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Abstract— Addressing domain shifts for complex perception
tasks in autonomous driving has long been a challenging problem.
In this paper, we show that existing domain adaptation methods
pay little attention to the content mismatch issue between source
and target domains, thus weakening the domain adaptation per-
formance and the decoupling of domain-invariant and domain-
specific representations. To solve the aforementioned problems,
we propose an image-level domain adaptation framework that
aims at adapting source-domain images to the target domain
with content-aligned source-target image pairs. Our framework
consists of three mutually beneficial modules in a cycle: a
cross-domain content alignment module to generate source-
target pairs with consistent content representations in a self-
supervised manner, a reference-guided image synthesis based on
the generated content-aligned source-target image pairs, and a
contrastive learning module to self-supervise domain-invariant
feature extractor. Our contrastive appearance adaptation is task-
agnostic and robust to complex perception tasks in autonomous
driving. Our proposed method demonstrates state-of-the-art
results in cross-domain object detection, semantic segmentation,
and depth estimation as well as better image synthesis ability
qualitatively and quantitatively.

I. INTRODUCTION

Building scalable and robust perception capabilities such
as object detection [1], [2], semantic segmentation [3] and
depth estimation [4] is a challenging task in autonomous
driving systems [5], [6], [7]. A fundamental challenge is
the domain shift, where the systems are expected to work
in various conditions such as adverse weather, changing
illumination, and varying geographic locations. In theory,
supervised learning can be used to train object detectors,
semantic segmentation models, and depth estimators with
paired data and labels acquired in various conditions, but in
practice, the supervised learning approach is too expensive
due to the high cost of data acquisition and annotation, the
countless variants of the road conditions, and some potential
changes in hardware, sensors, and simulation environments
in autonomous driving.

To mitigate such issues, a practical solution is domain
adaptation, which aims at adapting a model trained with labels
in a source domain to a novel target domain without labels.
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Recent domain adaptation methods focus mainly on feature-
level adaptation, including discrepancy-based [8], adversarial
feature learning [1], self-training [9] and knowledge distilla-
tion [10]. Beyond these methods, image-level adaptation [11]
can reduce appearance differences between the two domains
by generating target-like images from the source images. An
inherent advantage of image-level adaptation is that it is task-
agnostic, which means that the generated target-like images
can be used for a wide variety of downstream cross-domain
perception tasks, making it highly suitable for multi-task
scenarios such as autonomous driving. However, existing
image-level adaptation methods tend to suffer from visual
artifacts caused by imperfect image synthesis, which degrades
overall domain adaptation performance.

In this paper, we observe that the inferior performance of
image-level adaptation is attributed to the content mismatches
between samples from the source and target domains. We
define content mismatches by limited semantic “objectness”
correspondences or layout (geometry) similarity [12] between
a source-domain image and a target-domain image. We
provide a motivating example in Figure 1. In this example, our
aim is to translate an image xs from the source domain S to
the target domain T by using a reference image x1

t or x2
t from

T. We observe that reference x1
t shares more similar semantic

correspondences (green region) with the source image than
reference x2

t (red region). Therefore, the generated image x̃1
t

has better image quality and fewer visual artifacts than x̃2
t .

This example motivates us to choose the right reference to
reduce content mismatches is key to achieving effective image
translation and domain adaptation. Unfortunately, few existing
domain adaptation methods consider such content mismatches
between samples from the source and target domains. It has
been shown that addressing such semantic correspondences
enables the disentanglement of domain-invariant and domain-
specific representations.

To better model these semantic correspondences, we
propose a novel framework for image-level domain adaptation
that incorporates cross-domain content alignment (CDCA),
contrastive learning, and reference-guided image synthesis.
Our method is general-purpose and task-agnostic and can
support different perception tasks such as object detection,
semantic segmentation, and depth estimation. The modules
in our framework are also mutually beneficial. The CDCA
module builds pairs of images from the source and the
target domain, respectively, such that the discrepancy in the
content representation in each image pair is minimized. Such
a content representation can be extracted from a domain-
invariant feature extractor trained by contrastive learning



Fig. 1. Addressing content mismatches between the source image and the reference image is key to effective image synthesis and domain adaptation. This
example shows that with the same source image, choosing a reference image with well-aligned semantic correspondences leads to better quality in image
synthesis. Best viewed in color.

on source images and generated images from the reference-
guided image synthesis module. Specifically, our reference-
guided image synthesis takes a source image and a reference
image from the target domain as input and synthesizes a new
image that fuses the content of the source with the style of the
reference. We term this synthesized image a target-like image.
The source image and the generated target-like image form
a pair of augmented views that can be used in contrastive
learning to learn a feature extractor to output domain-invariant
features. The feature extractor can then be used by the CDCA
module to retrieve a better content-aligned reference image
that subsequently improves overall performance. The three
modules mutually improve each other and eventually converge
to better domain adaptation.

