2009.11219v1 [cs.RO] 23 Sep 2020

arxXiv

Dual-SLAM:
A framework for robust single camera navigation

Huajian Huang, Wen-Yan Lin*, Siying Liu, Dong Zhang, Sai-Kit Yeung

Abstract— SLAM (Simultaneous Localization And Mapping)
seeks to provide a moving agent with real-time self-localization.
To achieve real-time speed, SLAM incrementally propagates
position estimates. This makes SLAM fast but also makes
it vulnerable to local pose estimation failures. As local pose
estimation is ill-conditioned, local pose estimation failures
happen regularly, making the overall SLAM system brittle.
This paper attempts to correct this problem. We note that
while local pose estimation is ill-conditioned, pose estimation
over longer sequences is well-conditioned. Thus, local pose
estimation errors eventually manifest themselves as mapping
inconsistencies. When this occurs, we save the current map
and activate two new SLAM threads. One processes incoming
frames to create a new map and the other, recovery thread,
backtracks to link new and old maps together. This creates a
Dual-SLAM framework that maintains real-time performance
while being robust to local pose estimation failures. Evaluation
on benchmark datasets shows Dual-SLAM can reduce failures
by a dramatic 88%.

I. INTRODUCTION

Simultaneous Localization And Mapping or SLAM, seeks
to provide a moving agent with a real-time reconstruction
of its surroundings. SLAM plays a key role in tasks such
as path planning, collision avoidance and self-localization.
This paper focuses on monocular SLAM, which computes
the three-dimensional map from a single moving camera.
While this is the most brittle of the SLAM formulations, it
is also the most general. This means lessons learned from
monocular SLAM can be readily applied to many other
SLAM formulations.

Monocular SLAM works by propagating pose estimates
through a sequence of frames. The propagation makes SLAM
fast. However, it also makes SLAM brittle, as a single erro-
neous pose can create inconsistencies that destroy the map.
This problem is exacerbated by the fact that pose estimation
on short sequences is ill-conditioned. Thus, occasional pose
estimation errors are almost unavoidable.

Although pose estimation over short sequences (narrow
baselines) is ill-conditioned, pose estimation over longer
sequences (wide baselines) is well-conditioned. This causes
SLAM failures to exhibit a distinctive pattern. Extreme
local errors seldom propagate indefinitely. Instead, the well-
conditioned nature of wide baseline pose estimation means

Huajian Huang and Sai-Kit Yeung are with the Department of Computer
Science and Engineering, Hong Kong University of Science and Technology.

Wen-Yan Lin*, corresponding author, is with the School of information
systems, Singapore Management University.

Siying Liu is with Institute for Infocomm Research, Singapore.

Dong Zhang is with the School of Electronics and Information Technol-
ogy, Sun Yat-sen University.

Fig. 1: Sequence 09 of KITTI [1]. Left: ORB-SLAM’s [2]
map. Right: Dual-SLAM’s map. Regions where recovery is
needed are indicated in red (best viewed in color).

that if a map becomes erroneous, inconsistencies with in-
coming frames eventually emerge. Hence, SLAM seldom (if
ever) creates a randomly incorrect map; instead, it tends to
break when errors occur.

Given this failure pattern, local pose estimation errors are
easy to rectify. We demonstrate this with a Dual-SLAM
framework. Dual-SLAM utilizes the same incremental pose
estimation as traditional SLAM. When significant mapping
inconsistencies manifest themselves, we save the current
map and initialize two new SLAMs. One SLAM starts a
new map that incorporates the incoming key-frames. The
other, called recovery SLAM, propagates the new map in the
opposite direction to join with the old map, thus by-passing
the corrupted section.

This framework avoids the high computational cost needed
to prevent any possible pose estimation failure [3], [4] but
provides stability, as the overall Dual-SLAM framework
only fails if both the main and recovery SLAM threads
fail simultaneously. This maintains real-time performance
while removing much of the frustrating brittleness plaguing
monocular SLAM. Tests on standard benchmarks show that
Dual-SLAM can reduce failures by a dramatic 88%. An
example is shown in Figure 1.

A. Related Works

Monocular SLAM’s brittleness is widely acknowledged
by the community. To date, the primary solution is to avoid

the problem by adding more sensing modalities. Examples
include depth sensors [5], inertial measurement units [6]—
[8] and stereo cameras [9], [10]. Such solutions greatly
improve SLAM’s robustness as the overall system only fails
if all modalities fail simultaneously. The drawback of this
approach is it often results in very complicated systems. This
is because all modalities must be calibrated with respect
to each other. Further, calibration drifts over time, thus
requiring constant re-estimation [11]. Despite its limitations,
multi-modality SLAM is (in our opinion), more practical
than monocular SLAM. Howeyver, the question remains. Can
monocular SLAM be fundamentally stabilized?

