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Abstract—Building a video retrieval system that is robust and
reliable, especially for the marine environment, is a challenging
task due to several factors such as dealing with massive amounts
of dense and repetitive data, occlusion, blurriness, low lighting
conditions, and abstract queries. To address these challenges, we
present MarineVRS, a novel and flexible video retrieval system
designed explicitly for the marine domain. MarineVRS integrates
state-of-the-art methods for visual and linguistic object repre-
sentation to enable efficient and accurate search and analysis of
vast volumes of underwater video data. In addition, unlike the
conventional video retrieval system, which only permits users to
index a collection of images or videos and search using a free-
form natural language sentence, our retrieval system includes an
additional Explainability module that outputs the segmentation
masks of the objects that the input query referred to. This feature
allows users to identify and isolate specific objects in the video
footage, leading to more detailed analysis and understanding
of their behavior and movements. Finally, with its adaptability,
explainability, accuracy, and scalability, MarineVRS is a powerful
tool for marine researchers and scientists to efficiently and
accurately process vast amounts of data and gain deeper insights
into the behavior and movements of marine species.

Index Terms—Video retrieval; Referring video segmentation;
Underwater video.

I. INTRODUCTION

Video retrieval is a challenging task in any domain, but it
becomes even more complex in the marine environment due to
several factors. These include dealing with massive amounts
of dense and repetitive data, which can make it challenging
to identify and retrieve specific video clips. Additionally,
occlusion caused by marine organisms, blurriness due to water
currents, and low lighting conditions all make it difficult to
capture clear and high-quality video data. Another significant
challenge is dealing with abstract queries, where users may not
have specific search parameters in mind, making it difficult
to narrow down the search results effectively. Overcoming
these challenges requires advanced technologies such as ma-
chine learning, artificial intelligence, and computer vision
algorithms, as well as a deep understanding of the marine
environment and the behavior of marine organisms.

Despite the importance of video retrieval in the marine
domain, there is a lack of research in this area. This presents
a significant opportunity to develop new methods and tech-
nologies to address the unique challenges of retrieving and
analyzing underwater video data. Our Marine Video Retrieval
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System is one such technology that has been developed
to revolutionize the way marine researchers, scientists, and
experts search and analyze underwater videos.

MarineVRS is a comprehensive video retrieval system that
allows users to easily search for and retrieve videos based on
specific criteria such as location, time, species, and behavior. It
was designed to meet the unique needs of marine researchers
and scientists who have to deal with vast amounts of video
data collected from various underwater sources. With the help
of MarineVRS, they can easily search for and retrieve specific
video clips, saving time and resources that would otherwise
be spent manually searching through hours of footage.

One of the key strengths of MarineVRS is its advanced
search capabilities, which enable users to search for videos
based on multiple parameters like location, time, depth,
species, and behavior. By integrating state-of-the-art vision-
language models like CLIP [1] to resolve cross-modality am-
biguity, the system achieves high accuracy while maintaining
efficiency. This feature makes it possible for researchers and
scientists to quickly and efficiently find the videos they need,
saving them valuable time and resources that would otherwise
be spent in manual searches through hours of footage.

MarineVRS also boasts a range of cutting-edge features that
make it a highly effective tool for analyzing underwater video
data. For instance, it can output segmentation masks of the
target objects, allowing users to easily identify and isolate
specific objects in the video footage. This feature enables
more detailed analysis and understanding of their behavior
and movements, thus helping researchers and scientists to gain
insights into the interactions between different marine species
and better understand their roles within the ecosystem.

Overall, MarineVRS is a highly adaptive, explainable, and
accurate system that is scalable to enormous datasets. It can
be customized to meet the specific needs of individual users
and organizations, making it highly versatile and flexible.
Additionally, MarineVRS is highly explainable, meaning that
users can understand how the system arrives at its results,
allowing them to make informed decisions about the data. The
system has been rigorously tested to ensure that it produces
reliable and precise results. In summary, MarineVRS is an
essential tool for marine researchers and scientists, providing
them with the means to efficiently and accurately process vast
amounts of data and gain deeper insights into the behavior and
movements of marine species.
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II. RELATED WORK

In this section, we review some of the recent and funda-
mental works on image and video retrieval systems, referring
image and video segmentation, and marine-related datasets.