We have conducted experiments with our proposed method
with multiple downstream tasks for cross-domain perception
in autonomous driving, including object detection, semantic
segmentation, and depth estimation. Our results show that our
method can deal with domain shifts effectively and outperform
all existing state-of-the-art methods by a large margin. Our
contributions are:

• A novel task-agnostic image-level domain adaptation
method that addresses content mismatches between the
source domain and the target domain by using reference-
guided image synthesis and contrastive learning.

• Ablation studies and result analysis that explain the
merits of our method in modeling implicit semantic
correspondences between domains, resulting in better
disentanglement of domain-invariant and domain-specific
knowledge.

• Extensive experiments that demonstrate the effectiveness
of our method on multiple datasets in autonomous
driving for multiple tasks including cross-domain object
detection, semantic segmentation, and depth estimation,
achieving state-of-the-art results.

II. RELATED WORK

Cross-domain perception systems. Domain adaptation
techniques for specific perception tasks such as object
detection and semantic segmentation have been developed
based on the main principles originally developed for unsu-
pervised domain adaptation for visual data (e.g., discrepancy-
based methods [8], adversarial training [1], self-training [9]
and knowledge distillation [10]). Adversarial training was
pioneered in object detection by reducing the domain dis-
crepancy in a min-max manner with a domain classifier [1].
Similarly, one can also minimize domain discrepancy by
learning domain-invariant representations for semantic seg-

mentation [13]. However, using adversarial learning in the
feature space only achieved a marginal improvement in
accuracy in complex scenarios. Self-training algorithms [9]
utilize the pre-trained model in the source domain to generate
the supervision in the target domain for retraining. However,
self-training methods suffer from the low quality of pseudo-
labels generated in the target domain.

Recent knowledge distillation algorithms [14], [15] intro-
duced the Mean Teacher framework for domain-adaptive
object detection and semantic segmentation. AT [16] aimed
to improve the quality of pseudo-labels generated in the target
domain by using adversarial learning and mutual learning.
DaFormer [10] and HRDA [17] achieved the current state-of-
the-art domain adaptive semantic segmentation performance
by introducing SegFormer [3] for more effective knowledge
distillation. ProCST [18] introduced progressive style transfer
into DAFormer and HRDA to achieve performance gain for
domain adaptive semantic segmentation, which is not task-
agnostic since ProCST designs the label loss based on dense
pixel-level annotations. Progressive image synthesis among
multiple image resolutions also requires huge computational
costs and memory burdens. Although successful in some
scenarios, these domain adaptation approaches remain limited
when there exist significant content mismatches between the
source and target images.

Content-aware adaptation. Some efforts have been made
to address content mismatches between the source and
target images. CCM [12] constructed positive pairs for
better domain adaptation in the label space through pixel-
wise similarity matching, which is not task-agnostic and
requires dense pixel-level semantic annotations. Compared
to CCM [12], our similarity matching is learned without
annotations and guided by domain-invariant features from
image-level contrastive learning and reference-guided image
synthesis. Recent works [19], [20] propose to construct
normal-adverse image pairs that have a similar layout based
on GPS information. The utilization of the normal images
collected with good visibility results in a better domain adap-
tation performance [21]. Refign [21] adopted a pre-trained
geometry alignment module to warp the paired reference
image to refine the pseudo-labels generated in the target
domain. However, they require large-scale additional data for
training as well as expensive geometry correspondences from
structure-from-motion. Compared to these works, our work
focuses on more generic cross-domain content alignment
without using annotations or additional training data. We
support multiple downstream tasks by building our method
upon task-agnostic image synthesis.



Image synthesis for task-agnostic domain adaptation.
Image synthesis methods can learn to generate target-like
images to reduce the domain gap for task-agnostic image-
level domain adaptation [22]. State-of-the-art image trans-
lation methods are CycleGAN with the cycle-consistency
loss [11] and its variants [23], [22]. Recent work [23], [24],
[24] introduced image translations for cross-domain image
classification [24], semantic segmentation [23] and object
detection [15]. However, solely using the cycle-consistency
loss cannot guarantee the disentanglement of the domain-
invariant and domain-specific representations. Specifically,
the generated images in the target domain may lose content
representation or yield unnecessary visual artifacts. Recent
reference-guided image synthesis [25] can combine the style
representation from a reference image in the target domain
and the content representation from a source image to
generate a target-like image. However, these methods do
not consider content mismatches between the source image
and the reference image. In this work, we propose an effective
approach that wires contrastive learning and image translation
in a mutually beneficial way for retrieving content-aware
reference images, thereby reducing content mismatches and
improving overall image translation and domain adaptation
performance.

