverse reg-
istration processes, without compromising accuracy.

To further simplify our current error model, we assume all the elements in
the error matrices have zero mean and are independent to each other. These
matrices will be involved in building the error equilibration matrices for the
Generalized Total Least Solvers in the following section.

3.2 GTLS Formulation

As the stochastic property are not the same for every entry and some of the
entries are error free, in order to solve the problem while considering all the
errors simultaneously, a Generalized Total Least Square (GTLS) [6] approach is
adopted. Consider a overdetermined system of linear equations

AX~B AcR™" BecR™and X € R™*, m>n+d (4)

If the first n; column in A is error free, A can be partitioned into [A;, As] where
A; € R™*™ Ay € R™*™ and n = nj + ng. A GTLS solution of (@) is any
solution of the set AX = A 1X1 +;1\2X2 =B A= [Aq, ;1\2] and B are determined
such that Range(B) C Range(A) and | R5T[AAy, ABIRG || p=|| R [As —
Ag,Bg - }RCI |7 is minimal where Rp € R™*™ and R¢ 6 R(n2td)x(n2+d)
are the given equilibration matrices such that the errors on Ry’ [As, B]Rg" are
equilibrated, i.e. uncorrelated with zero mean and same variance.

Our objective is to solve the fitting transformation matrices under the consid-
eration of the errors in the transformation matrices and the source-destination
symmetric constraint simultaneously by making use of the GTLS property. No-
tice that the last row of the affine transformation matrix is actually error free. By
making use of this property, the transformation matrices can be first transposed
and permuted to fit the GTLS formulation:

Qra=TL*P Qo1 =Tk «P (5)
mvQie = (Tl_zl)T * P mvQa = (Tz_ll)T x P (6)

2 In this paper we test on the 4-by-4 affine transformation matrices, in theory, we
can also enforce the stochastic relationship on non-rigid deformation. Notice that we
didn’t apply our model on rigid transformation due to the orthonormality issue.

3 We simply assume all the entries in R; have the same stochastic uncertainty and set
it as A, ie., R; € R*** with all the entries equal to A\,.
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0001 1000 1000
0100 0001 0100

P = Piy* Pay % Py, Py = 0010 Py = 0010 Poy = 0001 (7)
1000 0100 0010

Q12 will be a 4-by-4 matrix with the form:

0 Tyg(1,1) --- T12(3,1) 0 T21(1,1) --- T21(3,1)
0 T19(1,2) . 0 Toq(1,2) .
Q12 = . . . Q21 = . . . (8)
0 . . . 0 . . .
1 : S Tya(3,4) 1 . s T21(3,4)

So the first column of ()12 and @21 is error free and suit the form of the GTLS
approach stated before. Hence the GTLS formulation of our stochastic inverse
consistent model becomes:

| 7= [i] - ["a2] =] 0

The optimal forward and reverse transformation 77, and T3, are obtained by
performing the permutation and transpose on the GTLS solutions X and Y

Ty = (P« X)T T = (P Y)T (10)

Apart from the input transformation matrices, the error properties are also
necessary to specify the GTLS formulation. The error matrices £g,,, Einvgi.
for Q12, invQ12 are derived as the same in Equ.(@) i.e.,

Eg,, = |Qi2 — invQa1| Einvg,, = |Q21 — invQ2] (11)

and the first column is dropped as the first column of Q15 is error free. The error
matrices Ejpny0,, and Eg,, transformation matrix are formed respectively by:

11—« 1l-—«a
Eianzl = ( ) *EQ12 EQ21 = ( ) *Eianlz (12)
where « is the weighting on the error of the forward transformation matrix To:
_ voxel size of I __ # of points in point set 2 (13)
" voxel size of I " # of points in point set 1

So by imposing the above relationship, the registration result with a higher res-
olution testing image or point matching result with more points in the testing
point set will be trusted more. While in this paper we use this simple assumption
to model the weighting function between the error on forward and reverse reg-
istration results from two images under different resolutions. More complicated
way can be investigated and would be one possibility of our future work.

The error equilibration matrices Rc and Rp are obtained from the Cholesky
decomposition of the error covariance matrices C and D, where C = AT A,

D = AAT, A = [ Bqn R

. A represents the stochastic property of the
Ei’ILUQ21 R’L

Eian12 R’L :| .

error in solving X in Equ.(d), while A matrix in solving Y is
Eq,, Ri
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3.3 Inverse Consistency by Iterative GTLS Solution

After defining the GTLS model for fitting the transformation matrix based on
our stochastic source-destination symmetric model, we set up the whole iterative
process from the registration results 7172 and 751 in order to extract both the
forward transformation matrix 775 and the reverse transformation matrix 75
which are inverse of each other. The input for the iteration process is Q12, Qo1,

invQ12, invQ21 in Equ.(®) and (@).

