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In the object segmentation by active contours, an initial contour provided by user is often required. This
paper extends the conventional active contour model by incorporating feature matching in the formula-
tion for automatic object segmentation, yielding a novel matching-constrained active contour. The key to
our formulation is a mathematical model of the relationship between interior feature points and object
shape, called the interior-points-to-shape relation. According to this interior-points-to-shape relation, we
are able to achieve the automatic object segmentation in two steps. Specifically, we are able to estimate
the object boundary position given the matched interior feature points. Afterwards, we are able to further
optimize the boundary position in the active contour framework. To obtain a unified optimization model
for this task, we additionally formulate the matching score as a constraint to active contour model, result-
ing in our matching-constrained active contour. We also derive the projected-gradient descent equations
to solve the constrained optimization. In the experiments, we show that our method achieves automatic
object segmentation, and it clearly outperforms the related methods.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Automatic object segmentation is desirable in many higher
level computer vision tasks. Active contour model is one of the
most well-known models for object segmentation. However, it
generally requires the user to provide a contour curve sufficiently
close to the object boundary to initiate the segmentation. Hence,
the existing segmentation frameworks of active contours are gen-
erally semi-automatic. In Fig. 1, we show how the initialization
affects the result of conventional affine shape prior based active
contour [6,40].
1.1. Related works

Relaxation of initialization for active contours. Relaxation of the
user initialization in active contours for object segmentation is
an emergent research topic [43,33,25,42,41]. Previous work, e.g.
[23], for automatic initialization of the edge-based active contours
selects the initial contours that gives approximately the minimum
energy. In other words, it is assumed that most of the edges in the
image are of interest so that all of those should be considered in
the optimization. This assumption is valid for the images studied
in [23] but it cannot be generalized.

Global optimization of active contour with shape priors for
automatic object segmentation. Recently, active contour with shape
priors have been popularized due to a series ground-breaking
works, e.g. [8,22,35] to list a few. The global optimization
techniques for some region-based and edge-based active contour
models have been proposed in [7,37]. In [7], Cremers et al.
proposed a branch-and-bound method for approximating the
exhaustive search in a region-based active contour with shape
prior modeling. Schoenemann and Cremers in [36,37] proposed a
functional ratio energy for characterizing the object boundaries.
The optimization is achieved via minimum ratio cycle algorithm
by Lawler [21]. These global optimization methods do not require
initial contour. Hence, these methods achieve automatic object
segmentation. The idea behind these methods is to approximate
the exhaustive search of the globally optimal contour curve over
the entire image domain. These methods provide efficacious
numerical solutions to global optimization of many active contour
models. However, it can be observed that sometimes the object of
interest is one of the suboptimal solutions to the active contour
models, as shown in the experiment section of this paper.
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Prior works on constrained implicit curve evolution. A pioneering
work on incorporating constraints in the level set based segmenta-
tion framework was [34], in which Paragios proposed the first
effective way for leveraging sparse control points as user input in
level set based segmentation framework. In his paper, control
points, a.k.a. landmarks, were chosen by the user, and an implicit
shape prior model was constructed from the control points. Our
work differs from his in several aspects. First, Paragios’ work
provides a natural model of the relationship between the implicit
contour and the points near it, whereas we model the relationship
between implicit contour and the points inside the contour.
Second, Paragios considered the user-input control points as a soft
constraint formulated in the objective function. In contrast, we
consider matching as a hard constraint because of the useful
concept of initial feasible solution in constraint optimization which
allows us to unify the two-step matching and segmentation frame-
work into one single optimization model. Lastly, our framework
requires an implicit shape representation other than the
conventional level set representation, and the derivation of the
gradient descent algorithm has to be different.

Affine invariance in active contours. Imposing affine invariance in
active contour is an active research topic in recent years. Foulon-
neau et al. [12] proposed the first affine invariant active contour
based on shape moments. It is a marvellous idea to measure affine
invariance of any implicit contour using moments. Bryner et al. [2]
also proposed to impose affine invariance in the shape analysis
based on elastic Riemannian metric. More recently, and Bryner
and Srivastava [1] proposed to further impose the affine invariance
in the Bayesian active contour formulation. In this work, we adopt
a different and simpler approach.

Relations between object matching and segmentation. Object
matching based on locally discriminative feature matching auto-
matically finds a set of points on the object of interest in the image
[27,26,15] achieving coarse object localization. Nevertheless, the
matching correspondences established by object matching does
not necessarily defines the object boundary precisely.

1.2. Methodology

We address the automatic object segmentation by active con-
tour following a divide-and-conquer strategy. We consider the
problem of automatic object segmentation as a unity of two sub-
problems: the object detection and the boundary locating. Unlike
the global search methodology in [7,37], the object detection can
automatically provide the coarse localization of the object with a
relatively high confidence. We expect to obtain the segmentation
with the initialization provided by the object detector. The philos-
ophy is that if the object detection cannot be done properly, then the
object segmentation is also hopeless. We aim at extending the for-
mulation of active contour models by using object detection. There
exist many effective object detectors based on classification, e.g.
Fig. 1. The importance of initialization. (a) Bad initialization which gives an unsatisfacto
gives an encouraging result in (d).
the Haar-like feature based detectors [39] and the HOG descriptor
based detectors [9] as well as object matching [27]. We consider
object matching specifically for our task, since it can offer richer
descriptions of the object, including its size and orientation.
1.3. Contributions

Our contributions of this paper mainly lie in three aspects.

1. We obtain a mathematical model of the relationship
between the interior points and the shape contour. This
model immediately gives rise to a two-step computational
framework for automatic object segmentation. Based on
this model, we are able to estimate the boundary contour
given the matched interior points. Afterwards, the gener-
ated contour can be further optimized in the active contour
framework because of it is in the form of implicit surface.

2. In addition, we formulate the automatic object segmenta-
tion with object matching and active contour as a novel
constrained optimization model, which is called the match-
ing-constrained active contour model. The initial contour
generated by using the feature matching is the initial feasi-
ble solution to the constrained optimization.