III. OUR METHOD

A. Overview

We first formulate our problem by assuming the domain
adaptation from a source domain S to a target domain T,
where their data distributions are different, i.e., PS ̸= PT.
The source domain is labeled, while the target domain is
unlabeled. Let S = {xi

s, y
i
s}, where xi

s is the source image
and yis is the corresponding annotation in the source domain
for i ∈ 1..Ns. Similarly, T = {xi

t} for i ∈ 1..Nt, where
Ns and Nt indicate the number of images in each domain,
respectively. For cross-domain perception tasks in autonomous
driving, we assume that the labels for object detection are
2D bounding boxes and for semantic segmentation the labels
are pixel-level annotations. An overview of the proposed
method for domain adaptation is shown in Figure 2, which
mainly includes three modules in a cycle: 1) cross-domain
content alignment (CDCA) to construct source-reference
pairs (consistent with source-target pairs in this paper); 2)
reference-guided image synthesis; and 3) contrastive learning
for domain-invariant feature extraction. Based on the extracted
content representation from both source and target images,
the CDCA module retrieves the target images with the most
consistent content representation with each source image
and constructs the source-reference pairs. Given such source-
reference pairs, reference-guided image-to-image translation
generates target-like images in the target domain for reducing
the domain gap. Later, source images and the corresponding
generated images are used in the contractive learning module
for learning domain-invariant features, for further content
similarity computation in CDCA, building a mutual-beneficial
training cycle.

B. Cross-domain Content Alignment

In each cycle, to perform cross-domain content alignment,
all real source and target images from the whole training
datasets are fed into the feature extractor f(·) to obtain
the content representations. f(·) is a ResNet-50 [26] and
is initialized with the pre-trained weights on ImageNet
dataset for better initialization performance and optimized by
contrastive learning described in Section III-D. To construct
source-reference image pairs, we first compute the content
representation similarity between the source and the reference
image in each pair by cosine similarity. For each source image,
the target image with the highest similarity score is selected
to form a source-reference image pair during the training
procedure.

C. Reference-guided Image Synthesis

After performing CDCA, the constructed pairs are then
used for reference-guided image synthesis, generating target-
like images to reduce the domain gap. Let the source-reference
image pair generated by CDCA be (xs, xt). The reference-
guided image synthesis is a dual-stream neural network that
fuses the content of the source image and the style of the
reference image into a final output. xs is fed into the content
stream to extract the feature of the source content, while
xt is fed into the style stream to extract domain-specific
representations (style or appearance). We use FAdaIN and
FADE [25] to transfer the style representation from xt and
preserve the content representation of xs. The generated
image x̃t is target alike, which means that the pair (xs, x̃t)
has a smaller domain gap compared to the (xs, xt) image pair.
Our image translation is trained with hinge-based adversarial
loss. The generator loss LG and the discriminator loss LD

can be written as:

LG = −E[D(x̃t)] + λfmLfm(x̃t, xt), (1)
LD = −E[min(−1 +D(xt), 0)]− E[min(−1−D(x̃t), 0)],

(2)

where D is the discriminator; Lfm is the feature matching
loss [27] to enforce the similarity of the intermediate
feature representations at different layers of the multi-scale
discriminators.

D. Domain-invariant Representation Learning

The contrastive learning framework is adopted to project
both the source and target images into the same feature
space. Particularly, we view the source-generated image pair
(xs, x̃t) from the reference-guided image synthesis stage as
augmented views of a latent domain-invariant representation,
and therefore we use contrastive learning to train the feature
extractor to be insensitive to the domain gap between xs and
x̃t. In other words, we adopt image synthesis as an effective
data augmentation for contrastive learning. We feed the source
image xs and the corresponding generated image x̃t into the
feature extractor f(·) to obtain feature representations, and
then pass these features to a projection head g(·) to obtain the
final features zxs and zx̃t to calculate the contrastive loss. We
also apply transform operations from the transformation sets



Fig. 2. The core of our image-level domain adaptation is a cycle of three mutual-beneficial modules: cross-domain content alignment (CDCA),
reference-guided image synthesis and contrastive learning. CDCA uses the domain-invariant feature extractor learned by contrastive learning to construct
source-reference image pairs for training the reference-guided image synthesis module to produce target-like images. The source and target-like images can
be regarded as augmented views for contrastive learning to improve the domain-invariant feature extractor. Final target-like images and source labels can be
adopted for downstream perception tasks.