A. Retrieval System

Image retrieval systems involve searching for images that
match a user’s query, while video retrieval systems involve
searching for videos that match a user’s query. In image
retrieval, traditional methods include content-based image
retrieval, which searches for images based on their visual
features such as color, texture, and shape, and text-based image
retrieval, which searches for images based on their associated
text metadata. More recent approaches utilize deep learning
techniques such as convolutional neural networks (CNNs) to
extract features from images and match them with query
features using similarity measures. In video retrieval, similar
techniques are used, with the additional challenge of dealing
with the temporal aspect of videos. Methods include shot
boundary detection, keyframe extraction, and feature extrac-
tion from video frames or segments. Deep learning techniques
such as CNNs and recurrent neural networks (RNNs) can be
used to extract spatio-temporal features from videos and match
them with query features. Both image and video retrieval
systems have numerous applications in various fields such
as healthcare, entertainment, and surveillance. Recently, there
have been several works that utilize CLIP [1] in retrieval
systems. For example, CLIP2Video [2] is an end-to-end model
for video-text retrieval that leverages a pre-trained image-
language model to learn joint representations of images and
text. The model consists of two stages: image-text co-learning
and temporal relation enhancement and achieves state-of-
the-art performance on benchmark datasets. Another work,
CLIP4CLIP [3] is a video retrieval framework that utilizes
CLIP [1] as a similarity metric to retrieve videos with similar
content or style. Recently, there have been several develop-
ments in the field of vision-language pretraining for retrieval
tasks. For instance, the BLIP [4] model has shown significant
improvements in performance for image and video retrieval
tasks, demonstrating the versatility and effectiveness of the
CLIP [1] model for various retrieval tasks and highlighting its
potential for a wide range of applications.

B. Referring Image and Video Segmentation

Referring image segmentation is a challenging task that
involves generating pixel-wise segmentation masks for re-
ferred objects in images based on textual descriptions. Hu
et al. (2016) [5] first introduced this task, with early works
focusing on extracting visual and linguistic features separately
from CNNs and RNNs, respectively, and then concatenating
them for multi-modal features. Recently, transformer-based
multi-modal encoders have been used to fuse visual and
linguistic features, capturing early interaction between vision
and language information. CRIS leverages CLIP [1] and text-
to-pixel contrastive learning to improve the compatibility of
multi-modal information and cross-modal matching. Referring

video object segmentation (RVOS) is a recent extension to
video, with URVOS [6] being the first framework followed by
PMINet [7] and CITD [8] ReferFormer [9] and MTTR [10]
are two state-of-the-art works that use transformers to decode
or fuse multi-modal features. In this work, we propose a new
explainability module that is more efficient and accurate than
ReferFormer.

C. Marine-related Datasets

To better understand marine life and ecosystems, numerous
datasets have been created for different tasks such as classifi-
cation, retrieval, detection, and segmentation. In this section,
we will provide a brief review of some recent works that have
focused on a marine-related domain that covers a diverse range
of marine organisms, such as fish, coral reefs, turtles, whales,
and so on.

One such dataset is the Brackish dataset [11], which con-
tains annotated image sequences of fish, crabs, and starfish
captured in brackish water with varying degrees of visibility.
This open-access underwater dataset includes 25,613 anno-
tations manually annotated using a bounding box annotation
tool. The MOUSS dataset [12] is another example, gathered
using a horizontally-mounted, grayscale camera positioned 1-
2 meters above the sea floor, illuminated solely by natural
light. MOUSS seq0 includes 194 images of Carcharhini-
formes, while MOUSS seq1 includes 720x480 pixel images of
Perciformes, each assigned a species label by a human expert.

The WildFish dataset [13] is a large-scale benchmark that
was developed for the classification task. It consists of 1,000
fish categories and 54,459 unconstrained images. In the field
of image enhancement, the Underwater ImageNet dataset [14]
is composed of subsets of ImageNet [15] containing pho-
tographs taken underwater, with distorted and undistorted sets
of underwater images consisting of 6,143 and 1,817 images,
respectively.