3. We derive the projected-gradient descent equations for
solving the constrained optimization.

Our approach may be considered conceptually similar to the
frameworks of face feature detection [10]. In these frameworks,
an initial guess of the face feature points is generated according
to the face detection. Afterwards, the face feature points will be
aligned to the face in the image. These frameworks were developed
for faces rather than general objects. Besides, the integration of the
matching and active contour to form one unified optimization
model is numerically advantageous, while being rarely explored.
1.4. Organization

The rest of the paper is organized as follows. In Section 2, we
describe the computational framework for automatic object
segmentation based on object matching and active contour. In
Section 3, we introduce our mathematical model of the
affine-invariant interior-points-to-shape relation. In Section 4, we
present our unified constrained optimization model of the
framework, namely the matching-constrained active contour, and
the projected gradient descent algorithm. In Section 5, we evaluate
our method for automatic object segmentation on real images of
cluttered scenes, we also compare our method with the state-
of-the-art methods on example based object segmentation and
we present the associated quantitative analysis with discussions.
We conclude the paper with discussions in Section 6.
ry segmentation result in (b) (see the details in text). (c) Good initialization which



Fig. 2. Illustration of the feature point matching (with errors).
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2. A computational framework for automatic object
segmentation based on object matching and active contour

In this section, we describe a computational framework for
automatic object segmentation based on object matching and
active contour.

In object matching, the feature point matching often begins
with an interest point detection on a pair of images as in [27]. Then
the similarity between all possible pairs of matches are calculated.
Finally, the matching algorithm will assign a set of feature points in
one image, possibly a subset of the entire feature set, to a set of
feature points in the other image according to the point-wise
similarity. A correspondence is often represented by using binary
variable, i.e. 1 means matched 0 means unmatched. In our paper,
we will consider one image as an object template, and the task is
known as object matching. The principle of the object matching
is illustrated in Fig. 2, where the dots in two images are the feature
points, and the lines across the images visualize the matching
correspondences.

With the point correspondences established by the matching,
we are able to solve the parameters of the transformation from
the template object to the object in the image, and we are able
to generate a contour in the image by, for example, applying the
same transformation to the boundary contour of the object in the
template. Ideally, we may use this contour to initialize the active
contour. An example of the active contour given such a contour
is shown in Fig. 3.

To construct this straightforward framework, we will have to
overcome a major technical difficulty in this work, i.e. finding a
contour representation, such that

1. the initial contour provided by matching is sufficiently close to
the object boundary in the image, in order to facilitate the
object segmentation by active contour, and

2. the contour provided by matching can be further optimized in
the active contour framework.
Fig. 3. Active contour with an initial contour. (a) Initial contour. (b) Converged
solution.
To meet the former requirement, a contour representation
which can be transformed according to the transformation of
interior feature points will be needed. We call such contour repre-
sentation as a transformation-invariant contour representation.
Regarding the latter requirement, the implicit surface, which is
known as a geometric (implicit) contour representation, is often
adopted in the active contour framework. The argument on the geo-
metric representation against the parametric representation can be
found in the literature of active contours [4,5]. To summarize, we
require an implicit contour representation which can be transformed
according to the transformation on the interior feature points.

3. An implicit transformation-invariant contour representation

In this section, we deal with the aforementioned major techni-
cal difficulty. Specifically, we will propose an implicit contour rep-
resentation which is determined by the positions of interior points.
In addition, we impose affine-invariance on the proposed implicit
contour representation to fulfill our requirements.

3.1. An implicit contour representation parameterized by positions of
interior points

In this subsection, we propose an implicit contour representa-
tion determined by the positions of interior points, such that the
contour representation can be sufficiently accurate and it changes
according to the positions of interior points.

The shape of the template object can be represented by its
silhouette. The shape silhouette of an object can be defined as a
binary function Hoðx; yÞ as follows:

Hoðx; yÞ ¼
1; ½x; y� 2 X;

0; ½x; y� 2 X;

�
ð1Þ

where X is the object region and X is the non-object region. This
definition can be used to define the object boundary contour of
the object shape, denoted as C, which is written as follows:

C ¼ x; yjkrHoðx; yÞk– 0f g: ð2Þ

At the first glance of the above formulation, we would expect
various ways for constructing this object region indication function
Ho. For example, we can define Ho ¼ Hð/ðx; yÞÞ, where H is a
Heaviside function and / is a signed distance function, and it is
therefore closely related to the so-called implicit contour represen-
tation popularized in the last decade in the literature of level set
method based segmentation [31,5,32].

To find the optimal contour representation we propose to adopt
the following functional optimization problem:

H�e ¼ argmin
He2S

EðHeÞ;

EðHeÞ ¼
Z
D
jHo � Hej2 dxdy;

ð3Þ
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where D is the entire image domain, He is the approximate of Ho,
where Ho is the black-white object shape silhouette in the template,
and S denotes the solution space of He.

In our context, we require He to be determined by the set of the
position vectors of feature points f~pg ¼ f~p1;~p2; . . . ;~pNg, i.e.
He ¼ Heðf~pgÞ. This He represents the interior-points-to-shape
relation.

If we consider the feature points f~pg as randomly distributed
points, we may adopt the radial basis functions (RBF) to construct
He:

Heð~zÞ ¼ H
XN

i¼1

aiwðk~z�~pikÞ þ b

 !
; ð4Þ

where~z ¼ ½x; y�T ; H is still the Heaviside function, and we may call

/ð~zÞ ¼
XN

i¼1

aiwðk~z�~pikÞ þ b ð5Þ

the shape decision function in which wð�Þ is a kernel function, faig; b
are the weights and bias to be determined. The points f~pg are the
center points of the kernel functions. The sign of shape decision
function determines whether a point belongs to the shape. An
example of such interior-points-to-shape relation is shown in Fig. 4.