T (including random resizing and cropping, color jitter and
random greyscale) to obtain xs ← t1(xs) and x̃t ← t2(x̃t)
where t1, t2 are augmentation operators randomly drawn from
T . The contrastive loss Lcl is written as

Lcl = − log
exp(sim(zxs

, zx̃t
))/τ)∑

x∈X,x ̸=xs
exp(sim(zxs

, zx)/τ)
, (3)

where sim(u, v) = uT v/∥u∥∥v∥ denotes the pairwise content
similarity between feature u and v and τ is the temperature
parameter. X is the set of total images in the current
mini-batch. Note that our contrastive learning does not
utilize the original target images for training since there
is no correspondence between source and target images for
constructing positive pairs.

E. Cross-domain Perception

We train the modules in our framework in an end-to-end
manner. Particularly, we integrate reference-guided image
synthesis and contrastive learning through joint training and
iteratively optimize each. To alleviate error propagation, we
do not allow gradient backpropagation from the contrastive
learning module to the synthesis module. The synthesis
module and contrastive learning module are optimized sep-
arately. Making such a framework work seamlessly with
good performance is creative and non-trivial. Each module
in our system can also be replaced with counterparts and
integrating our CDCA module with other frameworks as a
plug-and-play module could also achieve performance gain.
The training of the proposed CDCA module does not exhibit
instability and the whole framework is optimized steadily. We
include more analysis and the training curves in our ablation

studies. In this work, we consider two supervised downstream
tasks with object detection and semantic segmentation, and
an unsupervised downstream task with depth estimation,
respectively. For object detection and semantic segmentation,
we adopt both the source images and the generated target-
like images with the same source labels for supervised
learning. For depth estimation, we consider unsupervised
monocular depth estimation and assume that a well-trained
depth estimator is available in the source domain. We then
perform the target→source domain adaptation and apply the
depth estimator to the generated source-like images.

IV. EXPERIMENTS

A. Implementation Details

For the reference-guided image synthesis module, we adopt
TSIT [25] as the backbone and remove the perceptual loss part.
We adopt a small batch size for image synthesis: 2 for image
resolution 1024 × 512 (for cross-domain object detection
and depth estimation tasks) and 1 for image resolution
2048× 1024 (for cross-domain semantic segmentation). For
the contrastive learning module, we adopt ResNet-50 [26]
pre-trained on ImageNet for f(·) and preserve the same
architecture for g(·) as [28]. The projected output z is a
128-dimensional vector while the temperature τ is 0.5. The
batch size is set to 64 and the image resolution is 256× 256
for contrastive learning. We change the random resize scale
from (0.2, 1.0) adopted in SimCLR to (1.0, 1.12) to preserve
the most content representations in the figures. We choose
Adam optimizer with a learning rate of 1e−3 and weight
decay of 1e−6 for contrastive learning optimization. Besides,
to iteratively optimize the modules, in each cycle, the epoch



Fig. 3. Generated image quality comparison between CycleGAN, TSIT and our method under Sim10k→Cityscapes adaptation.

TABLE I
FID (↓) scores of different image synthesis methods. Our method
outperforms both previous non-reference method (CycleGAN) and

reference-based method (TSIT).

Methods Cityscapes→Foggy Cityscapes Sim10k→Cityscapes

CycleGAN [11] 25.76 77.31
TSIT [25] 7.35 60.24

Ours 5.68 48.23

number of the synthesis module and contrastive learning
module is set to 5 and 10 and we execute the cycle 10
times in total. We perform cross-domain object detection
experiments based on the MMDetection framework [29]. We
adopt Faster R-CNN [2] with VGG-16 [30] and ResNet-
50 [26] pre-trained on ImageNet as the backbone network.
The shorter side of each input image is resized to 600
pixels. For semantic segmentation, we adopt DACS [31]
DAFormer [10] and HRDA [17] as backbones and conduct
the experiments following the official instructions. We choose
both the source data and the target-like translated data to
optimize both detection and segmentation models, which
encourages the training model without being biased.