Another dataset is OceanDark [16], which is a novel low-
lighting underwater image dataset created for quantitative and
qualitative evaluation of proposed image enhancement frame-
works. Finally, the Holistic Marine Video (HMV) dataset [17]
provides a long video simulating real-time marine videos,
annotated with scenes, organisms, and actions. It serves as
a large-scale video benchmark for multiple semantic aspect
annotations and provides baseline experiments for the recog-
nition of marine organism actions, and the detection and
recognition of marine scenes.

The latest marine-related dataset is the Marine Video Kit
(MVK) dataset [18] comprised of 1379 underwater videos
captured at various times and places throughout the year in
36 locations across the globe. The length of the videos ranges
from 2 seconds to 4.95 minutes, with a mean and median
duration of 29.9 and 25.4 seconds, respectively, for each video.
Although the entire duration is slightly longer than 12 hours,
the dive time can be up to a thousand hours. We will evaluate
our system on this MVK dataset [18].
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Fig. 1: Overview of Marine Video Retrieval System. Similar to other retrieval systems, the user’s input is a query that
describes the requested content in the video database; and then, the system responds with a ranking result of all relevant videos
which exist in the database. In addition, by utilizing the explainability module, our system has the capability to embed the
segmentation mask of objects or events in the retrieval results. This module facilitates the end-user’s job in searching, verifying,
and filtering video’s content.

III. METHOD

A. Overview

Figure 1 illustrates the proposed Marine Video Retrieval
system which consists of two modules: Retrieval and Ex-
plainability. As stated before, our system will mainly focus
on the marine domain which is challenging and hasn’t been
well explored. In the beginning, our Retrieval module will
take MVK dataset [18] as input, then we pre-process videos
to get CLIP [1] features and metadata for indexing. With each
text-based query, we will search and rank relevant videos and
output them for use as input of the Explainability module.
Next, the Explainability module takes a video from Retrieval
Module’s output as an input for Visual Encoder and a text
prompt for CLIP [1] Text Encoder. The extracted visual and
text features are fused by Multimodal Early Fusion before
feeding into Visual-Linguistic OceanFormer to get final seg-
mented masks. Finally, our MarineVRS system will output a
set of videos along with their segmented masks or segmented
videos which have top similarity scores between the input text
query and videos from MVK dataset [18].

B. Retrieval Module

The retrieval module of a marine video retrieval system is
responsible for returning relevant videos to a user based on

their query. In our system, we use the Vision-Language Pre-
Training Model CLIP [1] to embed both visual and textual
data into a shared embedding space, allowing us to calculate
similarity scores between the query and videos. However, in
order to make this process efficient and scalable, we split the
retrieval module into two stages: the indexing stage and the
retrieval stage. Figure 1 top illustrates the overview of our
retrieval module.

During the indexing stage, we preprocess and store the
videos and their metadata in a vector database while main-
taining all relevant information. This indexing process allows
for faster retrieval and ensures that relevant videos are not lost
due to compression or other factors. In the indexing stage of
our marine video retrieval platform, we perform several pre-
processing steps on the video data to effectively store it in the
vector database without losing any information. These pre-
processing steps include filtering, normalization, and group-
ing. First, we filter out blurry images caused by motion or
obstruction, because they contain irrelevant information for
retrieval purposes. Next, we normalize the images to ensure
that they are oriented correctly, as they may have been rotated
by multiples of 90 degrees. Finally, we group segments of
very similar images caused by stationary viewpoints into one
to prevent them from overcrowding the search results. After
these pre-processing steps, we use the current state-of-the-
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Fig. 2: Explainability Module. It takes a video from Retrieval Module’s output as an input for Visual Encoder and a text prompt
for CLIP [1] Text Encoder. The extracted visual and text features are fused by Multimodal Early Fusion before feeding into
Visual-Linguistic OceanFormer to get final segmented masks.

art Vision-Language Pre-Training Model CLIP [1] to project
visual and textual data into the same embedding space.

