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Fig. 1. The KnitKit system decouples the high-level design aspect of producing knitted textiles from the complexities and low-level specificity of knitting
machines by generating machine knitting instructions from an input 3D geometry and a texture. This enables high-level design of knitting properties, i.e.,
geometry, yarn types and stitch patterns. Here, we CNC knitted a glove and a globe.

In this work, we introduce KnitKit, a flexible and customizable system for
the computational design and production of functional, multi-material, and
three-dimensional knitted textiles. Our system greatly simplifies the knitting
of 3D objects with complex, varying patterns that use multiple yarns and
stitch patterns by separating the high-level design specification in terms of
geometry, stitch patterns, materials or colors from the low-level, machine-
specific knitting instruction generation. Starting from a triangular 3D mesh
and a 2D texture that specifies knitting patterns on top of the geometry, our
system generates the required machine instructions in three major steps.
First, the input is processed and the KnitNet data structure is generated.
This graph structure serves as an abstract interface between the high-level
geometric and knitting configuration and the low-level, machine-specific
knitting instructions. Second, a graph rewriting procedure is applied on the
KnitNet that produces a sequence of abstract machine actions. Finally, the
low-level machine instructions are generated by adapting those abstract
actions to a specific machine context. We showcase the potential of this
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computational approach by designing and fabricating a variety of objects
with complex geometries, multiple yarns, and multiple stitch patterns.

CCS Concepts: • Applied computing→ Computer-aided manufac-
turing.

Additional KeyWords and Phrases:Machine knitting, functional textiles

ACM Reference Format:
Georges Nader, Yu Han Quek, Pei Zhi Chia, Oliver Weeger, and Sai-Kit
Yeung. 2021. KnitKit: A flexible system for machine knitting of customizable
textiles. ACM Trans. Graph. 40, 4, Article 64 (August 2021), 16 pages. https:
//doi.org/10.1145/3450626.3459790

1 INTRODUCTION
Recent advances in fiber and yarn technologies, as well as digital
and three-dimensional (3D) textile manufacturing, have created in-
creasing potential for technical textiles and performance fabrics not
only in fashion and apparel industries, but also in engineering appli-
cations, e.g., in the aerospace, automotive, architecture, bio-medical,
and defence sectors [Chen 2015; Leong et al. 2000]. Functional prop-
erties such as electric, magnetic and thermal conductivity, light
sensitivity, mechanical stiffness, or impact resistance can now be
embedded in a fabric by using advanced yarn materials and complex
knitting designs that involve varying stitch patterns.
Furthermore, computer numerical control (CNC) knitting ma-

chines are now capable of holistically fabricating 3D textiles with a
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wide range of shapes, textures, and materials [Underwood 2009]. In
particular, CNC knitting allows users to combine 3D shape-ability
with the flexibility to locally embed yarn materials and vary stitch
types, parameters, and patterns, which provides unprecedented de-
sign freedom for the development and customization of functional
textiles [Abel et al. 2012]. However, it is very challenging and time
consuming to realize these high-level knitting designs, since they
have to be translated to a low-level interface that operates at the
complexity of individual stitches and machine instructions. Thus,
users, i.e., textile designers, must develop a detailed understanding
of the machine knitting process in order to realize their designs. In
addition, the difficulty of programming the machine, i.e., building
the low-level machine instructions, tends to increase dispropor-
tionately with the complexity of the geometry and the functional
specifications. This can make the fabrication process very laborious
and thus limits the practical knitting output of these machines to
relatively simple objects.

In this work, we aim to make the design and fabrication of func-
tional textiles more practical and accessible even to non-expert users.
To do so we:

• Propose the KnitKit system – a flexible and customizable pipeline
for machine knitting. It proceeds by transforming a high-level
geometry and knitting configuration into abstract knitting actions
that are later translated to low-level instructions.
• Define the KnitNet data structure – a row-based directed graph
representation that describes the structure of knittable objects.
It allows the easy representation of objects made with varying
yarns and stitch patterns. This structure serves as an abstract
interface between the high-level knit design and the low-level
knitting instructions.
• Present a novel scheduling algorithm that generates the low-level
knitting instructions from the KnitNet by (1) generating a set of
abstract actions, then (2) translating the actions into concrete,
machine-specific low-level instructions.

2 BACKGROUND
Knitted fabrics consist of one or more continuous yarns that loop
through existing loops to create stitches. These stitches form an
inherent row-column structure, where the rows, i.e., the courses,
emerge from yarn-wise connections and the columns, i.e., the wales,
emerge from loop-wise connections. Various types of stitches can be
realized through different looping methodologies and patterns can
be created by combining different stitch types over several courses
and wales. Furthermore, due to the different geometric dimensions
of stitch types and the possibility to merge and split wales, knitted
fabrics are not necessarily locally flat. This enables the realisation
of complex 3D shapes with a single, continuously knitted piece of
fabric [Underwood 2009].

2.1 V-bed knitting machines
V-bed weft knitting machines are the most versatile type of knitting
machines, since they enable the fabrication of seamless garments
with multiple yarns and varying patterns [Power 2015]. They con-
sist of two main elements: (1) two beds of needles facing each other
forming an inverted V-shape, and (2) a system of yarn carriers that

move parallel to the needle beds, feeding yarns to the needles. Each
needle is capable of holding one or more loops of yarn at a time and
can be independently actuated to perform a small set of primitive
operations. In general, the knitting process consists of forming new
loops by selectively actuating specific needles on the bed to pull new
yarn through the existing loops. The existing loops then descend
through the gap between the beds. The process is repeated and the
aggregating rows of loops form a piece of fabric. The needles can
also perform tuck, drop, or transfer operations, and the beds can be
racked sideways relative to each other for a variety of results. Thus,
creating a knitted object with these machines boils down to execut-
ing an extensive series of operations, each of which would either
move the yarn across the needle bed or actuate specified needles to
perform any of the aforementioned operations. These operations
are in practice also coupled by carriage and cam mechanisms. Ad-
ditionally, there are various secondary factors that can influence
the knitting process, such as pull-down and tension control settings.
For a more detailed and technical description of machine knitting,
we refer the reader to [Spencer 2001].

Commercial CNC V-bed knitting machines such as the ones of
Shima Seiki or Stoll [Seiki; Stoll] are usually accompanied by a
computer-aided manufacturing software that provides a visual in-
terface for programming the machine at a low-level of abstraction.
For Shima Seiki machines, this is the KnitPaint data format. These
interfaces allow the user to specify knitting instructions in terms of
arrangements of stitch types or patterns. Thus, they require highly
trained and skilled experts to painstakingly translate complex high-
level textile designs into machine-readable instructions. This puts
a practical limit on the capabilities of these machines, as realizing
complex textiles becomes a time-consuming and difficult task.