Before attempting to answer this question, a distinction
must be made between two different SLAM problems. The
first is a SLAM where the camera is restricted to moving
within a small area. Monocular SLAM is already stable on
such problems. Since the scene is small, the three dimen-
sional map can be assumed to have been recovered accurately
(there is no time to fail). Once this is achieved, the SLAM
needs never fail as it can use a loop-closure detection module
to re-localize itself with respect to the map. This philosophy
is exploited with startling success in PTAM [5].

The second SLAM problem involves an agent roaming
a large region and rarely revisiting the same place. Such
problems are often termed video odometry. In this case,
SLAM’s mapping needs to remain stable over extended
periods of time, without relying on prior maps for guidance.
This is a much more difficult problem, that we seek to
address with the Dual-SLAM framework.

While Dual-SLAM estimates camera pose from tracked
feature points, there also exists works that employ direct pose
estimation. Notable examples include LSD-SLAM [12] and
LDSO [13] which directly use image color information to
supplement feature tracking. Direct pose estimation allows
SLAM algorithms to make reasonable pose estimates on
even difficult scenes. Their drawback is that it is hard to
run bundle-adjustment on such frameworks. This lowers
the overall quality of pose estimates. We show that Dual-
SLAM makes traditional SLAM nearly as stable as direct
pose estimation while maintaining excellent accuracy. More
excitingly, merging Dual-SLAM with direct matching offers
the possibility of extreme accuracy and stability.

Finally, we use ORB-SLAM [9] as the base SLAM for our
Dual-SIAM framework. ORB-SLAM is itself an adaptation
of classical Structure-from-Motion to real-time execution on
video frames. Thus, ORB-SLAM (and by extension Dual-
SIAM) relies on many Structure-from-Motion modules like
RANSAC [14], feature correspondence [3], [4], [15], [16],
epipolar geometry [17]-[19], loop-closure detection [20] and
global map building [21], [22].

II. OUR APPROACH

Our approach is based on the following hypothesis regard-
ing SLAM errors.

To provide real-time self-localization, SLAM incremen-
tally propagates narrow baseline pose estimates. However,
as shown in Figure 2 narrow baseline pose estimation is

C1h—iC2

baseline

wide baseline

narrow baseline

Fig. 2: Pose estimation is based on triangulation. Narrow
baseline triangulation is ill-conditioned because it is based
on the intersection of two near-parallel lines. In contrast,
wide baseline triangulation is much better conditioned. This
creates a unique SLAM failure pattern which is easy to
rectify.

innately ill-conditioned [23]; thus, small errors in input
(feature correspondence) can result in large errors in the
answer (pose estimates). As such, extreme errors in local
pose estimation are almost inevitable.

These local pose errors create a corresponding, erroneous
map that may not be immediately recognizable as being
incorrect. However, as the baseline gets wider and triangula-
tion better conditioned, it becomes harder for newly tracked
points to be consistently fused with the erroneous map. This
causes the SLAM sequence to break.

If the above hypothesis is true, many breakages that appear
like tracking failures may actually be due to stochastic errors
in pose estimation. This motivates us to introduce the Dual-
SLAM framework for enhanced SLAM robustness.

At its core, Dual-SLAM is a normal SLAM with a mod-
ified handling of tracking failure. When traditional SLAM
encounters tracking failures, it typically considers the scene
too difficult and breaks. In contrast, Dual-SLAM assumes
that tracking failures are due to stochastic pose estimation
errors. Thus, instead of accepting the failure, Dual-SLAM
saves the old map and restarts a new SLAM to create a
new map from incoming frames. At the same time, Dual-
SLAM runs a recovery SLAM backward in time, to bridge
the old and new maps. A schematic overview of the system
is presented in Figure 3.