The usefulness of the formulation of contour representation in
the above form has been explored in the literature of active con-
tour, such as [13,29,38,30] to list a few. This formulation has been
used to cope with noisy data [13], it can also be used to adapt to
topology changes in a pure parametric active contour framework
[29], and it can lead to efficient implementations [38] and even
more flexible formulations of the segmentation [38]. In this work,
we revisit the same formulation for the new problem of relating
interior feature points to the contour shape.

Combining the previous formulations in Eqs. (1), (3) and (4), we
obtain a binary classification problem based on RBF neural net-
work in which the decision function is formed by only some of
the positive samples, i.e. the feature points, but the training is
accomplished by using both positive and negative samples over
the entire image domain. We consider that the training is done
Fig. 4. A 2D visualization of the trained shape decision function overlayed the
corresponding implicit contour (in red). The larger the intensity of the image is the
more likely the point would belong to the shape region. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
by direct minimization of the fitting error in (3) with respect to
the parameters faig and b. The gradient descent equations for
learning the parameters are given in Appendix A. The detailed
learning strategy is presented in the section of experiment.

3.2. Imposing affine invariance on the interior-points-to-shape
relation

The model defined in Eqs. (1), (3) and (4) gives us an implicit
contour representation determined by the positions of interior
points, which can also be sufficiently accurate. In addition, in our
problem, the interior points will likely be transformed across the
template and the image. Therefore, we require the interior points
and the implicit contour to undergo the same transformation, i.e.
being transformation-invariant.

The need for affine invariance in interior-points-to-shape relation.
In this work, we consider a specific yet common type of transfor-
mation, i.e. the affine transformation, and the affine invariance
property is also illustrated in Fig. 5. In the following, we first verify
if the interior-points-to-shape relation obtained in the last subsec-
tion possesses the transformation invariance property.

Let us consider the model proposed in last subsection in Eq. (4).
We choose the Gaussian function as the RBF kernel. Thus, the
shape decision function can be written as follows.

/ð~zÞ ¼
XN

i¼1

ai exp �k
~z�~pik2

r2

 !
þ b; ð6Þ

where r is to be determined beforehand.
The contour curves can be defined by the shape decision func-

tion according to C ¼ fx; yj/ðx; yÞ ¼ 0g, which is equivalent to Eq.
(2) where Ho is replaced by He.

Let us consider the affine transformation of the kernel centers~pi

as follows:

~qi ¼ A~pi þ~b; for all i; ð7Þ

where A is an invertible matrix,~b is a translation vector. The corre-
sponding shape decision function in terms of the transformed ker-
nel centers can be written as follows:

/ð~z; fA;~bgÞ ¼
XN

i¼1

ai exp �k
~z� A~pi �~bk2

r2

 !
þ b: ð8Þ

The affine transformation of the contour points can be repre-
sented by~zs ¼ A~zc þ~b, where~zc 2 C, such that /ð~zcÞ ¼ 0 in (6). By
substituting~zs into Eq. (8), we obtain the following:

/ð~zs; fA;~bgÞ ¼
XN

i¼1

ai exp �kA
~zc � A~pik2

r2

 !
þ b:
Fig. 5. Illustration of the need of affine invariance. The point correspondences
should lead to the shape alignment.
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Regarding the affine invariance property, the above leads to the
following.

Proposition 3.1. There exists infinitely many~zc and ~pi, such that for

each i, we have exp �kA~zc�A~pik2

r2

� �
– exp �k~zc�~pik2

r2

� �
, if A is not an

orthogonal matrix.

The proof is deferred to Appendix B.
This means that the affine transformation of the contour curve

defined by the trained shape decision function, /ð~zÞ, may not be
the contour curve defined by the transformed shape decision func-

tion /ð~z; fA;~bgÞ, which is an violation of the aforementioned affine
invariance property.

Affine invariant interior-points-to-shape relation. To address the
aforementioned problem, we propose a revised shape representa-
tion /S as follows.

/Sð~z; fA
�1
;~bgÞ ¼

XN

i¼1

ai exp
�kA�1ð~z� A~pi �~bÞk2

r2

 !
þ b: ð9Þ

Substituting ~zs into (9), we can verify that for general A and ~b, we
have the following affine invariance.

/Sð~zs; fA�1
;~bgÞ ¼ /Sð~zc; fI�1;~0gÞ ¼ /ð~zcÞ ¼ 0;

where I ¼ 1 0
0 1

� �
and ~0 defines an identity transformation. We

consider that /S is parameterized by A�1 rather than A to simplify
the later derivation for optimizing A.

We may further appreciate the significance of the affine invari-
ance property by the example shown in Fig. 6. Suppose we are
given the pair of initial points and shape in Fig. 4, the interior fea-
ture points of the leaf are then transformed by a predetermined
(a) Without affine invariance (b) With affine
invariance

Fig. 6. Significance of affine invariance of the shape representation. The dots are the
transformed feature points. The outlining curves are the implicit shape contours.

Fig. 7. An example of contour initializ
affine transformation. The implicit contour curve defined by Eq.
(8) is shown in Fig. 6(a). Note that Eq. (8) does not have the affine
invariance property. The resultant shape, which tends to be a circle,
differs significantly from a shape of a leaf. With the same transfor-
mation of the feature points, the implicit contour curves defined
by the affine invariant shape decision function in Eq. (9) is shown
in Fig. 6(b). Obviously, the affine-invariant implicit contour in
Fig. 6(b) is like a leaf transformed resulting from the same transfor-
mation applied to the feature points, which is the affine-invariance
property. With such an affine invariant interior-points-to-shape
relation in Eq. (9), we can achieve the affine points-to-shape
alignment. A result of the points-to-shape alignment is shown in
Fig. 7 based on the feature matching presented in Fig. 2.
4. A unified optimization model for automatic object
segmentation

The established affine-invariant interior-points-to-shape
relation completes our computational framework for automatic
object segmentation. It also enables us to unify the framework into
an optimization model. In this section, we propose our unified
optimization model for automatic object segmentation.