2.2 Related work
A lot of research has been devoted to the modeling and fabrication
of cut and sew garments [Li 2018; Wolff and Sorkine-Hornung 2019].
Most of the work tackling knitted objects has mainly focused on
the visualization [Aliaga et al. 2017; Meißner and Eberhardt 1998;
Wu and Yuksel 2017] and simulation [Cirio et al. 2016; Leaf et al.
2018; Yuksel et al. 2012] aspects. In general, they are not suited for
fabrication, since the generated knit patterns are not guaranteed
to be knittable. For instance, the stitch mesh framework [Wu et al.
2018] provides a powerful interface for modeling knitted fabrics.
While it ensures that the structure is topologically valid, i.e., does
not unravel, it does not guarantee its machine knittability. This
is mainly because the framework neglects inconsistencies in the
underlying knitting directions.
In the past few years, researchers have recognized the lack of

high-level design tools for the fabrication of knitted textiles. Mc-
Cann et al. [2016] presented a CAD-like tool where users manipulate
simple primitives, such as tubes and sheets, to design knitted objects.
Machine compatible instructions are then generated by an algorithm
that automatically schedules bed layouts. Kaspar et al. [2019] ex-
panded on this CAD-like tool idea. In addition to composing simple
primitives, their system includes a domain-specific language for
patterning and a novel pattern representation which allows the
user to knit garments with various stitch patterns. While these
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tools are easier to use than commercial software, they still require
a designer to manually configure the available primitives. Others
have tried to generate knitting instructions directly from a triangu-
lar mesh. Igarashi et al. [2008] presented a system for generating
hand-knitting instructions, which converts a manually segmented
model into separate regions of parallel winding strips which are
then sampled at constant intervals. However, this method cannot
be applied to machine knitting primarily due to scheduling con-
straints. Wu et al. [2019] extended the stitch mesh framework [Wu
et al. 2018; Yuksel et al. 2012] to produce knittable structures. They
also presented a scheduling algorithm that generates step-by-step
knitting instructions for a given model. These techniques, however,
rely on hand-knitting capabilities and do not take into considera-
tion the constraints imposed by the machine. Popescu et al. [2018]
described a system for generating machine-knittable 3D objects
from quad meshes. However, their system still requires users to
manually segment the model. Narayanan et al. [2018] introduced a
method for automatically generating machine knitting instructions
from an input mesh. Their approach relies on a user-defined time
function that encodes the desired knitting direction. This time func-
tion guides a sequential quad-dominant remeshing algorithm that
produces a geometric mesh structure compatible with machine knit-
ting. This mesh is then passed to a tracing algorithm that generates
the corresponding machine instructions. Narayanan et al. [2019]
extended this work by embedding certain classes of primitive knit-
ting instructions into the mesh faces. This allowed them to design
a user-friendly system that is capable of visually creating knitting
programs in a 3D design interface. More recently, Wu et al. [2021]
adopted a different approach to handle the knitting of complex 3D
structures. They introduced an automatic cutting algorithm that
turns any 3D surface into a knittable topological disc. The resulting
knittable surface is then fed to a machine instruction generation
module based on the stitch mesh framework [Wu et al. 2018; Yuksel
et al. 2012].

While these methods certainly make the use of knitting machines
more accessible and allow for very fine-grained control of the output,
they do not scale well to larger and more complex input patterns due
to the need for manual stitch-level editing. They also do not lend
themselves well to parameterization of a high-level specification, as
the working domain is limited to primitives on the order of single
stitches. For example, to knit an object with a ribbed pattern, one
has to manually specify alternating wales of knit and purl stitches,
and deal with various conditions caused by geometric irregularities.
This means that subsequent scaling or tweaking of the geometry
would require the user to re-draw the desired pattern from scratch.
Thus, producing complex patterns that involve the interaction of
stitches with their neighbors in both wale and course directions is
impractical in general.

Despite this progress, handling 3D objects constituted of complex
stitch patterns and multiple yarns remains an open issue, since they
also require the complex management of multiple yarn carriers.
Taking these aspects into consideration is important for the realiza-
tion of functional knitted objects. More specifically, we present a
novel row-based directed graph representation of knittable objects
that acts as an abstract interface between the low-level machine
instructions and the high-level design. This allows us to develop

a highly customizable system and a scheduling algorithm that are
capable of handling complex knit structures and multi-yarn objects.

3 OVERVIEW
The design of ourmachine knitting system is guided by the following
objectives:

(1) Geometric independence: The input geometry should re-
main independent from various knitting parameters such as
number of yarns and stitch patterns.

(2) Machine independence: While the generated instructions are
specific to a particular machine, the algorithm used to generate
them should be flexible enough to support different hardware.

(3) Customizability: Users should be able to customize the output
machine instructions according to their needs. This allows the
framework to support an extendable library of knitting styles
and stitch patterns.

A general overview of the KnitKit system, which implements these
design objectives, is presented in Fig. 2. Our knitting system func-
tions as follows: We start by passing the input design to a geometry
analysis framework that builds the KnitNet data structure. This
input consists of a triangular 3D mesh along with a vector field
that represents the geometry to be knitted and the desired knitting
direction, respectively. Furthermore, texture data can be attached to
the input geometry in order to customize the knitting operation in
terms of yarn materials and stitch patterns.

The geometry analysis framework begins with parameterization
followed by a remeshing operation that transforms the input geome-
try into a quad-dominant mesh. The edges of the resulting mesh are
then assigned to an orientation consistent with the input vector field
and grouped into two categories: wales and courses. Additionally,
the knitting configuration is extracted from the attached textures
and stored into the vertices. In the case of a 3D input geometry, we
segment the geometry into two parts, each corresponding to one
needle bed of the knitting machine. Finally, we perform a cluster-
ing operation that groups adjacent vertices of the quad-dominant
mesh into rows. With this information, the KnitNet data structure
is generated. It encodes the topology and target knitting structure
and contains all the necessary information to generate the corre-
sponding machine instructions.

Second, we process the KnitNet structure and generate the low-
level machine instructions. This step starts by generating a se-
quence of actions from the KnitNet. These actions conceptually
describe the operations required for the machine to knit the input
geometry. This is achieved with a graph rewriting approach that
builds this sequence in an iterative manner using a set of rules. The
resulting sequence of actions is then transformed into a set of low-
level machine operations using a library of routines. These routines
adapt the high-level actions according to the machine physical state
and configuration. Finally, these operations are transcribed into the
native data format of the specific machine being used. Both the
graph transformation rules and the routine library can be modified
and extended by the user. This makes our knitting system highly
flexible and customizable. However, customizing both the rules and
the routine library requires knowledge in machine knitting thus is
considered to be a task for machine specialists. It is important to
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Building the KnitNet Generating machine instructions 
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Fig. 2. Overview of the KnitKit system. First, an input design given by a textured 3D mesh is converted into a topological KnitNet data structure. Using a
user-customizable library of graph transformation rules and routines, this data structure is processed via an intermediate abstract action stage into machine
instructions, which can be loaded into a knitting machine (visualized here in KnitPaint) to fabricate a customized knitted textile (Size: 120 x 180 mm).

note that the graph rules and the routine library are independent
from any specific input design. This means that they can be reused
to generate machine instructions for any arbitrary input design
represented by a KnitNet supported by the given graph rules and
routine library.