In the retrieval stage, we use the power of both CPU and
GPU to efficiently calculate the similarity scores between the
query and the stored videos. This stage involves loading the
query and the video database into memory, computing the
similarity scores, and then ranking the relevant videos based on
their scores. This process can be computationally expensive,
but by leveraging the power of both CPU and GPU, we can
achieve fast and accurate results.

C. Explainability Module
As shown in Figure 2, the explainability module aims to

identify and predict pixel-wise masks of objects within visual
data, such as images and videos, based on natural language
expressions that refer to these objects. This complex task,
known as referring segmentation, presents a higher level of
difficulty compared to conventional segmentation tasks, such
as semantic and instance segmentation. The main challenges
stem from the need to manage open-vocabulary categories and
accommodate variations in language syntax, as well as the
inherent complexity of the visual data itself.

In the case of the marine dataset, the ambiguous relation-
ships between different objects and their surrounding envi-
ronment further complicate the task. This ambiguity makes it
particularly challenging to accurately distinguish and identify
the objects being referred to in the visual data.

Our explainability module consists of three main compo-
nents: Visual Encoder, Text Encoder, and Visual-Linguistic
OceanFormer. The Visual Encoder is a module that extracts

visual features from the input images or videos. It can use
various techniques such as convolutional neural networks
(CNNs) or other computer vision techniques to identify and
extract features that are relevant to the task at hand. The
Text Encoder is a module that processes the input text data,
usually in the form of natural language, to extract meaningful
textual features. This module can use various techniques such
as recurrent neural networks (RNNs), transformers, or other
natural language processing (NLP) techniques to understand
text data and extract relevant features. Then, the Multimodal
early fusion module is used to combine the visual and textual
features extracted by the Visual Encoder and Text Encoder,
respectively, at an early stage of the processing pipeline. This
can help to create a more integrated representation of the
data that incorporates both visual and textual information,
potentially improving the model’s performance and reducing
the risk of information loss. By combining visual and textual
features at an early stage, the explainability module can create
a more informative query to align vision and language features
and indicate the objects referred to by text in the images
or videos. This approach could enhance the ability of the
module to identify important visual cues and language cues
that contribute to the model’s decision-making process and
provide insights into how the model arrived at its predictions.

The resulting multimodal features could then be fed into the
Visual-Linguistic OceanFormer module for further processing
and refinement. It uses a transformer-based architecture to
create informative queries that help align the vision and
language features and identify the objects referred to by the
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text in the images or videos. This module can help the model
to better understand the relationships between visual and
textual information and produce more accurate predictions.
These query features, together with the last visual feature
map, produce the high-resolution segmentation mask. During
inference, the query with the highest confidence score is
selected as the target object for the final output. Overall,
the explainability module is designed to provide insights into
how the model arrived at its predictions. By extracting visual
and textual features and combining them in a meaningful
way, the module can help identify important visual cues and
language cues that contribute to the model’s decision-making
process. This can be valuable in helping users to understand
and interpret the model’s output, as well as identify potential
biases or errors in the model.

The model is first trained and evaluated on four well-
established public datasets: RefCOCO [19], RefCOCO+ [19],
G-Ref [20], and Referring YoutubeVOS [6]. These datasets
provide a solid foundation for the model to learn and un-
derstand a wide range of object categories and language
structures. After this initial training phase, the model is fine-
tuned on a smaller selection of marine videos, which helps
it adapt to the unique challenges presented by the marine
environment. Once the fine-tuning process is complete, the
model is integrated into our platform, where it can effectively
segment objects in visual data based on natural language
expressions. This approach enables the explainability module
to deliver accurate and reliable object identification and seg-
mentation, even in the challenging and complex context of
marine environments.