4.1. Active contour model with a matching constraint

In this subsection, we propose a constrained optimization
model to unify the object matching and active contour. The
motivation of our constrained optimization model lies in
the notion of initial feasible solution. Specifically, the contour curve
given by the feature point matching provides the initial feasible
solution to the constrained optimization model of active contour.
The model is as follows:

C� ¼ argmin
C

JðCðf~qgÞÞ;

s:t: : Eðf~qgÞ 6 s; ~qi ¼ A~pi þ~b;
ð10Þ

where f~pg ¼ f~p1;~p2; . . . ;~pNg and f~qg ¼ f~q1;~q2; . . . ;~qNg are the fea-
ture points on the template and the transformed sets of these fea-
ture points, Cðf~qgÞ denotes the implicit relation between the
interior points and the contour shape defined by (9). JðCÞ is the
abstract form of the active contour energy, Eð�Þ is the abstract form
of the cost of joint matching and alignment, and s is a tolerance
level.

Note that the explicit contour optimization form of active
contour model, as in Eq. (10), can often be written w.r.t. implicit
contour representations [5,24,20]. In most of the cases, the two
types of active contour models are equivalent. Without loss of gen-
erality, we choose to complete the paper with the explicit contour
optimization form.

This formulation also ensures that the solved contour is close to
the initial feasible contour. To find the initial feasible solution, it
ation based on feature matching.
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suffices to minimize EðÞ w.r.t. f~qg, since the set of f~qg that corre-
sponds to the minimal value of Eð�Þmust be feasible to the inequal-
ity constraint if there exists at least one feasible solution.

4.2. Joint formulation of point matching and alignment

In this subsection, we establish the explicit form of E in the con-
straint. Our formulation is a variant of the simplest form of the lin-
ear model of feature matching [14]. It can be written as follows:

~q�
� �

¼ argmin
f~qg

Eð~qÞ ¼
X

ij

cijd�ðrijÞ;

s:t: 8i;
X

j

d�ðrijÞ ¼ 1;
ð11Þ

where cij is the so-called matching cost measuring the distance
between all pairs of features across the two images. We use the
SIFT interest point detector and the SIFT feature [27]. d� is the
approximation of the Dirac delta with a parameter
�; rij ¼ kqi � qt

jk and fqt
!
g is the set of target feature points in the

target image, cij is the cost of the matching between qi
! and qt

j .
d�ðrijÞ is the relaxed matching indicator. d�ðrijÞ has the following
property:

d�ðrijÞ �
M; rij ¼ 0;
0; rij – 0;

�

where M is a constant. In this model, the optimal d� is determined
by the closeness between qi

! and qt
j

!
. Thus, by aligning qi

! toward a
proper qt

j

!
, the matching cost can be minimized. However, the

above model is easily trapped by degenerate solutions where
d�ðrijÞ ¼ 0. To avoid such degeneration, we have the following
reformulation:

~q�
� �

¼ argmax
f~qg

Eðf~qgÞ ¼
X

ij

e�cij d�ðrijÞ;

s:t: 8i;
X

j

d�ðrijÞ ¼ 1:
ð12Þ

Note that E P 0. The constraint is therefore �E 6 s, where E ¼ �E.

4.3. Projected gradient decent algorithm

We are now able to derive the solution to the constrained
optimization problem based on the idea of projected gradient
descent method [28]. Projected gradient method tries to find
the update direction of the current solution along which the cost
function can be decreased and the constraints will not be vio-
lated. Since the constraints can often be expressed or transformed
into equality constraints, the update direction is also required to
lie within the NULL space of the constraints. While the notion of
NULL space is mainly meant for linear equations, the nonlinear
equality constraints can also be linearized, by e.g. Taylor
expansion.

Our projected-gradient descent equations are as follows:

dA
dt
¼ �rA J þ rA J;

rAE
krAEk

	 
 rAE
krAEk ; ð13Þ

d~b
dt
¼ �r~b J þ r~b J;

r~bE
kr~bEk

	 
 r~bE
kr~bEk : ð14Þ

Note that these equations are not exactly the same as the ones in
conventional projected gradient descent method in which inversion
of a large matrix is needed. The rationale of Eqs. (13) and (14) lies in
the following property.

dE
dt
¼ 0 and

dJ
dt
6 0: ð15Þ
The derivation of this property is deferred to Appendix C. The above
indicates that the projected gradient descent algorithm governed by
Eqs. (13) and (14) can reduce J while leaving E unchanged. This
might be too strong for the inequality constrained optimization.
In fact, we only require E to be smaller than a predefined tolerance
s. Therefore, we implement the original gradient descent if E < s,
and we implement the full projected gradient algorithm, if E � s.

To implement the projected gradient descent algorithm, we
require the explicit form of the gradients rAJ. rAE;r~bJ and r~bE.
The derivation of the explicit form ofrAJ is complex. Alternatively,
we can obtain rAJ numerically by usingrA�1 J. The explicit form of
rA�1J and r~bJ can be written as follows:

rA�1J ¼ � rJT N
!
;

D/S

DA�1

hN!;r~z/Si

* +
p

; ð16Þ

r~bJ ¼ � rJT N
!
;

D/S

D~b

hN!;r~z/Si

* +
p

; ð17Þ

in which N
!

is the normal of the contour and r~z/S can be com-
puted either numerically or exactly. The closed form expressions
of D/S

DA�1 and D/S

D~b
are needed for the computation, which are as

follows:

D/S

DA�1 ¼ �
XN

i¼1

2wið~zÞ
~v ið~zÞ~zT

r2 ;

D/S

D~b
¼ �

XN

i¼1

2wið~zÞ
ðA�1Þ

T
~v ið~zÞ

r2 ;

where

wið~zÞ ¼ ai exp �kA
�1~z�~pi � A�1~bk2

r2

 !
;

~v ið~zÞ ¼ A�1~z�~pi � A�1~b:

The derivation is deferred to Appendix D. Our derivation is not
restricted to any specific active contour model. For the Geodesic
Active Contour (GAC) [3], which is a well-known edge-based
active contour and can locate the object boundary accurately
given a good initialization, the functional gradient, rJ, is the
following:

rJGAC ¼ hrg; N
!iN!� gjN

!
;

where g is an edge indicator function in which the stronger edge
corresponds to smaller value, N

!
is the normal of the contour, j is

the contour curvature.
The projected gradient algorithm also requires rAE and r~bE

which can be written as

rAE A;~b
� �

¼ �
X

ij

ĉijgij A~pi þ~b� qt
j

!� �
~pi

T ; ð18Þ

r~bE A;~b
� �

¼ �
X

ij

ĉijgij A~pi þ~b� qt
j

!� �
; ð19Þ

where ĉij ¼ e�cij . We adopt the Gaussian function to approximate
the Dirac delta. Thus, gij ¼ d�ðrijÞ. We also normalize the Gaussian
functions according to the constraint

P
id�ðrijÞ ¼ 1. These gradients

may also be used for producing a local optimal solution to
Eq. (12).

Given the above detailed formulations, we are able to derive our
algorithm for the matching-constrained active contour. The pseudo
code of our algorithm is presented in Algorithm 1. We also visual-
ize the algorithm in a diagram in Fig. 8.
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Algorithm 1. Projected gradient descent active contour.
Fig. 8. Flow chat of matching-constrained active contour framework.
We adopt the locally affine matching [26] to provide the initial
point correspondences in this work.
5. Experiments

In our implementation, we use the SIFT interest point detector
and the SIFT feature [27]. The SIFT features are computed from
the interest points detected in the image. On the template image,
the SIFT points are extracted before the shape is cut out. We also
used a distance map to select the feature points far enough from
the boundary such that the feature values will not be dependent
on the content outside the object region. To produce the initial
matching, we adopt the locally affine matching for producing the
initial point correspondences [26]. We are not confined to this
choice of feature representation and matching algorithm. The s
in (10) is set in relation to the matching score E from initial object
matching. More detailed discussions on the selection of s are pre-
sented in Section 5.8.

We mainly experiment on the real images taken from
Mikolajczyk’s homepage,1 Caltech computer vision archive2 and
the ETHZ Toys dataset to evaluate our method for automatic
object segmentation.
1 http://lear.inrialpes.fr/people/mikolajczyk/.
2 http://www.vision.caltech.edu/html-files/archive.html.

http://lear.inrialpes.fr/people/mikolajczyk/
http://www.vision.caltech.edu/html-files/archive.html
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Fig. 10. Minimization of the errors of shape modeling corresponding to Fig. 9(a)–(c).
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Fig. 11. Experimental results on selection of the parameter r. (a) Plot of fitting scores (vertical) vs. r (horizontal), given the fixed initial weights and thresholds. (b) Plot of
fitting scores w.r.t. different values of r given the fixed initial weights and thresholds (squares with curve) comparing with the fitting scores due to the optimization of the
weights and threshold given the randomly selected r (crosses with curve).

Fig. 9. Three pairs of template objects (left) and the corresponding trained shape contours overlaying the training shape (right).
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5.1. Affine invariant shape modeling

Following the shape training process presented in Section 3, we
can obtain the affine invariant points-to-shape model. We present
the template objects and the trained shape contours in Fig. 9. We
also present the fitting errors during the training of the RBF for
the shapes in Fig. 9. The training of the shape models converges
stably (see Fig. 10).

There is a parameter r in the RBF based shape representation.
We may use the fitting errors with fixed initial weights ai and
threshold value b for selecting r. Specifically, we select r which
corresponds to the highest fitting score (1� normalized error) from
a set of f1;1:1; . . . ;19:9;20g containing 191 candidates. Fig. 11(a)
shows the fitting scores w.r.t. r for the three shapes. We also ran-
domly select 50 values of r from ½1;20� and we implement the gra-
dient descent learning to get the convergent shape models of the
leaf shape corresponding to the 50 random values of r. The scores
of the optimal fitting, in terms of the Jaccard shape similarity, given
the 50 random values of r are shown in Fig. 11(b). We may observe
that the peaks of the two curves are quite close, which means that
the criteria for selecting r with fixed weights and threshold is
effective. The major benefit of the selection of r before the shape
model fitting is the computational efficiency.

Upon the accomplishment of the shape model training, we then
validate the claimed affine invariance of the shape model defined
in Eq. (9). We take the trained leaf shape model for evaluation.
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NHD = Normalized Hausdorff distance

Fig. 12. The significance of the affine invariance of the interior-points-to-shape relation. The top row shows shapes generated by the affine invariant model, i.e. Eq. (9). The
bottom row shows the shapes generated by the model without affine invariance, i.e. Eq. (8). The dots are the interior feature points, the curves are the implicit contours, and
the circles are the explicitly transformed contours.
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Fig. 13. The normalized Hausdorff distances between the shapes implicitly defined
by the transformed interior points and the original shapes (horizontal) vs. the
distance between the explicitly transformed contour shapes and the original shape
(vertical).
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The principle is to compare the contour shape implicitly defined by
the transformed interior points with the explicitly transformed
contour shape, which could be considered as the ground truth
shapes. We choose the normalized Hausdorff distance, i.e. the
Hausdorff distance normalized by the maximum distance between
the two point sets, as the shape distance. We randomly generate
the 100 sets of parameters for the affine transformation without
translation, leading up to 100 randomly generated leaves. Some
examples of the implicit contours overlaying with the explicitly
transformed contour points are shown in the top row of Fig. 12.
We can observe that the proposed interior-points-to-shape rela-
tion defined in Eq. (9) is affine invariant. In the bottom row of
Fig. 12 we also present the implicit contours due to the shape
model without affine invariance, i.e. Eq. (8). In Fig. 13, we plot
the shape distances corresponding to the two shape models for
all the 100 examples. We observe that even if the shape transfor-
mation is large, the distance between the explicitly and implicitly
transformed contour shapes is still small for the affine-invariant
shape model, whereas the shape model without the affine invariance
deviates from the explicitly transformed shapes a lot. The explicitly
transformed shapes can be considered as the ground-truth shapes.