Splitting the KnitKit into two independent stages makes the sys-
tem more accessible and achieves our objectives of developing a
geometry and machine independent, customizable machine knitting
system. Non-expert users can focus on the design aspect by con-
figuring the knitting process from a high-level conceptual point of
view, i.e., modeling the input geometry using standard 3D modeling
software or configuring the knitting design in term of yarns and
stitch types using 2D textures. On the other hand, machine special-
ists can concentrate on building a robust set of graph rewriting rules

Courses

W
al

es

��

��

��

��

��

Fig. 3. The row-wise topological structure of a knitted object is captured by
the KnitNet graph. Each course of a knitted object is represented by a node
that contains a list of stitches, the KN Node. The course-wise connections
are represented as directed edges connecting one node to another, the KN
Edges.

and the routine library used to generate the knitting instructions to
support a large class of objects and patterns.

4 THE KNITNET DATA STRUCTURE
The KnitNet is a directed acyclic graph that captures the topological
structure of a knitted object, see Fig. 3. The nodes of the KnitNet
roughly correspond to the courses of the knitted object and the edges
describe the wale-wise connections between courses. We define the
KnitNet with the following elements:

KN Node. The nodes of the KnitNet each contain a set of ordered
vertices that are connected in a course-wise manner. It is described
as follows:

• id: a unique identifier.
• template: a user-defined field that represents a certain knitting
pattern. It can include an arbitrary number of physical yarns of
different colors or materials. For example a Fair Isle colorwork
pattern is defined by a template containing two (or more) yarns
of different colors.
• vertices: an ordered list, where each vertex generally represents
a stitch of the knit structure.

Additionally, our framework allows for local configuration of the
template. To that end, each vertex is represented by:

• id: a unique identifier.
• type: a user-defined field used to configure the corresponding
template. For instance, it can be a single key attribute that maps
to a certain stitch pattern (Single Jersey, Rib, Full Cardigan, etc.),
or in the case of a Fair Isle template, it can be a flag that designates
which yarn is carried.

KN Edge. The edges between two nodes of theKnitNet correspond
to the course-wise connections between adjacent KN Nodes. It is
possible to have multiple connections from and to the same KN Node.
However, they cannot include overlapping vertices. It is represented
as follows:
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Fig. 4. Illustration of the various steps of building the KnitNet from an input
3D mesh and vector field, here for a double torus: (a) 2D stripe parame-
terization computed from the input geometry and vector field. (b) Quad
dominant meshMQ with its edges classified as wale (blue) and course (red).
(c) Vertex clusters obtained by tracing the vertices of MQ along the course
edges. (d) In the case of a 3D geometry, a segmentation step is performed
that attributes each vertex of the quad-dominant meshMQ to a needle bed.

• source/destination: A reference for the id of the incoming
and outgoing KN Node.
• interval: indicates the starting and ending vertex id of a con-
nection.

5 BUILDING THE KNITNET
The process of building the KnitNet begins with a parameterization
operation that produces orthogonal stripes with equal spacing. This
is followed by a remeshing step that produces an adequate quad-
dominant mesh. The edges of this mesh are consistently oriented
in accordance with the input knitting direction and are classified
into two groups: course-edges and wale-edges. In case the knitted
geometry requires multiple needle beds, e.g., 3D geometry, a seg-
mentation operation is performed that divides the mesh into two
and assigns each half to the corresponding bed. Finally, the vertices
of the remeshed model are grouped and ordered into consecutive
connected nodes to obtain the KnitNet structure. This process is
illustrated in Fig. 4 and described in detail below.

5.1 Directional quad-dominant remeshing
At its core, a knitted structure can be modeled by a non-conforming
quad-dominant meshMQ = (S, E), where the vertices S and edges
E correspond to a set of stitches and their respective connections.
In this case, T-junctions represent short rows and internal increases
or decreases, which are essential for shaping, see Fig. 5. In order to
model a knitted structure, the resulting quad-dominant mesh must
meet the following specifications:

Fig. 5. The structure of a knitted object is represented by a quad-dominant
mesh (nodes shown in yellow, course-wise edges in red and wale-wise edges
in blue). (a) Regular quadmesh, representing a uniform Single Jersey knit. (b)
Horizontal T-junction, representing internal shaping. (c) Vertical T-junction,
representing a short row.

• It should be possible to classify the mesh edges E into two groups:
course edges and wale edges.
• The edges of the mesh must be attributed a consistent orientation.
• The distance between two adjacent vertices must reflect the uni-
formity and geometric proportions of the knit structure.

The first requirement ensures that the stitches can be grouped into
rows, while the second guarantees that the connections between the
rows will result in a directed acyclic graph, and the third preserves
the desired physical dimensions of the knitted object.
Given a unit tangent vector field ®vw defined at each vertex of

the input triangular mesh, we start by computing ®vc as the rota-
tion of ®vw by π/2 in the respective local tangent plane. From this
cross-field (®vw; ®vc)we compute an orthogonal, equally spaced stripe
pattern using Knoppel et al.’s [2015] method. This orthogonal stripe
pattern describes the knitted object’s wales and courses. The spac-
ing d between two consecutive stripes is controlled by setting the
stripe frequency to ω = 2π/d . We set the spacing between course
stripes, generated from ®vc, and wale stripes, generated from ®vw, to
the horizontal and vertical physical stitch dimensions, respectively.
It is also possible to locally modify the spacing between consecutive
stripes, which allows us to account for variable stitch sizes when
dealing with an input containing multiple stitch patterns.

Having computed the stripe pattern, we now generate the vertices
S of MQ by computing the intersection between two orthogonal
stripes. This is efficiently performed by evaluating those intersec-
tions within each triangle of the input mesh. At this stage, we can
easily augment the vertices with any additional information given
by the input texture maps, such as yarn information or stitch pat-
terns. In practice, the texture resolution is rarely equivalent to the
resolution ofMQ . In order to deal with this mismatch, in our current
implementation we compute the Voronoi cell for each vertex ofMQ
and project it onto the input triangular mesh. We then assign to
each vertex the information corresponding to the most common
pixel value within the projected Voronoi cell.

Finally, similar to [Dong et al. 2005], we build an ordered list of the
intersection points by tracing along each stripe on the input mesh,
in the direction of its corresponding vector field. This connects
the vertices and creates the edges of MQ . Each edge is therefore
classified as a wale or course by verifying whether it connects two
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Algorithm 1: Building the KN nodes

input :MQ = (S, E)
output :N , a list of KN Nodes

initialize a visited flag array to False
for all stitches si in S do

if si not visited then
sc ← go to leftmost stitch of si in the course direction
Tc ← get template of sc
n ← createNode
while sc is valid do

T ← get template of sc if T and Tc equal then
add sc stitch to node n

else
add node n to list N
n ← createNode
Tc ← T

end
flag sc as visited.
sc ← adjacent stitch of sc in the course direction

end
add node n to list N

end
end
return N

vertices along the wale or course stripe, respectively. Moreover, it
is attributed an orientation that matches with the corresponding
input vector field. It is important to note that Knoppel et al. [2015]’s
stripe parameterization methods can in some cases lead to helices,
which would break the orientation consistency of the edges ofMQ .
To resolve this issue, we apply the grid-preserving operators of
Bommes et al. [2011] at the end of our remeshing step.