QY | xo H mv@
me@é?) I Q21

with the corresponding stochastic property in the noise data:

~ ﬂ (14)

E© ; E© ;
o R and i1z R (15)
Ewarn R; EQ21 Ri_

the ’0’ in the brackets is the number of iteration and the solved X (® and Y (©
are:

XO =P la(my)" YO =Pl (my)" (16)
so (X =ineQl)  and P (X©@)xP=QY (17)
(Y(O))*1 = ian%) and P« (Y( )) * P = Q(l) (18)

The corresponding error matrices for the transformation matrices are also up-
dated during the iteration, i.e., getting ES)Q, Eéh)l , ESJJQM, Z(TILLQM by Equ. ()
and ([I2) to fit the input matrices of the GTLS solvers as the transformation
errors should be smaller during the iteration (closer to the ground truth) while
the error matrix R; for the source-destination symmetric constraint is fixed as
the initial input stochastic consistent model is kept unchanged. So all the com-

ponents for the GTLS solvers are updated and the process can be repeated until

(P % X)) T« (P« Y™)T — || < threshold (19)
and the GTLS solution matrices will be:

T = (P« XTI T = (PxY™)T (20)

4 Experiments and Discussion

We have applied our stochastic inverse consistent model on registration of point
sets which representing the human brain in Fig.2. Feature points are selected
from the brain image to act as the testing point set, then a non-rigid mapping,
Gaussian radial basis functions was applied on it to form the reference point set.
Different degree of gaussian noise and different proportion of outliers are added
to both point sets in the experiment. The Robust point matching algorithm
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Fig. 2. (a):Brain image with the extracted point set (the testing point set). (b),(c):
Testing point sets (blue circle) and the reference point sets (black cross). (b) small defor-
mation, noise level = 2SD. (c) large deformation, outlier proportion = 0.5. (d):Forward
wrapping results: small deformation, outlier proportion = 0.1. (e):Reverse wrapping re-
sults: large deformation, noise level = 4SD. Color convention for all the results shown
in the figure: forward process - red:Ti2, green:T75, blue:T;ll, reverse process - red:Tb,
green:Ty;, blue:Tle. The 2nd and 3rd row are the results for small deformation and
large deformation respectively. Column 1 to 3 are the results for different noise level,
column 4 to 6 are for different proportion of outliers. Column 1 and 4 are the errors
computed as sum of squared distance (SSD) between the points in the warped testing
point set and the reference point set for forward process while column 2 and 5 are for
reverse process. Column 3 and 6 are the consistency error computed as || Ti2%T21 —1I ||
for the input and || 77 * 737 — I ||r for the GTLS output.

RPM [2] is run on the pair of point sets to obtain the forward and reverse trans-
formation matrices for our system. The position error of the points is computed
as the sum of squared distance (SSD) between the points in the warped testing
point set and the reference point set for the evaluation of the transformations
obtained. We also compare the error on consistency by || Ti2 * To; — I ||p. As it
is expected, our stochastic inverse consistent model generates a perfect source-
destination symmetric registration results from the input forward and reverse
transformation matrices which are inconsistent in nature.

Moreover, our GTLS solutions will produce results those will always better
than the worst and sometimes be the best as shown in column 1 and 2 in Fig.2.
Actually proper modelling of individual element of the error matrices, their re-
lationship within the matrix and also the interrelation among the error matrices
will be the potential mean to improve the registration results through consis-
tency so that the GTLS solutions always yield the best results. This modelling
is depended on the actual data and also the corresponding matching criteria
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Fig.3. Column 1: two different PD-weighted MRIs. Row 1 and 2 are the forward
and reverse registration results. Forward results - red: T2, green:T75, blue:T{ll, reverse
results - red:Ts1, green:T5, blue:Tlgl. White: contour of the unregistered testing image
overlay the reference image.

which is very complicated and will be investigated in our future work. In real
registration problem, ground truth is not available and the complicated input
image or point data make it very difficult to determine the forward or reverse
transformation is superior than the other. Hence our stochastic inverse consistent
model can always produce better result in terms of robustness. Fig.3 shows the
registration results for 2 PD-weighted MRIs. The inconsistency of the forward
and reverse process is shown in the figures by the red and blue contours. 17,
and T3 is in-between their inputs and also perfectly inverse to each other. In
addition, the observable registration errors in 712 and T5; from the red contours
are not appeared in our GTLS solutions which show that the stochastic model
produce better registrations.

5 Conclusion

We presented a novel framework for modelling inverse consistency stochastically,
by simultaneously considering the stochastic uncertainties on both of the trans-
formation matrices and the source-destination symmetric constraint through
the Generalized Total Least square fitting from the transformation matrices
obtained after the registration process. With our stochastic inverse consistent
model, source-destination symmetry can be enforced perfectly with the consid-
eration of any other similarity constraints. This work is supported by HKRGC
CERG Grant HKUST6151/03E.

References

1. Gary E. Christensen and Hans J. Johnson. Consistent image registration. IEEE
Trans. Med. Imaging, 20(7):568-582, 2001.

2. Haili Chui and Anand Rangarajan. A new algorithm for non-rigid point matching.
In CVPR, pages 2044-2051, 2000.



196 S.K. Yeung and P. Shi

3. Hongyu Guo, Anand Rangarajan, S. Joshi, and Laurent Younes. Non-rigid regis-
tration of shapes via diffeomorphic point matching. In ISBI, pages 924-927, 2004.

4. Oskar M. Skrinjar and Hemant Tagare. Symmetric, transitive, geometric deforma-
tion and intensity variation invariant nonrigid image registration. In ISBI, pages
920-923, 2004.

5. Colin Studholme, Derek L. G. Hill, and David J. Hawkes. An overlap invariant entropy
measure of 3d medical image alignment. Pattern Recognition, 32(1):71-86, 1999.

6. S. Van Huffel and J. Vandewalle. Analysis and properties of the generalized total
least squares problem AX ~ B when some or all columns in A are subject to error.
SIAM J. Matriz. Anal. Appl., 10:294-315, 1989.



	Introduction
	Inverse Consistency in Medical Image Registration
	Discrete Nature of the Information Sources
	Deterministic Inverse Consistent Constraint
	Role of Inverse Consistency in Registration

	Stochastic Inverse Consistency in Medical Image Registration
	Stochastic Inverse Consistent Constraint
	GTLS Formulation
	Inverse Consistency by Iterative GTLS Solution

	Experiments and Discussion
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