5.2. Minimizing conventional active contour energies with exhaustive
search

There could be various global optimization strategies for active
contours such as those reported in [7,37]. In this subsection, we
show that the global optimal solution to improper active contour
energies may not correspond to the target object. This claim should
not depend on the choice of the optimization method. Hence, we
adopt the exhaustive search for the optimization. To examine the
global optimality of object shape in image for a given active con-
tour energy, we ensure that the object shape in the image has been
included in the search space.

In this experiment, we perform exhaustive search for both the
Chan–Vese model and the GAC model with hard but correct shape
priors. In the implementation, we search over 8 orientations of the
given shape, i.e. 0; p4 ;

p
2 ;

3p
4 ;p;

5p
4 ;

3p
2 ;

7p
4

� �
, at all possible locations

within the image domain. We make sure that this relatively small
shape space covers roughly the correct object shape. A result is
shown in Fig. 14. In this experiment, we have fixed the size of
the shapes.



Fig. 14. The object segmentation by exhaustive search in simple image. (a) Result by global search with Chan–Vese model. (b) Result by global search with GAC model.

Fig. 15. The object segmentation by exhaustive search in a cluttered image. (a) Result by global search with Chan–Vese model. (b) Result by global search with GAC model.

Fig. 16. The object segmentation by exhaustive search in a cluttered image containing single object, with the correct object size. (a) Result by global search with Chan–Vese
model. (b) Result by global search with GAC model.

Fig. 17. The object segmentation by exhaustive search in a cluttered image containing single object, without knowing the size. (a) Result by global search with Chan–Vese
model. (b) Result by global search with GAC model.
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Fig. 18. Segmentation of an object of different poses in noisy images in the presence of occlusion by leaves, clutter background and indefinite boundary on the top. We label
each triple of the figures from top to bottom as (a)–(d).

Fig. 19. Segmentation of an object of relatively complex shape under different poses and scales with non-ideal initial matchings. The top and bottom triple of figures are
labeled as (a) and (b).
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Fig. 20. Segmentation of an object of complex shape under different scale, clutter background and indefinite boundary.

Table 1
Jaccard similarity against the ground truth.

Fig. 18 Fig. 19 Fig. 20

(a) (b) (c) (d) (a) (b)

Initial 0.73 0.75 0.74 0.63 0.53 0.68 0.65
Final 0.75 0.84 0.86 0.86 0.90 0.93 0.75
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Fig. 21. Quality of segmentation (vertical) vs. score of model fitting (horizontal).

Fig. 22. Segmentation under different noise level. (a) Boxplot of the accuracy vs.
noise level. (b) and (c) Images with noise. The standard deviation of the noise in (b)
is 5, and the other is 20.
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We also show that given the correct fixed size, the global search
also may not provide a reliable result of object segmentation in
Fig. 15. We can observe that the global optimal solution to the
Chan–Vese model (at the top-left corner) provides the region in
which the image values contrast the outer region most, and the
GAC model locates the group of the strongest edges that fit the
shape prior best while not necessarily being the target object. Nei-
ther of the results are satisfactory. This is because we are not able
to ensure the object of interest to correspond to the globally opti-
mal solution of the formulated energy minimization problem.

There definitely exist cases that the global search can output
satisfactory segmentation in relatively complex images given the
correct size of the object. An example is shown in Fig. 16(b), which
is a result of the global optimization for the GAC model. However,
the global optimization of the Chan–Vese model is unsatisfactory,
since the object of interest does not have significant contrast
against the background. If we allow the size to vary in the search
space, the results are often undesirable, such as in Fig. 17. In this
experiment, we include the correct size with additionally one
smaller and one larger sizes in the search space. The boundary of
the template deviates a bit from the object boundary in the result
of global optimization for GAC in Fig. 17(b), since the gradients on
the object boundary are small while the gradients inside the object
are significant. The result of segmentation by Chan–Vese model is
in Fig. 17(a).

The experimental results in this subsection show that if the
energy measure is improper, the global optimal solution of the
active contour does not necessarily correspond to the desired
object boundary.

5.3. Automatic object segmentation by matching-constrained active
contour

In this subsection, we evaluate the matching-constrained active
contour. The centroids of the template objects are set to be the
Table 2
Computational costs (seconds).

Figures Fig. 18(a) Fig. 18(b) Fig. 18(c) Fig. 18(d) Fig. 19(a) Fig. 19(b) Fig. 20

Size(pixel) 320 � 400 320 � 400 320 � 400 320 � 400 296 � 448 282 � 448 411 � 408
M&R 17.83 18.3 18.53 17.9 18.44 16.27 10.05
GC 4.26 4.21 4.20 4.32 7.14 7.10 2.29
AC 98.14 40.93 82.03 650.56 504.97 401.95 82.95

Total 120.23 63.46 104.75 672.78 530.56 425.32 95.29

M&R = matching and registration, GC = generation of initial contour, AC = active contour before convergence, Total = total running time.
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origin ð0;0Þ. This position can be anywhere, and it does not affect
the feature point matching since the formulation of feature point
matching does not involve the absolute position.

From the point correspondences (obtained from SIFT matching)
as shown in the left-most columns of Figs. 18–20, we obtain the
initial contours shown in the middle columns of the figures and
we finally obtain the segmentation results shown in the right-most
columns of the figures. We can observe that the initial contours
produced by our interior-points-to-shape relation are close to the
object boundaries, and the active contour further improves the
boundary location. Our method is capable of achieving the desir-
able segmentation results. We also compare the initial and final
segmentation results with manually labeled ground truth shapes
by Jaccard similarity measure to validate our visual observations
quantitatively. We summarize the results in Table 1. We can see
the improvement of the initial contour and the region enclosed
by the final contour overlaps well with the ground truth. We also
present the computational cost of the entire framework on the
images in Table 2 for reference (Note that the entire process is
run in MATLAB on a PC with Intel�Core™ i5-450M Processor and
4 GB memory).