In the case where the input geometry is three-dimensional, each
vertex of MQ must be assigned to either the front or back bed of
a V-bed knitting machine. Concretely, this means that the vertices
in each row ofMQ should be evenly divided into two groups, such
that the boundary between them is continuous across adjacent rows.
This is equivalent to computing a surface that cuts through the
input geometry along the knitting direction, dividing it into half. In
practice, this can be achieved by computing a series of consistently
oriented planes for every row ofMQ and then assigning each vertex
to the front or back bed based on its position with respect to that
plane. The vertices in front and behind the plane are thus assigned
to the front and back beds, respectively, see Fig. 4d.

5.2 Constructing the KnitNet
Once we have constructed the quad-dominant mesh MQ and as-
signed the vertices to their needle beds, generating the KnitNet data
structure is quite straightforward. First, we cluster the vertices into
distinct rows in order to build the KN Nodes, see Algorithm 1. We
start from an arbitrary vertex on the mesh. Then, we navigate in
the course direction towards the leftmost boundary vertex. At this
point, we create a new node and navigate the mesh along the course
direction, while adding each vertex we encounter to that node. In
cases where multiple templates have been assigned to the vertices

Algorithm 2: Building the KN Edges

input :MQ = (S, E),
N , the list of KN Node extracted fromMQ

output :C , list of connections between nodes of the KnitNet

for all nodes ni in N do
s0 ← first stitch of node ni
sw0 ← adjacent stitch of s0 in the wale direction
nsw0 ← node of sw0
for all stitches sk in node ni do

swk ← adjacent stitch of sk in the wale direction
nswk
← node of swk

if nsw0 and nswk are different then
add connection from ni to nsw0 in the list C
nsw0 ← nswk

end
end

end
return C

of a row, we create a new node every time the current vertex has a
different template attributed to it than the previous one. We stop
when we reach the rightmost boundary. We repeat this process until
all the vertices of MQ have been visited. Second, we compute the
KN Edges, i.e., the connection between the nodes, see Algorithm 2.
Starting from an arbitrary node, we traverse its assigned stitches
in an ordered manner. For each vertex we look up the node corre-
sponding to its adjacent vertex in the course direction. We create a
new edge every time a new adjacent node is referenced. We repeat
this process for all nodes in the KnitNet.

6 GENERATING MACHINE INSTRUCTIONS
The major challenge of automating the generation of machine knit-
ting instructions is dealing with the highly interlinked nature of
low-level operations. To illustrate this, we consider the task of knit-
ting a single course over a certain span of needles using some stitch
pattern. The sequence of low-level machine operations needed to
realize this task depends on:

(1) The stitch pattern: Producing a course with Single Jersey (SJ)
stitches on the front bed requires performing successive front-
knit operations. Producing a Double Jersey (DJ) course would
require performing two passes over the same needle span, first
with the cycled sequence {front-knit, back-knit} and then
with {back-knit, front-knit}.

(2) The poses of the carriage and yarn carriers: The knitting mech-
anism most commonly involves a laterally moving carriage
which simultaneously feeds the yarn via carriers and actuates
needles. The operations needed to knit a course depend on
whether the carriage and yarn carriers are on the left or right
of the affected needles. In some cases, carriage return and kick-
back operations are needed to ensure carriers do not interfere.

(3) The configuration of loops on the needle bed: New loops on
unoccupied regions of the needle bed may require additional
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(B1) KnitNet Graph (B2) Action Graph(A) Segmentation

Fig. 6. The action graph G (shown in C) is generated from an input KnitNet
(shown in B). Each node of G corresponds to an edge in the KnitNet and
two nodes of G are connected if the corresponding edges in the KnitNet
share a nonempty span of stitches in their mutual node. Note that there is
no edge between nodes C and E in G , even though edges C and E in the
KnitNet share a common node N 3, because they do not share an adjunct
partition of stitches in N 3.

Algorithm 3: Generating the sequence of actions
input :K , the KnitNet data structure, P , a set of rules
output :A, a sequence of actions

G ← build action graph from K

while G � G do
matchFound← false
for pi ∼ (Li ,Ri ) ∈ P do

д ← find a match for subgraph Li in G
if д , ∅ then

substitute д with Ri in G
matchFound← true
break

end
end
if matchFound = false then

error: unable to collapse graph
end
A← get action sequence in G
return A

set-up operations. Existing loopswhich are held for an extended
period may require operations to release tension.

In order to handle this complexity, we divide the machine instruc-
tion generation process into two stages. First, we use the input
KnitNet to build a sequence of abstract knitting actions, which are
generally needed to realize the object at hand. These actions corre-
spond to conceptual tasks to be carried out by the machine and are
not concerned with the dependencies mentioned above. Second, we
translate those actions into machine-specific low-level operations
that map directly into the machine’s native data format.

6.1 Generating the sequence of actions
A knit object is fundamentally a series of connected rows of stitches
that is fabricated in a sequential manner. We capture this row con-
figuration by our KnitNet data structure. Conceptually, the knitting
process can be seen as the act of realizing the KnitNet one KN Node
at a time. In each step of the process, a knitting action is invoked in
order to create a KN Node, i.e., a row of stitches.

In order to represent the sequential nature of the knitting process,
we construct an action graph G that describes the steps required to
knit the input KnitNet. Each node ofG corresponds to a KN Edge in
the KnitNet. Two nodes of G are connected if the corresponding KN
Edges share a nonempty span of stitches in their mutual KN Node.
In other words, the edges of G correspond to mutually disjoint
partitions of the KN Nodes, see Fig. 6 for illustration. In this context,
the transition from one node ofG to another via an edge represents
an action that would knit the partition of the KN Node embedded in
the edge. When the partitions of the KN Nodes are not connected
to any other, their corresponding edges in G would be connected
to specially tagged start or end nodes. These specially tagged start
or end nodes indicate the boundaries of the knit object and their
incoming/outgoing edges represent additional cast-on or bind-off
actions.
In order to generate the sequence of actions described by G, we

proceed with a double pushout algebraic graph rewriting approach
[Corradini et al. 1997]. Each rewriting operation corresponds to
combining multiple knitting steps according to a suitable rule. In
more technical terms, each rule is defined as Pi = {Li → Ri }, where
Li and Ri refer to a template subgraph and a replacement subgraph
respectively. Rewriting the graph according to a rule Pi consists of
searching for an occurrence of the subgraph Li in G that satisfies
certain constraints and replacing it with an instance of Ri . The goal
of this approach is to transformG to its canonical formG , consisting
only of two nodes connected by a single edge, according to the given
set of graph transformation rules. It represents the macro-transition
between the start and the end of the knitting process using the
sequence of actions embedded in its edge. This rewriting approach
is detailed in Algorithm 3.
Figure 7 illustrates this process for the double torus example. In

this case, we have the rule library P = {P1a, P1b , P2a, P2b , P3, P4},
with rules being ordered according to their priority. Using this partic-
ular set of rules, the algorithm is able to handle the class of torus-like
topologies without short rows. P1 and P2 handle geometric increases
and decreases, respectively. P3 is a simple concatenation rule that
removes a node and chains the corresponding actions, and P4 han-
dles the scheduling of hole topologies. Generating the sequence of
actions that would produce the double torus starts by generating
the graph G from the respective input KnitNet. At each iteration,
the algorithm identifies a subgraph of G that is isomorphic to a
template graph Li of a rule Pi . If multiple valid subgraphs are found,
the one corresponding to the highest priority rule is selected. In
our implementation, Ullman’s algorithm [Ullmann 1976] is used for
identifying matching subgraphs. Using the double-pushout rewrit-
ing algorithm, the subgraph Li is substituted with its corresponding
template Ri . By iterating this procedure, G is gradually reduced in
size, while the embedded action sequences in its edges grow larger.
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(P1a)

(P2a)

(A) KnitNet Graph (B) Action Graph G (C) Intermediate Steps (D) Canonical 
Graph Ḡ

(P1b)

(P2b)

(P1a) Left Widening

L1a R1a

L1b R1b

L2a R2a

L3a L3b L4a L4bL2b R2b

(P1b) Right Widening

(P2a) Left Narrowing

(P2b) Right Narrowing

(P3) Linear

(P4), (P3), (P3)

(P4) Hole

(P3), (P3)...