Loss function: Our goal is to generate a small group of
N predictions, from which we will choose the best one as
the final object. We use the instance-matching strategy to
supervise candidate instances during network training. The
predicted set is denoted by ŷ = {ŷi}Ni=1, which consists of two
components: p̂i ∈ R indicating the probability of the instance
corresponding to the referred object, and ŝi ∈ RT×H×W as the
segmentation mask. We assume that the image is equivalent
to a video with a duration of T = 1, and the ground-truth
object is represented as ŝi ∈ RT×H×W since there is only
one referred object. To train the network, we minimize the
matching cost Lmatch by selecting the best prediction i-th from
N candidates.The matching cost measures the quality of the
match between two sets of objects, where each object has
a query feature and a mask prediction. It’s calculated using
three loss functions: Lcls, Lmask, and Ldice. The first loss
function, Lcls, compares the predicted and actual probabilities
that a query feature corresponds to the referred object using
Binary Cross-Entropy loss. The second loss function, Lmask

supervises the mask prediction and measures the difference
between the predicted and actual masks at the per-pixel
level using Cross-Entropy loss. The third loss function, Ldice

improves the dice score by measuring the overlap between
the predicted mask and the ground truth mask for the referred
object. The goal is to minimize the matching cost by finding
the best prediction from N candidates while ensuring that

other queries don’t represent the referred object. We use the
same method as Mask2Former [21] to calculate this loss,
and the corresponding loss function coefficients are denoted
as γcls, γmask, and γdice. The objective is to minimize the
Lmatch = γmaskLmask + γdiceLdice of the matched query and
prevent other queries from representing the referred object.
Therefore, the matching cost and loss function is defined as:

L(y, ŷ, i) = Lmatch(y, ŷi) +

N∑
j=1
j ̸=i

γclsLcls(p̂j , 0). (1)

During the inference, the explainability module generates a
set of predictions, with each prediction consisting of a query
feature and a segmentation mask. The query with the highest
confidence score is selected as the target object for the final
output. However, due to the memory limitations of the current
system (such as GPU memory), it may not be possible to
process an entire video at once. Therefore, to accommodate
this constraint, the explainability module processes each video
in chunks of 32 frames at a time. For each chunk, the module
generates a set of predictions and outputs the segmentation
mask of the referred object (if any). This approach allows
the explainability module to provide insights into the model’s
decision-making process and identify the objects referred to by
the text in the video, while also managing the computational
and memory requirements of the system.

IV. EXPERIMENTS

In this section, the implementation details and experimental
results of the proposed system are provided.

A. Implementation Details

Our whole system is deployed and tested on a local PC with
the following specifications, CPU Intel Xeon Silver 4316 (30M
Cache 2.30 GHz), GPU NVIDIA RTX 3090 24GB, 64GB for
RAM, and 2TB for storage.

For the Explainability module, our implementation is based
on the PyTorch framework and involves freezing both the
CLIP Visual and Text Encoder during the training process. To
initialize the visual encoder and pixel decoder, we leverage
the pre-trained Mask2Former model [21]. During training, we
resize the images to have a short side of 480. We set the
coefficients for the losses as γcls = 2, γmask = 5, and
γdice = 5, with the feature dimension C set to 256. We use
the AdamW optimizer [22] to train the network for 100, 000
iterations on the RefCOCO, RefCOCO+, and G-Ref datasets.
The initial learning rate is set to 0.0001 and is reduced by a
factor of 0.1 at the 70, 000th iteration.

For the Retrieval module, we employed the novel vector
database Milvus [23], [24] to efficiently index and search
large-scale video datasets, providing faster and more accurate
retrieval of relevant content. To demonstrate our system, we
used the user-friendly platform Gradio [25], which simplified
the user interface and allowed us to showcase our system’s
performance to wider users. As our system expands, we can
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scale up our infrastructure to accommodate more users without
sacrificing performance.

B. Quantitative Results

TABLE I: Comparison with the state-of-the-art methods
on Ref-COCO, Ref-COCO+, G-Ref and Ref-YoutubeVOS
datasets on IoU and J&F . “-” denotes that the result is not
available.