We have implicitly assumed that a better shape model leads to
a better result of segmentation throughout the paper. We ascertain
this by experiments. We use the 50 shape models due to the 50
random r generated previously for extraction of the leaf in the
top image in Fig. 19. In Fig. 21, we show the strong correlation
between the quality of shape modeling, in terms of fitting score,
and the quality of segmentation, in terms of Jaccard similarity
between the result and the ground truth.

5.4. Robustness to noise

We also evaluate our method under different noise level. We
use the image in Fig. 19(a). We add Gaussian noise to the image.
The means of the Gaussian noise are set to be zero and the stan-
dard deviations are varied from 1 to 20. For each noise level, we
create 30 images and we apply our method to the images. The
boxplot of the results of segmentation are shown in Fig. 22. We
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can observe that when the standard deviation of the noise is below
5, our method is robust. However, the decay of accuracy is sharp
when the standard deviation is larger than 5. Hence, the proposed
method may be sensitive to noise. This is because we adopt the
SIFT feature for matching. This problem of sensitivity to noise in
object matching have been addressed by robust feature represen-
tations such as the PCA-SIFT [18].

5.5. Object extraction under occlusion

We also study the performance of our method under occlusion.
We create several cases of black box occlusions on the leaf of the
leaf image. As shown in Fig. 23, while the initial solutions by
matching are affected greatly by the occlusion, our method is still
able to drive the contour to the correct boundary positions. How-
ever, this also means the matching algorithm that we adopted
for producing the initial feasible solution is vulnerable to occlusion.
A robust formulation of the matching constraint for handling
partially observed objects is desirable. For the sake of clarity, we
also present the shape evolution results in Fig. 24. We can observe
that the affine-invariance also functions as a shape prior during the
process.
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Fig. 25. Quantitative comparison.

Fig. 26. Visual comparison. The first row to the 4th row shows the results of our method,
optimization [19].
5.6. Quantitative comparison to global optimization and co-
segmentation

In this subsection, we conduct experiments for comparing our
method with other related methods, including global optimization
of the GAC model (global search, or GS), co-segmentation based on
discriminative clustering (DCCoSeg) [17] and co-segmentation
based on submodular optimization (SOCoSeg) [19]. We use eight
orientations and 3 scales in the global search. The implementations
of the co-segmentation algorithms are taken from the authors’
websites. All the methods in the comparison require an object
example. The task is also the same, namely to outline the same
or similar object in the image of interest.

We conduct a quantitative experimental comparison. To elimi-
nate miscellaneous factors in the experiment as many as possible,
we use images generated by randomly transformation of the same
image which is the leaf image shown in Fig. 14. We use 50 random
affine transformation matrices to generate 50 random images. The
object example has been shown in Fig. 9. The quantitative results
are shown in Fig. 25. We can observe that our method, match-
ing-constrained active contour (MCAC), significantly outperforms
the others. Some visual results are also shown in Fig. 26. We can
observe that our method can locate the object boundary satisfacto-
rily. However, the results of global search may deviate from the
object of interest because of insufficient information on the object.
The co-segmentation methods may produce a lot of spurious
contours and some times they may also miss the object. This is
because the formulation of co-segmentation generally does not
include a sensible object model. Our model integrates feature
matching, shape prior modeling and object boundary modeling,
all of which are practically useful object models.
5.7. Object extraction for image batch

In this experiment, we perform our method on an image
sequence for capturing the same static object. Since we have not
considered the temporal information in our model, we consider
this experiment as an experiment for object extraction from image
global search, discriminative clustering based co-segmentation [17] and submodular
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batch. The shape model is trained on one template image. We used
dense interior point in this experiment for training the shape deci-
sion function while we use only the SIFT points among them to
form the matching constraint. As shown in Fig. 27, the initial fea-
ture matching can give reasonably good results while the boundary
location was not precise, and our proposed projected gradient
algorithm generally can further improve the segmentation. We
can observe the result in the second row was not satisfactory. This
is because the object does not undergoes the assumed affine
transformation, but it undergoes a three dimensional perspective
transformation. A 3D shape representation can be useful for
handling this problem.

5.8. Discussions

There is a tolerance level s in the formulation of the matching-
constrained active contour to be determined by the user. We pro-
vide some observations to help the users to select their appropriate
s. Since the small s may only allow small deviation from the initial
solution even if the boundary is not very close to the initial
contour. Hence, we may not need to constrain the optimization
strictly. In the images for evaluation, the boundary of the objects
of interest corresponds to the local optimal solutions to the active
contour energy. Hence, we only need the gradient descent given
the initial feasible solution produced by optimal matching without
compromising to the constraint. The constraint should be more
useful during the search for the optimal solution if the boundary
is actually not a local optimal solution to the active contour model.

Objects may deform both rigidly and non-rigidly. In this paper,
we have considered a general type of deformation, i.e. the affine
transformation. The more general non-rigid deformations can be
estimated by following the nonrigid shape prior modeling, e.g.
[11,40,16], once the affine shape transformation is known.

Robust detection of the convergence of the gradient descent
based method is a research problem in many areas such as optimi-
zation, machine learning. In our experiments, we terminate the
algorithm if the average change of the affine parameters is less
than a threshold or the maximum iteration is reached.

The computational cost depends on the number of selected
feature points on the template object. A careful selection of the fea-
ture points can reduce the computational cost drastically while
preserving the segmentation accuracy.
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6. Conclusion and future work

In this paper, we proposed a novel constrained optimization
formulation of active contours. The numerical optimization of this
new active contour model leads to an automatic object segmenta-
tion algorithm. This work expands the capacity of the conventional
active contour approach for object segmentation, and the exten-
sion has practical significance in that the conventional semi-auto-
matic framework has been automated.