B. Task-agnostic Image Synthesis

We first evaluate the quality of the generated images qual-
itatively and quantitatively as high-quality image synthesis
could imply high performance for downstream perception
tasks. We compare our reference-guided image synthesis
with two representative image synthesis methods namely
CycleGAN [11] and TSIT [25]. CycleGAN translates the
source image to the target domain without reference. TSIT is
a reference-guided image synthesis method. For quantitative
measurement of the synthesized image quality, we adopt
FID [32] (lower is better) as the evaluation metric. We
report qualitative and quantitative results in Figure 3 and
Table I respectively, under the adaptation Cityscapes→Foggy
Cityscapes and Sim10k→Cityscapes. Our image synthesis
outperforms both CycleGAN and TSIT on both datasets
by a large margin. Such improvement can be explained by
the improved source-reference image pairs obtained from
the improved domain-invariant feature extractors trained by
contrastive learning.

C. Cross-Domain Perception

Cross-Domain Object Detection. We first report quantita-
tive results on Cityscapes→Foggy Cityscapes in Table II.
The average precision (AP) of 8 categories on the Foggy

TABLE II
Cross-domain object detection on the Foggy Cityscapes dataset using

Cityscapes→Foggy Cityscapes adaptation.

Methods Detector Backbone person rider car truck bus train motor bicycle mAP↑

SCL [33] F-RCNN VGG-16 31.6 44.0 44.8 30.4 41.8 40.7 33.6 36.2 37.9
GPA [34] F-RCNN ResNet-50 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5
UMT [15] F-RCNN VGG-16 56.5 37.3 48.6 30.4 33.0 46.7 46.8 34.1 41.7

MeGA-CDA [35] F-RCNN VGG-16 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
CDG [36] F-RCNN VGG-16 38.0 47.4 53.1 34.2 47.5 41.1 38.3 38.9 42.3

MGADA [37] F-RCNN VGG-16 43.9 49.9 60.6 29.6 50.7 39.0 38.3 42.8 44.3
SIGMA [38] F-RCNN ResNet-50 44.0 43.9 60.3 31.6 50.4 51.5 31.7 40.6 44.2

TDD [39] F-RCNN ResNet-50 50.7 53.7 68.2 35.1 53.0 45.1 38.9 49.1 49.2
AT [16] F-RCNN VGG-16 45.5 55.1 64.2 35.0 56.3 54.3 38.5 51.9 50.9

Ours F-RCNN VGG-16 53.2 59.2 73.1 35.1 56.6 40.9 42.5 50.8 51.4
Ours F-RCNN ResNet-50 53.7 58.3 72.2 36.6 60.6 51.3 44.3 51.6 53.6

Fig. 4. Qualitative comparisons of cross-domain object detection methods
on Cityscapes→Foggy Cityscapes adaptation.

Cityscapes and the mAP are reported. We compare our
method with recent state-of-the-art algorithms including
SCL [33], GPA [34], UMT [15], MeGA-CDA [35], CDG [36],
MGADA [37], SIGMA [38], TDD [39] and AT [16]. Our
method outperforms existing methods by a large margin even
based on the same backbone. Qualitative results are shown in
Figure 4. As illustrated, our method could accurately detect
small objects in dense fog, e.g., the bicycle in the first row. We
also conduct synthetic-to-real and cross-camera detection
from Sim10k/KITTI to Cityscapes in Table III. Sim10k is a
simulated dataset containing 10,000 images. KITTI is a scene
dataset (7,481 labeled images) with a different camera setup
as Cityscapes. The validation set of Cityscapes is used for
evaluation. Only the category car is used for evaluation under
both settings. We provide more experimental results of multi-
source cross-domain object detection in our supplementary.
Cross-Domain Semantic Segmentation. We then extend
our framework to cross-domain semantic segmentation to
demonstrate the versatility of the proposed method. We
combine our method with DACS [31], DAFormer [10]
and HRDA [17]. We include the recent ProCST [18] for
comparison, which proposed the synthesis of source-in-target
images to improve the performance of domain adaptation for
semantic segmentation. We perform Cityscapes→Dark Zurich
(daytime-to-nighttime) adaptation. Dark Zurich dataset [19]
contains 201 annotated nighttime images: 151 images (Dark
Zurich-test) are used for testing and 50 images are used for
validation. Following the official implementation of ProCST,
we conduct the Cityscapes→Dark Zurich adaptation based on



TABLE III
Synthetic-to-real/Cross-camera domain adaptation from Sim10k/KITTI to

Cityscapes on object detection task.