(P2a), (P2b), (P3)

Fig. 7. The input KnitNet is converted into an action graph G , and iteratively transformed using a double pushout graph transformation approach, according
to a user-defined library of rules P . At the end of the transformation, we obtain the canonical action graph G , and extract the sequence of actions A needed to
produce the knit structure from the single edge of G .

Eventually, G consists of only two nodes connected by a single
edge, the canonical form G. The final sequence of actions can thus
be extracted from the edge of this graph. If the algorithm fails to
transformG intoG, this indicates that the provided rule library is
incapable of handling the object’s topology. In this case, an expert
user can extend the rule library to allow the system to handle more
complex topologies.

Building the set of graph transformation rules is not a trivial task.
Defining the functions attached to the edges of the replacement
graphs requires some level of expertise in machine knitting and can
be used for fine-grained control over the scheduling (see Sect. 7.2).
However, once this set is built, it can be reused to generate the
sequence of actions for any input graph that conforms to certain

geometric shapes and knitting templates. Allowing expert users to
define custom rules at this level ensures that the system is highly
extensible and can adapt to different requirements.

6.2 Generating the low-level instructions
Having generated a sequence of abstract actions A, which are still
independent from the machine context but reflect the sequential
nature of the knitting process, from the input KnitNet via G and
G, the goal now is to compile it into a series of low-level machine
operations. The principal challenge here is handling the highly inter-
linked nature of machine knitting, which we overcome by keeping
track of the physical state of the machine while translating the ab-
stract actions into operations. Each action is associated with a set
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Fig. 8. A state S encodes the layout of carriers and loops on the needle bed
at a certain point in the knitting process. An action executed in the context
of the state S changes the layout of the yarn on the needle bed. For example,
a split action would split one island into two and attribute a new yarn
carrier to the newly created island.

of user-defined routines which correspond to different implemen-
tations of the abstract knitting task. These routines depend on the
current state of the machine and modify it within each execution
step.
In our implementation, the machine’s state S is encoded as a set

of i islands and a set of j yarn carrier poses:

S =
(
{I0, . . . , Ii }; {yc0, . . . , ycj }

)
Additionally, we include relative spatial constraints between the
islands, which ensure that they are within a certain distance of
each other and do not overlap. An island is a contiguous region of
the needle bed occupied by knitted loops. In general, each island
corresponds to a separate branch of the geometry, spans a certain
number of stitchesw , and can occupy either one or both sides of the
needle bed. It is represented by an array of slots, each containing
information about the loops occupying a physical needle, e.g., the
template and type of the last stitch operation performed on the
needle. We encode the location of an island by its leftmost reference
point with respect to the start of the needle bed. For example, in
Fig. 8, in the updated state S ′, there are two islands I1 and I2 posi-
tioned at needles 2 and 10, with widths 5 and 3 respectively. Here,
the constraint C0 specifies that I1 must be located on the right of
I0, and separated by a maximum distance of 10 needles without
overlapping. This ensures that subsequent processing steps do not
violate these constraints, rendering the program unknittable. Each
yarn carrier, is encoded by its absolute position on the needle bed,
along with the direction of movement, i.e., leftwards or rightwards,
of the most recent operation involving it. Yarn carriers can be tem-
porarily disabled by sending them out of operation on either side of
the needle bed.
In general, realizing a knitting action leads to a change of the

machine’s state, such as moving of yarn carriers and altering the

Algorithm 4: Transforming actions into operations
input :S0, the initial state, A, the sequence of actions
output :O , a list of operations

initialize O ← ∅
S ← S0
for ai ∈ A do

p ← get parameters of action ai
R ← get the corresponding routine ai
oi ← get operations by executing R with parameters p
and state S . update the state S according the operations
oi append oi to the list of operations O

end
return O

composition and layout of loops on the slots of the needle bed.
Figure 8 shows how a split action changes the state of the machine
by splitting one island into two, requiring the involvement of a
second yarn carrier and changing both yarn carrier poses. Thus, the
translation from abstract knitting actions to low-level operations is
achieved by a linear fold over the input sequence of actions. Given
the initial state S0, the algorithm iterates through the input sequence
of actionsA and performs the following: (1) inspect the current state
and action components, (2) look up the corresponding routine(s),
and (3) append the resulting operations to the list of operations
O , and update the state accordingly. Algorithm 4 summarizes this
procedure.
For illustration, Fig. 9 shows successive knit, widen, and split

actions being executed in the context of the double torus (see Fig. 7),
with the corresponding state updates and generated operations vi-
sualized in KnitPaint. In the case of the split action, the associated
routine splits the island into two and associates a yarn carrier with
each new island. The conceptual task of knitting a single course is
encapsulated by a knit-course action. This action is implemented
by the routines KnitSJ or KnitDJ (among others), for knitting in
Single Jersey or Double Jersey stitch patterns respectively. When the
operation generation algorithm encounters a knit-course action,
it dispatches either of these routines depending on the stitch types
encoded in the state at hand. The routines may additionally call
other subroutines if the state’s island does not conform to specific
constraints. For instance, the KnitSJ routine may call one which
transfers all stitches from the back bed to the front, converting a
double-bed island to a single-bed island in preparation for knitting
a Single Jersey course.

Also, this library of action types and routines is entirely extensible,
allowing one to define new actions or routines that adapt an existing
action to new contexts or purposes. Since action types are deter-
mined largely by the graph transformation rules, there is a certain
degree of interdependence between the two rule sets. For example,
a split graph transformation rule would require the definition of a
corresponding split action and its routines in the routine library.
However, it is important to note that these libraries are completely
decoupled from the input geometry and can be reused across many
situations.

ACM Trans. Graph., Vol. 40, No. 4, Article 64. Publication date: August 2021.



64:10 • Georges Nader, Yu HanQuek, Pei Zhi Chia, Oliver Weeger, and Sai-Kit Yeung

w = 4 w = 4

w = 8

w = 6

{type: ‘split’
 from: x
 to:   [(y, 4), 
        (z, 4)]}

{type: ‘widen’
 yarn: A
 spec: (Right, 2)}

{type:     ‘knit’
 yarn:     A
 vertices: [...]}

AB

A

AB

w = 6

B

��

(B) State Transitions (C) Generated Operations(A) Actions

(no output)

+

+

Fig. 9. The sequence of actions A is threaded through successive states to
produce low-level instructions (represented here as fragments in KnitPaint
format). Some actions may produce no output and only modify the state
representation. For instance, the split action here splits the island of the
incoming state into two.