RefCOCO RefCOCO+ G-Ref Ref-YoutubeVOSMethod IoU IoU IoU J&F
CRIS [26] 70.47 62.27 59.87 -
LAVT [27] 72.73 62.14 61.24 -

ReferFormer [9] 71.1 64.1 64.1 55.66
Ours 76.15 65.02 66.87 59.15

Our method consistently surpasses other state-of-the-art
methods across all datasets. In the RefCOCO dataset, our
approach exhibits improvements of 8.07%, 4.71%, and 7.11%
over CRIS, LAVT, and ReferFormer, respectively. For the
RefCOCO+ dataset, our method achieves performance boosts
of 4.41% compared to CRIS, 4.66% over LAVT, and a modest
1.43% over ReferFormer. Turning to the G-Ref dataset, our
technique excels with an 11.72% advantage over CRIS, 9.2%
over LAVT, and a 4.31% lead against ReferFormer. Lastly, in
the Ref-YoutubeVOS dataset, our method exhibits a substantial
6% improvement over ReferFormer. These results emphasize
the effectiveness and robustness of our method in comparison
to other approaches in diverse benchmarks.

C. Qualitative Results

Figure 3 shows some examples from our MarineVRS sys-
tem. With text prompts as input, our system will search and
retrieve top results (in these examples, we selected the top 3
results) that relate to an object recognition and tracking system
that is capable of detecting and tracking marine species’
movement in an underwater environment. The use of object
masks in the output videos provides a powerful tool for
achieving explainability and visual evidence of the system’s
performance. This level of explainability can be particularly
beneficial in situations where the accuracy and reliability
of the system’s output are critical, such as in the field of
marine biology where researchers may be using the system to
monitor the behavior of different marine species. Incorporating
object masks in the output videos is an excellent method to
provide a visual representation of the system’s performance
and to help users comprehend how it detects and tracks
objects in real-world settings. The use of object masks can
help viewers see precisely where the system identifies marine
species and how it tracks their movement over time, allowing
for a deeper understanding of the system’s functioning. The
approach can be particularly useful in domains where accuracy
and reliability are critical, such as marine biology.

D. Running time

We studied the overhead of our system by providing a
breakdown of the end-to-end running time. Overall, our system
takes around 1 second to display the retrieved and segmented

videos since the system received the text query input. While
having impressive results, the Retrieval module of our system
relies on a vector data management system - Milvus [23] to
efficiently index and search large-scale videos on a local PC
and thus have more overhead compared to other commercial
systems which utilizes a much more complex and expensive
data management system and are deployed on powerful servers
or clouds. On the other hand, our Explainability module not
only achieves state-of-the-art performance but also maintains
real-time inference speed (∼ 31 FPS) which is remarkable for
any online platform.

V. CONCLUSION

In conclusion, the MarineVRS is a powerful video retrieval
system designed to tackle the challenges of analyzing un-
derwater video data. By integrating state-of-the-art methods
for visual and linguistic object representation, the MarineVRS
provides efficient and accurate search capabilities for vast
volumes of data. Furthermore, MarineVRS is highly adaptable,
explainable, accurate, and scalable, making it an essential tool
for marine researchers and scientists to gain deeper insights
into the marine environment.

Our system has a wide range of applications in various com-
puter vision tasks, such as searching and browsing huge video
archives, indexing and archiving multimedia, surveillance, and
monitoring for underwater species or coral conservation, and
so on. In addition, as deep learning requires a substantial
amount of labeled training data, it is intriguing how an image
or video retrieval might be utilized to help prepare training
datasets for improving deep model training.

In the future, we intend to enlarge our investigation of
potential solutions to improve the selection and re-ranking of
videos in our system. Specifically, we plan to utilize the rank-
ing of videos received from a selection network to improve
the identification of relevant matches for video queries. By
reducing the need to scan through vast volumes of data, this
strategy will increase the effectiveness and efficiency of our
retrieval system. Further improving the system’s scalability
without sacrificing retrieval performance, we intend to look
into new network architectures for both modules. Our goal
is to develop a very flexible and effective video retrieval
system that can manage enormous volumes of data while
giving users accurate and quick results. By following these
research directions, we intend to create a system that is more
complete and capable of meeting the changing requirements
of marine researchers and scientists.
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(a) Example 1: Search for shark (b) Example 2: Search for turtle

Fig. 3: Our retrieval system’s performance and usability are demonstrated by a prototype application to prospective users and
stakeholders.
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