Methods Detector Backbone mAP (car) Sim10k / KITTI ↑

CST [40] F-RCNN VGG-16 44.5 / 43.6
MeGA-CDA [35] F-RCNN VGG-16 44.8 / 43.0

UMT [15] F-RCNN VGG-16 43.1 / -
CDN [41] F-RCNN VGG-16 49.3 / 44.9
CFA [42] FCOS VGG-16 49.0 / 43.2
CFA [42] FCOS ResNet-101 51.2 / 45.0

SAPNet [43] F-RCNN VGG-16 44.9 / 43.4
MGADA [37] F-RCNN VGG-16 49.8 / 45.2
MGADA [37] FCOS VGG-16 54.6 / 48.5
SIGMA [38] F-RCNN VGG-16 53.7 / 45.8

TDD [39] F-RCNN VGG-16 53.4 / 47.4

Ours F-RCNN VGG-16 55.3 / 50.4
Ours F-RCNN ResNet-50 56.8 / 53.1

Fig. 5. Qualitative comparisons with cross-domain semantic segmentation
algorithms on Cityscapes→Dark Zurich adaptation.

DAFormer and HRDA backbones. All experimental results
are reported in Table IV. As reported, with a large distribution
shift (complicated mixed style and illumination factors), the
proposed method could achieve more performance gains
than existing algorithms since our method can effectively
reduce the visibility gap. Finally, we provide qualitative com-
parisons with DAFormer and HRDA for Cityscapes→Dark
Zurich adaptation in Figure 5. We provide the results of
GTA5→Cityscapes and Synthia→Cityscapes adaptation in
our supplementary.
Cross-Domain Depth Estimation. To evaluate depth es-
timation, we perform adverse-to-normal domain adaption,
e.g., foggy→daytime for visibility enhancement. We evaluate
the performance of Monodepth2, a recent monocular depth
estimator [4], on the KITTI dataset. We use the pre-trained
model on the KITTI dataset with the model resolution of
1024×320 for evaluation. In Table V, we provide quantitative
comparisons of without and with visibility enhancement on
the Foggy Cityscapes dataset since the ground truth depth
is provided. With visibility enhancement by our method, the
depth estimator performs better than the baseline.

Fig. 6. Reference-guided image syn-
thesis performance comparison based
on constructed source-reference pairs
under different settings.

Fig. 7. R@1 and LPIPS curves com-
puted by source-reference pairs constructed
by our CDCA module during the whole
training procedure.

D. Ablation Studies

Training stability. We discuss the training stability of our
method. One potential issue is that at the early stages of the
training, general feature extractors such as the pre-trained

ResNet50 on ImageNet might yield content-mismatched
source-reference pairs that lead to negative transfers, which
are detrimental to model convergence. However, we empir-
ically found such training instability does not occur in our
method.

We conduct Cityscapes→Foggy Cityscapes adaptation for
explanation. We explore whether the CDCA module could ef-
fectively return the reference images consistent with the given
source image. The random source-reference pair construction
is also conducted for comparison. We also compare features
initialized from the pre-trained ResNet-50 model on ImageNet
with random initialization. For quantitative results, we calcu-
lated the average LPIPS score [44] (lower is better) between
500 validation images from the Cityscapes dataset (source)
and the retrieved top-1 images from the Foggy Cityscapes
dataset (reference) to measure the content similarity of the
source-reference pairs. Since the Foggy Cityscapes dataset is
simulated from the Cityscapes dataset with one-to-one clear-
foggy correspondence, we calculate the R@1 score (higher
is better). As shown in Table VI, our CDCA module can
effectively construct source-reference pairs even with features
from a pre-trained ResNet-50 model. By further using the
reference-guided image synthesis for contrastive learning,
we achieve better domain-invariant feature extraction. We
then adopt such constructed source-reference image pairs for
reference-guided image synthesis with an FID plot provided in
Figure 6 to show the image synthesis performance. “Random
sampling” indicates randomly constructed source-reference
pairs; “Pre-trained (Frozen)” indicates constructing source-
reference pairs based on a frozen pre-trained ResNet-50 model
on ImageNet; “w/o Synthesis” indicates constructing source-
reference pairs under the setting where no image synthesis as
augmentation for contrastive learning. We also adopt different
retrieved reference images (e.g., the top-1, top-5 and top-10)
by our CDCA module to perform reference-guided image
synthesis and report the corresponding FID scores of the
generated images. The FID scores are 5.68 (consistent with
“Ours” in Figure 6), 5.73 and 5.80 respectively using the top-1,
top-5 and top-10 retrieved images. This analysis confirms
that our method establishes plausible source-reference pairs
for stable training.