6.3 Building the transformation rules and routine library
In this section we give some insights into building both the set of
graph transformation rules and the routine library. As mentioned
previously, this is expected to be carried out by specialists who are
familiar with the inner workings of the target knitting machine.

We start by analyzing the shape at hand and identifying high-level
tasks, i.e., actions, that must be carried out by the knitting machine.
Considering the double torus of Fig. 2, its production can be broken
down into the following tasks: knit-course adds a series of stitches
on top of existing ones, knit-hole creates a hole by splitting and
then merging, and widen and narrow increases and decreases the
width of the course, respectively.

For generating the sequence of actions (see Algorithm 3) each
transformation rule Pi is comprised of two graphs Li and Ri . Li is
a topological representation of a particular knitting task and Ri its
topologically simplified version. To build the set of transformation
rules, we start by expressing each knitting task by its topological
representation. We then define the replacement graph Ri and the
derivation of its edges in terms of transformations of the edges in Li .
Each knitting task may have multiple topological representations.
For instance, widening on the left side of the fabric is different from
a widening on the right. Therefore, in order to handle the double
torus example, we define a left and right variant for each widening
and narrowing rule, see Fig. 7.

Each action then maps to multiple low-level implementations, or
routines, see Fig. 7. A routine is a self-contained function that takes
as input a machine state and outputs the instructions along with the
updated state. To create the various routines of a particular action,

Fig. 10. To geometrically calibrate our knitting system, stitch pattern dimen-
sions are determined from image analysis of knitted samples.

we first list its parameters and enumerate the various initial states
and scenarios in which it can be expressed. We then write a routine
for each of those scenarios. For example, executing a knit-course
action depends on the width of the course, the relative pose of the
yarn carrier, and the stitch pattern (Single Jersey, Full Cardigan, ...).
In our implementation, each of the knit-course routines handles
a specific stitch pattern and generates the instructions according to
the relative pose of the yarn carriers, as well as inserting kickback
moves. When a knit-course action is invoked, the system looks
up and executes the corresponding routine, see Algorithm 4.

In the supplementary material, we have included examples of sev-
eral graph transformation rules and routines along with a detailed
commentary.

7 RESULTS
In this section, we demonstrate the capability of the KnitKit machine
knitting system. All of the presented examples were knitted using a
15-gauge Shima Seiki MACH2XS knitting machine [2XS].

7.1 Geometric calibration
As stated in Sect. 5.1, it is possible to control the spacing between
two consecutive stripes. By setting the spacing parameters to the
physical stitch height and width for the course and wale stripes,
respectively, we can calibrate our knitting framework to knit objects
of desired dimensions. However, the distance between two consecu-
tive courses and wales varies for different stitch patterns (and for
different stitch value parameters that control loop length). For in-
stance, the dimensions of a Single Jersey stitch pattern are different
from the dimensions of a Rib stitch pattern. Moreover, those dimen-
sions change when another material is used, e.g., glass fiber yarn
would yield different stitch dimensions compared to cotton-acrylic
yarn. To account for the varying spacing between two consecutive
stripes, we locally modify the size parameters of the node template
and stitch type according to a lookup table that contains the relative
dimensions.
Here, we present a systematic method to easily obtain these di-

mensions, see Fig. 10. First, we knit a small rectangular sample
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Stitch pattern Width (mm) Height (mm)
Single Jersey 1.471 1.256
Double Jersey 1.376 1.437
2x2 Rib 0.992 1.445
Full Cardigan 1.679 1.825
Linen 1.544 1.572
Pique Lacoste 2.019 0.874

Table 1. Dimensions for various stitch patterns knitted from a 30/2 cotton-
acrylic yarn.

(∼ 180 mm wide) with a certain stitch pattern. Then, we fix this
sample inside a jig and take a photograph showing the details of
the stitch pattern. In order to measure the height and width of a
single stitch, we first enhance the contrast of courses and wales
by applying horizontal and vertical blur filters respectively. Then,
we build two 1D profiles of the image by computing the median
pixel value for each row and column. Finally, we run a fast Fourier
transform on the profiles and calculate the width and height of the
stitch pattern from the frequency of each profile with the highest
amplitude. Table 1 presents the measured dimensions of various
stitch patterns for fabrics knitted with a 30/2 cotton-acrylic yarn.
Figure 11a shows the knitted output of a 75 × 300 mm rectangle

where we attribute a different stitch pattern to each section of the
rectangle. Despite the different dimensions of the input stitch pat-
terns, the length of our knitted output is approximately 300 mm
and its width remains close to 75 mm, even when the stitch pattern
changes. This is due to the parameterization operation that locally
adjusts the stripe frequency to account for the changing stitch di-
mensions. Moreover, using these measured stitch dimensions, our
system can closely reproduce the geometric features of the input
geometries. For instance, in Fig. 11b the angles formed by the knitted
outputs are close to those specified in the input geometries.

7.2 Customizability and flexibility of the KnitKit system
The separation of ourmachine knitting system into two independent
stages allows non-expert users to design textiles without requiring
in-depth knowledge about the inner workings of machine knitting.
In this section, we demonstrate the flexibility and customizability
of the KnitKit in various scenarios.

Customizing global knitting directions. Here, we demonstrate the
potential of tweaking the input vector field. This allows the user
to influence the global scheduling of the knitting process, indepen-
dently of the overall shape of the knitted textile. For instance, Fig. 12
shows a rectangular textile comprising three differently colored
regions, i.e., different yarns. When processed with a uniform, hor-
izontally oriented vector field, the resulting boundaries between
different yarns occur in the middle of knitted courses. On the other
hand, when the input knitting direction is adapted to be orthogonal
to the color boundaries, the resulting transitions between different
yarns occur only between successive courses. In both cases, the
resulting knitted textiles have the same overall shape and color
pattern, since they are generated from the same input geometry
and texture, only differing in terms of their vector fields. However,

1cm

Double JerseyRib Linen Cardigan

135
o

90 65o o

(a)

(b)

Fig. 11. The geometric calibration allows us to locally configure the param-
eterization process such that the resulting shape and size of the knitted
output is in accordance with the geometric dimensions of the input design.

Fig. 12. The same rectangular shape with a 3-color texture was knitted with
our system using an horizontally aligned (top) and an adaptive (bottom)
vector field. In the latter, the color change only happens across courses and
not within a course (Size: 200 x 50 mm).

the generated operations for knitting both textiles differ greatly.
The top version requires the use of intarsia techniques that may
involve extra carriage movements and kickbacks in order to deal
with mid-course yarn changes. The bottom version involves short
rows and shaping operations in order for yarn changes to occur
between successive courses.