There are several possible future directions. (1) The shape
modeling in our affine-invariant interior-point-to-shape relation
can be improved, and the computations can be accelerated by
cleverly selecting the feature points. (2) The object matching is
based on single template. However, the appearance of the object
of interest could vary significantly in different images. Robust
object matching is crucial to our method. (3) There could be
interesting applications of this method, such as in the training
phase of general object recognition tasks. (4) We have not devel-
oped advanced shape prior model for this framework, and this is
out of the scope of this work. We would like to consider the
advanced shape prior modeling as a future work. (5) We have
not considered inverse consistency which is known to be critical
in many matching scenarios [44,45]. The inverse consistency and
other matching priors can be incorporated in our model as addi-
tional constraints to achieve more accurate and robust
segmentation.
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Appendix A. Gradient descent equations for shape training

The gradient descent equations for learning the parameters
faig and b in the shape decision function in Eq. (4) are as
follows:

@ai

@t
¼ �

Z
D

2ðHe � HoÞwðk~z�~pikÞH0 dxdy;

i ¼ 1;2; . . . ;N;
@b
@t
¼ �

Z
D

2ðHe �HoÞH0 dxdy;

where H0 is the first order derivative of H. The trained contour curve
is defined by Eq. (2) in which Ho is replaced by the trained He.

Appendix B. Proof of Proposition 3.1

Proof. Let~a ¼~zc �~pi, we have that A~a ¼ A~zc � A~pi. Our objective is

to show kA~ak2 – k~ak2 in general. Since kA~ak2 � k~ak2 ¼~aTðAT A� IÞ~a,

and AT A� I is a nonzero symmetric matrix. We can write

kA~ak2 � k~ak2 ¼~bT D~b;

where AT A� I ¼ UT DU and ~b ¼ U~a. This is a result of eigen-
decomposition.

Obviously, there exists one vector ~b such that the above does
not equal 0 for any nonzero D. By almost arbitrary scaling of~b, we
obtain infinitely many such vectors, which completes the
proof. h
Appendix C. Derivations of Eq. (15)

In the following, we present the derivations of Eq. (15).

dE
dt
¼ �rAET rAJ � rAJ;

rAE
krAEk

	 
 rAE
krAEk

� �

�r~bET r~bJ � r~bJ;
r~bE
kr~bEk

	 
 r~bE
kr~bEk

� �

¼ �hrAJ;rAEi þ hrAJ;rAEi � hr~bJ;r~bEi þ hr~bJ;r~bEi ¼ 0;

dJ
dt
¼ �rAJT rAJ � rAJ;

rAE
krAEk

	 
 rAE
krAEk

� �

�r~bJT r~bJ � r~bJ;
r~bE
kr~bEk

	 
 r~bE
kr~bEk

� �

¼ � krAJk2 � rAJ;
rAE
krAEk

	 
2
 !

� kr~b Jk2 � r~b J;
r~bE
kr~bEk

	 
2
 !

� 0:
Appendix D. Derivation of Eqs. (16) and (17)

Our derivation is based on the following equality for minimiz-
ing general active contour energy.

@C
@t
¼ �rJ ¼ aðpÞN!: ðD-1Þ

Note that the equality holds true for geometric active contours.
The differential of the shape decision function /S at the implicit

contour leads to the following.

@/Sð~zðtÞ;fA
�1ðtÞ;~bðtÞgÞ
@t

�����
~z2f~zj/S¼0g

¼r~z/S �
@C
@t
þ D/S

DA�1 �
dA�1

dt
þD/S

D~b
�d
~b

dt
¼0;

ðD-2Þ

where @/S
@~z ¼ r~z/S, and @C

@t ¼ @~z
@t. Note that C denotes the contour,

and ~z is the point on the contour. In addition, the dot product
above denotes elementwise inner product for both vectors and
matrices.

Substituting Eq. (D-1) into the above, we obtain the expression
for a.

a ¼ �
D/S

DA�1 � dA�1

dt þ
D/S

D~b
� d~b

dt

hN!;r~z/Si
: ðD-3Þ

Substituting the (D-3) into (D-1) we obtain the curve evolution as
follows.

@C
@t
¼ �

D/S

DA�1 � dA�1

dt þ
D/S

D~b
� d~b

dt

hN!;r~z/Si
N
!
: ðD-4Þ

To minimize a general active contour energy JðCÞ, we require
the derivative of JðCÞ to be non-positive as

dJ
dt
¼ rJ;

@C
@t

	 

p

6 0; ðD-5Þ

where hf ; gip ¼
R
hf ðpÞ; gðpÞidp is the inner product of two

vector functions in which h; i is the vector inner product.
Substituting (D-4) into (D-5), considering N

!¼ r~z/S, we obtain
the following:
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dJ
dt
¼ rJ;�

D/S

DA�1 � dA�1

dt þ
D/S

D~b
� d~b

dt

hN!;r~z/Si
N
!

* +
p

¼ � rJT N
!
;

D/S

DA�1 � dA�1

dt

hN!;r~z/Si

* +
p

� rJT N
!
;

D/S

D~b
� d~b

dt

hN!;r~z/Si

* +
p

¼ � rJT N
!
;

D/S

DA�1

hN!;r~z/Si

* +
p

� dA�1

dt
� rJT N

!
;

D/S

D~b

hN!;r~z/Si

* +
p

� d
~b

dt

¼ rA�1 J � dA�1

dt
þr~bJ � d

~b
dt
; ðD-6Þ

where

rA�1J ¼ � rJT N
!
;

D/S

DA�1

hN!;r~z/Si

* +
p

; ðD-7Þ

r~bJ ¼ � rJT N
!
;

D/S

D~b

hN!;r~z/Si

* +
p

; ðD-8Þ

which gives Eqs. (16) and (17). In the gradient descent process, we

can set dA�1

dt ¼ �rA�1 J and d~b
dt ¼ �r~b J.
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