Finally, the training stability of our method during the
whole training procedure can also be observed in the plot of
R@1/LPIPS as in Figure 7. As illustrated, the whole cycle
of the proposed method could be optimized steadily and
the CDCA module could progressively yield more effective
source-reference pairs with consistent feature representations.
Therefore, we conclude that, though CDCA might result in
negative transfer, this does not happen at scale; within a
large batch of images required for contrastive learning the
majority of transfers are appropriate, alleviating the influence
of negative transfer.
Effectiveness of CDCA in downstream tasks. We evaluate
whether the formulated source-reference correspondences
could boost the domain adaptation performance of down-
stream visual tasks (e.g., domain adaptive object detection)
by replacing the random sampling strategy with such cor-



TABLE IV
Cross-domain semantic segmentation under Cityscapes→Dark Zurich-test set (DZ for short) adaptation.

Methods Settings Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU ↑

DACS [31]

C
ity

sc
ap

es
→

D
Z

83.1 49.1 67.4 33.2 16.6 42.9 20.7 35.6 31.7 5.1 6.5 41.7 18.2 68.8 76.4 0.0 61.6 27.7 10.7 36.7
DACS+Ours 90.3 61.4 71.5 31.5 9.6 43.2 18.5 37.3 38.2 16.7 32.3 41.5 45.2 75.3 74.2 0.0 64.2 35.2 25.3 42.7

DAFormer [10] 93.5 65.5 73.3 39.4 19.2 53.3 44.1 44.0 59.5 34.5 66.6 53.4 52.7 82.1 52.7 9.5 89.3 50.5 38.5 53.8
ProCSTDAFormer [18] 94.7 72.7 73.3 40.2 20.2 53.1 53.2 47.8 62.1 36.7 73.8 60.4 55.4 82.6 35.4 1.8 87.2 55.7 33.5 54.7

DAFormer+Ours 94.9 72.2 73.9 41.1 16.1 58.1 54.4 52.9 70.9 37.5 73.8 54.8 51.2 89.6 44.3 8.2 88.5 56.9 34.9 56.5

HRDA [17] 90.4 56.3 72.0 39.5 19.5 57.8 52.7 43.1 59.3 29.1 70.5 60.0 58.6 84.0 75.5 11.2 90.5 51.6 40.9 55.9
ProCSTHRDA [18] 94.8 73.7 75.6 40.9 22.3 56.0 55.0 49.1 69.2 39.3 78.8 62.5 55.0 83.5 45.0 0.9 87.5 57.7 33.7 56.8

HRDA+Ours 95.7 77.4 83.6 50.4 34.2 62.5 62.2 69.9 81.1 16.7 91.5 67.3 60.0 88.1 5.5 32.1 90.8 55.7 41.4 61.4

TABLE V
Cross-domain depth estimation. The pre-trained depth estimator achieves

higher performance on Foggy Cityscapes with foggy→daytime adaptation.

Method Error↓ Accuracy↑
RMSE RMSE(log) Abs Rel Sq Rel δ < 1.25 δ < 1.252 δ < 1.253

w/o foggy→daytime 13.74 0.430 0.319 4.587 0.445 0.737 0.875
w/ foggy→daytime 10.70 0.317 0.232 2.769 0.578 0.857 0.947

TABLE VI
Comparison of different source-reference pairs construction strategies.

Using both pretrained ResNet-50 for initialization and image synthesis for
domain-invariant feature learning yields the best source-reference pairs.

Strategies R@1 ↑ LPIPS ↓

Random source-reference pairs 0.2% 0.6123

f(.) initialization Image synthesis
for contrastive learning R@1 ↑ LPIPS ↓

Random initialization - 14.6% 0.5314
Pretrained ResNet-50 (frozen) - 50.4% 0.4263
Pretrained ResNet-50 (finetuned) - 54.2% 0.3936
Random initialization ✓ 89.8% 0.2034
Pretrained ResNet-50 (finetuned) ✓ 97.8% 0.1718

respondences. To guarantee the sample diversity during the
training procedure, instead of top-1 retrieval, we use the
top-10 retrieved target images for each source image: we
randomly select one target sample over the 10 target images
for the source image to perform adaptation in each iteration. In
Table VII, our proposed CDCA module can alleviate content
mismatches between two domains, achieving performance
gain, and potentially working as a plug-and-play module for
existing cross-domain perception algorithms.
Effectiveness of referenced-guided image synthesis in
downstream tasks. We further analyze the effectiveness of the
generated images by different image synthesis algorithms for
cross-domain object detection (Cityscapes→Foggy Cityscapes
adaptation). For CycleGAN, TSIT and our method, both
source images and generated target-like images are used for
training, and the quantitative results are reported in Table VIII.
The proposed method could achieve the best performance
improvement compared to other algorithms. Additionally, the
experimental results of only using the synthesized target-like
images (denoted by ‘Ours−’) for training are also reported,
which indicates that combining both source images and target-
like images can result in more performance gain.