Customizing yarns and stitch patterns. Within the KnitKit system,
the generation of machine instructions is not bound to any particular
yarn type or stitch pattern.
In Figure 13, we map regions of an input rectangular geometry

to Pique Lacoste and 2x2 Rib stitch patterns with different yarn
colors. These two stitch patterns vary greatly in their dimensions
and stiffness. Having calibrated these stitch pattern dimensions in
Sect. 7.1, our system is able to maintain the desired proportions
of the input geometry by assigning suitable numbers of wales and
courses during the parameterization stage, and by dealing with
internal shaping and short rows at the region boundaries during
the instruction generation stage. By simply changing the input
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Pique Lacoste

Pique Lacoste

2x2 Rib

2x2 Rib

Input Texture Instructions Knitted Output

Fig. 13. A rectangular patch is knitted with two different configurations
of yarn colors and stitch patterns (blue Pique Lacoste and white 2x2 Rib),
which are simply controlled by regions on the input texture that map to the
corresponding template.

texture, we can alternate between vertical and diagonal boundaries
without modifying the underlying rules, even though the low-level
instructions required at the boundary are quite different.

In Figure 14, we have used our system to generate textured knitted
textiles from an input image, in two different styles. The first one
consists of a simple 2-yarn template that we configure with a single
flag to produce a Fair Isle colorwork. To reproduce the input image
in grayscale, we set the type field of vertices in the KN Node to
the dithered luminance of the image. For the second style, we have
defined a complex template comprised of 5 yarns of different colors
with the goal of reproducing the input color image using inlay stitch
patterns. A white yarn is knitted in a Double Jersey stitch type and
cyan (C), magenta (M), yellow (Y), and black (K) yarns are inlaid
between the stitches of the white yarn. In order to configure this
complex template, we define the type field of each vertex as a 4-flag
array. In this configuration, each flag corresponds to the C, M, Y,
and K yarns respectively, and setting the flag to true indicates that
the corresponding colored yarn should be displayed on the fabric
surface. In both of these cases, the expert user defines corresponding
routines for the knit-course action, which are dispatched when
the template is encountered. In this context, the designer only
needs to provide an input image, and the low-level complexity of
dealing with multiple colored yarns is hidden from the user.

Customizing action scheduling. Every topological branch in the ge-
ometry along the knitting direction requires the execution of a
split action, which divides a contiguous island into two. Due to
the inherent nature of knitting, a single yarn carrier cannot simulta-
neously knit across two or more islands without bridging them by
floating strands of yarn. If the branches are sufficiently short, this
can be resolved by a serial scheduling strategy. This entails entirely
knitting one branch before proceeding with the other, which results
in a single floating-yarn connection that is easily post-processed,
i.e., cut. However, this strategy poses a problem when dealing with
larger textiles or more delicate materials, as the loops of yarn on

node type

C M Y K

node type

L
Input

Fig. 14. Knitting a picture as a textured textile with two different templates.
On the left, the dithered luminance of the input image is mapped onto a
rectangular geometry to guide a 2-color Fair Isle colorwork. On the right,
the CMYK channels of the same image are used to configure a complex
5-yarn custom template (Size: 375 x 380 mm).

both islands are subject to inconsistent amounts of tension, which
might cause defects or knitting failures.

To address these potential problems, several scheduling strategies
can be considered. A more conventional strategy is to introduce
additional yarn carriers threaded with the same yarn type so that
the islands can be knitted in parallel. However, due to the limited
number of yarn carriers that are physically present on a given
machine, this strategy limits the possible topologies of a knittable
object. With this strategy, a machine with 4 available yarn carriers
can only knit geometries with a maximum of 4 branches at any
given point in the knitting process. Alternatively, we can handle
splits in a more sophisticated manner by alternating between the
split islands with a tuck-and-bridge action. Like the serial strategy,
this requires only one set of carriers but with the advantage of a
more uniform tension. Implementing this more complex scheduling
strategy in the conventional Shima Seiki KnitPaint macro language
is a highly impractical task. However, with our system this amounts
to only modifying the corresponding split rule.
Figure 15 shows a Y-shaped object knitted with two different

splitting strategies along with their respective generated instruc-
tions visualized in the KnitPaint format. The top version is achieved
with the serial strategy of knitting the left branch entirely before
switching to the right branch. In contrast, the bottom version was
produced with the more complex tuck-and-bridge strategy where
a single carrier knits both branches by alternating between them
at intervals to minimize tension differences. This produces floating
bridges of yarns linking the branches at each interval, which are

ACM Trans. Graph., Vol. 40, No. 4, Article 64. Publication date: August 2021.



KnitKit: A flexible system for machine knitting of customizable textiles • 64:13

d e

a cb

Serial Split

Alternating Split

Knitted ResultInstructions

a
b

c
d

e
a

b
c

d
e

d e

a cb

h(
    

  )
f( 

    
   )

h(
    

  )
f( 

    
   )

Fig. 15. Just by changing the split action rule, it is possible to generate
instructions that use different scheduling strategies for dealing with split
branches from the sameKnitNet . The bottom strategy achievesmore uniform
tension by means of a single yarn carrier knitting both branches in an
alternating manner with floating yarns as bridges.

simply cut after knitting. It is important to note here that while
the two sets of instructions are quite different, they were generated
from the same input KnitNet. The only difference is the graph trans-
formation rules, where we substituted the serial split rule with the
alternating split rule. This causes the graph collapse stage of our
system to generate two different sequences of actions, each corre-
sponding to the respective split strategy. The graph transformation
is also independent of the instruction generation stage, as seen in
Fig. 16 where the same split rule was reused with a more complex
geometry and stitch template.

7.3 Knit design and functional applications
Our KnitKit system aims to make the design process independent
of the low-level operations. This means that given a certain set of
graph transformation rules and a routine library for instruction
generation, a non-technical user can design knitted objects using
typical 3D modeling and image editing tools.
To generate the examples here, we have defined a collection of

12 rules that can handle objects containing branching paths, inter-
nal shaping, and certain configurations of short rows. These rules
generate about 6 classes of actions, each of which is implemented
by several routines. Altogether, 30 different routines were imple-
mented, supporting various complex stitch patterns, variations on
cast-on and bind-off operations, and state manipulation operations.

input design

Fig. 16. A 3D hand model with a 2-colored texture is knitted using the same
alternating split rule as Fig. 15b, requiring only 2 yarn carriers for branching
the textured fingers and minor post processing (Size: 150 x 320 mm).

input design

Fig. 17. An earth replica obtained by guiding the yarn template with a
dithered globe texture attached to a sphere. The resulting knitted object is
stuffed with polyester fiberfill to attain the 3D globe (Size: diam 180 mm).