V. CONCLUSION

In this paper, we comprehensively perform the analysis of
content mismatches during domain adaptation. Based on a mu-
tually beneficial system of reference-guided image synthesis
and contrastive learning, our method can alleviate content mis-
matches and perform task-agnostic image synthesis for various
visual perception tasks in autonomous driving. Comprehensive

TABLE VII
Effectiveness of our cross-domain content alignment (CDCA) on object

detection on Foggy Cityscapes. CDCA can be added to existing methods,
improving overall mAP.

Methods CDCA person rider car truck bus train motor bicycle mAP↑

DA-faster [1] × 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.3 27.6
✓ 27.4 32.8 41.7 23.5 37.4 21.4 21.5 29.1 29.4 (+1.8)

SCL [33] × 31.6 44.0 44.8 30.4 41.8 40.7 33.6 36.2 37.9
✓ 32.5 44.9 45.6 31.5 43.1 41.8 34.8 37.1 38.9 (+1.0)

UMT [15] × 56.5 37.3 48.6 30.4 33.0 46.7 46.8 34.1 41.7
✓ 56.6 39.1 49.5 31.5 34.2 47.3 47.3 35.0 42.6 (+0.9)

MeGA-CDA [35] × 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
✓ 38.7 49.8 53.1 27.1 49.9 47.7 35.5 38.9 42.6 (+0.8)

TABLE VIII
Effectiveness of reference-guided image synthesis on cross-domain object

detection on the Foggy Cityscapes dataset using Cityscapes→Foggy
Cityscapes adaptation. The best result is in bold. ‘Ours−’ indicates the

setting of using only the synthesized target-like images for training.

Methods person rider car truck bus train motor bicycle mAP↑

Source only 40.7 46.1 45.0 19.5 27.9 3.6 27.4 43.6 31.7
CycleGAN [11] 44.3 52.0 50.3 25.3 29.6 9.5 32.1 46.6 36.2

TSIT [25] 54.1 58.5 72.8 34.5 54.5 36.1 41.5 53.1 50.6

Ours− 53.9 57.1 74.4 36.9 55.3 34.0 44.2 52.6 51.1
Ours 53.7 58.3 72.2 36.6 60.6 51.3 44.3 51.6 53.6

experiments using different benchmark algorithms on various
datasets have demonstrated the superior performance of the
proposed method.

Our method is not without limitations. While our method
is effective at reducing content mismatches between domains,
the proposed method did not explicitly measure objectness
correspondences between domains. For further improvement,
the proposed method could adopt annotations from the
downstream visual tasks for domain adaptation. Addition-
ally, exploring more downstream tasks such as 3D object
detection, pedestrian detection, instance segmentation with
our framework would be interesting future work.
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[5] C. Häne, T. Sattler, and M. Pollefeys, “Obstacle detection for self-
driving cars using only monocular cameras and wheel odometry,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 5101–5108, IEEE, 2015.

[6] Q.-H. Pham, P. Sevestre, R. S. Pahwa, H. Zhan, C. H. Pang, Y. Chen,
A. Mustafa, V. Chandrasekhar, and J. Lin, “A 3d dataset: Towards
autonomous driving in challenging environments,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2267–
2273, IEEE, 2020.

[7] F. C. Borlino, S. Bucci, and T. Tommasi, “Contrastive learning for cross-
domain open world recognition,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 10133–10140, IEEE,
2022.

[8] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable
features with deep adaptation networks,” in International conference
on machine learning, pp. 97–105, PMLR, 2015.

[9] Y. Zou, Z. Yu, B. Kumar, and J. Wang, “Unsupervised domain
adaptation for semantic segmentation via class-balanced self-training,”
in Proceedings of the European conference on computer vision (ECCV),
pp. 289–305, 2018.

[10] L. Hoyer, D. Dai, and L. Van Gool, “Daformer: Improving network
architectures and training strategies for domain-adaptive semantic
segmentation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9924–9935, 2022.

[11] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in International
Conference on Computer Vision, pp. 2223–2232, 2017.

[12] G. Li, G. Kang, W. Liu, Y. Wei, and Y. Yang, “Content-consistent
matching for domain adaptive semantic segmentation,” in European
Conference on Computer Vision (ECCV), pp. 440–456, Springer, 2020.

[13] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Pérez, “Advent:
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