For example, to produce the double torus of Fig. 2, the user first
loads the geometry into the system. Then, a knitting direction is
computed based on the Fiedler vector of the mesh Laplacian [Lévy
and Zhang 2010]. The user then loads a texture, here the SIGGRAPH
logo, that configures the stitch type and selects a 2-colored cotton
yarn template. In this situation, the user selects the corresponding
set of rules from the routine library from our collection. Now, the
KnitNet is generated from the design inputs and subsequently pro-
cessed to generate the low-level instructions. Finally, the output
instructions are loaded into the machine and the SIGGRAPH-style
double torus is knitted. A similar fabrication procedure was followed
when producing each of the other objects such as the glove (Fig. 16,
capitalizing also on the tuck-and-bridge split scheduling strategy
for branches) or the globe (Fig. 17). Another example that showcases
multiple high-level capabilities of the KnitKit system is displayed
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Gen. KnitNet Gen. instr. Knitting time
(Sect. 5) (Sect. 6)

Double torus 11.1s 24s 12min 30s
Color picture 8.2s <1s 21min
Hand 7.8s 17s 13min 30s
Globe 6.5s 9s 9min 25s

Table 2. Execution times required to generate the KnitNet and machine
instructions for the presented applications with our implementation of the
KnitKit system, as well as knitting times. Computation time was measured
on a system with an Intel Core i7 CPU and 16 GB DDR4 RAM.

in Fig. 18. A complex 5-color stitch template configured to an in-
put image texture is used for the main body of the fabric, which is
shaped according to a 3D-curved elliptical input geometry. Using
customized action specifications, an integrated drawstring channel
is knitted along the outer boundary to tighten the fabric around
a rigid cardboard frame, making it a functional textile decoration
element.
These examples demonstrate that our proposed KnitKit system

makes machine knitting more accessible. The prototyping of knitted
textiles can be greatly simplified, since altering the designs only
requires a change in the corresponding textures. This is particularly
important for emerging applications of technical textiles with added
functionality, where readily available, commercial templates do not
exist. Table 2 shows the detailed time required in our examples to
generate the machine instructions from the input designs. In its
current implementation, our system can generate instructions for
complex objects within minutes.

8 LIMITATIONS AND FUTURE WORK
Input knitting direction. The proposed KnitKit system requires

a vector field to be given as an input that represents the intended
knitting direction. In our implementation, we have computed it by
evaluating either the gradient of a linear function defined on input
geometry, e.g., the time function from [Narayanan et al. 2018], or
the gradient of low order eigenvectors of the mesh Laplacian [Lévy
and Zhang 2010], or by computing a globally optimal vector field
[Knöppel et al. 2015]. This vector field has direct influence on the
remeshing output and thus directly affects the KnitNet structure.
In particular, its curl and divergence influence the occurrence of
T-junctions that translate into short rows and internal shaping of the
knit structure. Furthermore, the physical properties of the yarn, as
well as the stitch pattern, place restrictions on the mechanical stress
that the yarn can withstand during the knitting procedure. These
restrictions limit the machine’s capacity to knit a large number of
successive short rows or perform an arbitrary number of transfers
onto the same needle, since these operations might cause the fabric
to tear or have loop formation errors. Thus, an input vector field
with a large change in curl or divergence, which would cause suc-
cessive short rows or many transfers, should be avoided. Here, we
have smoothed the input vector field in order to avoid these issues.
However, in future work, it would be interesting to explore the
relationship between the input vector field and the generated knit
structure in more detail and develop tools to generate input vector

Fig. 18. A complex knitted object showcasing high-level capabilities of the
KnitKit system. Custom 5-color stitch templates, action definitions for an
integrated drawstring channel and shaping techniques are used to generate
the object from a geometric and image texture input. Inset photos show the
close-up details of the complex stitch pattern and drawstring channel.

fields that take the yarns’ physical constraints into consideration.
This would enable the user to have even more control over the
knitting process and allow the system to perform knitting-aware
optimization of the input vector field in order to ensure a stable
knitting process.

Impossible geometries. In case the geometry contains multiple
concurrent non-planar splits, it is impossible to compute a valid
segmentation of the vertices in each row of the quad mesh. Thus,
a proper allocation of the vertices to either the front or back bed
cannot be found and consequently the system will fail to generate a
valid KnitNet.

Knittability of the KnitNet. The instruction generation part of our
system assumes that the KnitNet is a directed acyclic graph. In case
the input design is a 3D geometry, the vertices of the corresponding
KnitNet’s KN Nodes should form two contiguous groups, each cor-
responding to either the front or back bed. These constraints on the
structure of the KnitNet are weaker than the knittablity conditions
laid out in [Narayanan et al. 2018], which require the input 3D ge-
ometry to have a global planar embedding, such as branches with
braided crossings. Our system can successfully build a KnitNet for
such geometries and is able to generate their corresponding knitting
instructions if the set of graph transformation rules includes the
ones that match to non-planar graphs. Therefore, the knittability of
the KnitNet is not only determined by constraints on its topology,
but also by the set of user defined graph transformation rules. In the
future, we aim to further investigate and formalize the knittability
properties of the KnitNet.

Graph transformation rules and routine library. Building or ex-
tending the set of rules and routines is expected to be carried out
by technical users. It requires a detailed knowledge of the knitting
process and some experience with our system in order to be able to
identify the abstract actions that can be performed by the machines,
determine their various parameters and translate that information
to rules and routines. Readers can refer to the supplementary mate-
rial for examples of graph transformation rules and routines. In the
future, formalizing the notion of KnitNet knittablity would allow
us to propose a more systematic approach for the development of
graph transformation rules and routine libraries for our system.
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Refinement of state model. The current representation of the ma-
chine state could be further enhanced, for instance, by taking into
account the front-to-back positioning of the yarn carriers. If two
carriers share the same rail, it is physically impossible for them to
cross each other or come closer than a specified distance. However,
the current state model treats them as being able to move completely
independently of each other, and thus illegal instructions that result
in collisions of carriers on the same rail could be generated. Rail
allocations can also interact with the spatial layout of islands on
the needle bed to produce undesired phenomena known as "yarn
tagging". In the future, it should be possible to extend the action
processing stage by taking the yarn-to-rail allocation as input and
augmenting the logic to handle these cases. This would enable the
detection of carrier collisions or yarn tags, and the system could
potentially suggest an optimal rail allocation or insert additional
operations to resolve such issues.

9 CONCLUSION
We have presented the KnitKit as a flexible system for the compu-
tational design and manufacturing of customizable textiles using
CNC knitting machines. The aim of this system is to provide a
geometry- and machine-independent workflow for the machine
knitting of textiles. It manages to decouple the high-level design
aspect of producing knitted textiles from the complexities and low-
level specificities of knitting machines. This offers non-expert users
the possibility to design knitted textiles with customized, complex,
3-dimensional geometries and intricate design patterns. At the same
time, it provides knitting experts with the flexibility to implement
additional stitch patterns and output machine knitting instructions
independently from the input design. For example, Figure 1 shows
a textured hand grabbing a globe model, which were both produced
with our knitting system from 3D meshes with attached 2D textures.

This has been realized using the KnitNet, a row-based directed
graph data structure, as a central component. It provides an ab-
stract interface between the high-level specification of geometry,
design pattern, and knitting direction and the low-level knitting
instructions. At the high-level design stage, an algorithm has been
developed that generates the KnitNet representation from an input
mesh geometry and texture-defined specifications.

Furthermore, a two-stage algorithm for the low-level instruction
generation has also been developed, which translates the KnitNet
graph to machine-specific knitting instructions using a set of graph
transformation rules and a routine library that can be customized
by knitting experts.
The capabilities and potential of the KnitKit system have been

demonstrated by applying the complete workflow from high-level
knitting design, to low-level knitting instructions, and to fabrication
for several examples with varying complexities in terms of geome-
tries and patterns. We show that it is possible to design and fabri-
cate textiles with precise geometric dimensions, optimize results
by varying the knitting direction at the high-level stage or instruc-
tion generation rules at the low-level stage, and define complex
stitch configurations that enable users to easily create textiles with
highly-customized designs using multiple yarns and customized
stitch patterns.
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