A. Statistical Analysis of Dual-SLAM

From a statistical viewpoint, Dual-SLAM increases system
reliability through redundancy. We model a SLAM’s pose
estimator’s failure as a stochastic process. Let the probability
of a SLAM system failing over a unit sequence length be
Po, and let the probability of recovery thread failure be p,.
As the recovery thread is run independently of the original
SLAM map, the probability of Dual-SLAM failure with one
recovery thread is, therefore, Pr(Failure) = py x p,. Given n
independent recovery threads, the overall failure probability
is given by:

Pr(Failure) = po x (py)" (1)

Breaking
Point

Recovery track L,

Merge old Initialize new map

andnew

New map extends
backward in time

New Map
Old Map

o ~,

R

Starting
Point

Fig. 3: Dual-SLAM handles sequence breakages by saving
the existing map and starting two SLAMs. One creates a
new map that propagates forward in time. The other SLAM
propagates map backward in time to link the new map with
the old one. We show that empirically and statistically, this
framework provides outstanding stability.

If both the base system and the recovery thread use
the same pose estimator, we have p, = po, since the pose
estimation algorithm is considered to behave the same way
in both forward and backward directions. Note that since the
recovery thread can utilize information from earlier frames
stored in the memory, it is intrinsically faster. This time
advantage can be exploited by using slower but more reliable
methods, such as SIFT [16] features, in place of generic ORB
features. Thus, p, is generally lower than py.

Due to the multiplicative nature of Eq. (1), the failure
probability can drop dramatically. Consider a case where
po=0.1, n=1 and p, = 0.1. A standard SLAM would
have a failure probability of Pr(Failure) =0.1. In contrast,
Dual-SLAM with one recovery thread will have failure
probability reduced to 0.01. This means Dual-SLAM can
survive over dramatically longer sequences than its base
SLAM. While Dual-SLAM eliminates much of the random
failures plaguing traditional SLAM, it does not solve all
problems. In particular, it cannot solve intrinsically difficult
cases, such as scenes with low texture. In such cases, pg
and p, are close to 1 and irrespective of the number of
recovery threads, the probability of failure is still very high,
i.e. Pr(Failure) =~ 1.

III. SYSTEM IMPLEMENTATION

Our base system uses ORB-SLAM [2], an excellent imple-
mentation of feature-based monocular SLAM. ORB-SLAM
has three primary threads. The first is a tracking thread
that incrementally maps an agent’s location; the second is
a local-mapping thread that processes new key-frames to
incrementally expand the map; the last is a loop-closure
thread that reduces drift if an agent revisits a previously
visited location. ORB-SLAM’s tracking thread predicts cam-

Re-
Tracking loss initialization

Frame Frame Frame
1 2 cee i

Frame
i+kr+2

Frame
i+kr+1

Frame Frame | Frame Frame
i+1-k i i+1 i+kr

Buffer queue

Fig. 4: The buffer queue stores frames over which the
recovery SLAM propagates. The size of the window K =
k+ k, is adaptive.

era pose using feature matches and the previous camera
pose estimate. Poses are refined by a background bundle-
adjustment thread and incorporated into a 3D map. When
pose predictions are incorrect, an error occurs in the 3D
map; as the camera moves onward, incoming features are
increasingly inconsistent with the now erroneous 3D map,
leading to an apparent “tracking failure”.

Dual-SLAM primarily modifies the handling of “tracking
failures”. Upon encountering a “tracking failure”, another
tracking thread is immediately spawned to handle incoming
frames and initialize a new map from them. This new map is
temporarily disconnected from the old. To reconnect them, a
recovery SLAM is started from the new map’s first frame and
propagates backward in time. This extends the new map till
it obtains sufficient sparse co-visibility 3D key-points with
the old map for a merger.

Details of the modification are provided below.

A. Buffering

To make recovery as efficient as possible, it is necessary
for Dual-SLAM to maintain a buffer of ORB features. During
Dual-SLAM’s normal operation, the ORB features of the
most recent k frames, are stored in a constantly updated
buffer queue. The buffer must be large enough to ensure
an overlap with un-corrupted portions of the map; however,
it cannot be so large that storage cost becomes prohibitive.
Empirically, we find setting k to the number of frames in 10
seconds of video duration works well.

Under normal operating conditions, the buffer acts as a
queue, with new frames being added and an equal number
of the oldest frames being removed. When tracking fails,
frames are no longer removed from the buffer. However,
new frames are added to the buffer until the new map is
re-initialized successfully. If re-initialization occurs after k,
frames, the overall buffer length is extended to K = k+k,,
as shown in Figure 4. Since recovery thread’s SLAM is run
over this buffer, the amount of time needed to recover maps
is proportional to K. The more delayed the re-initialization
is, the more time is needed for recovery.

Algorithm 1 Recovery thread

Require:
buffer: K, Fiyr, — Fiv1-k

. /* Recovery thread 1/x
for frame F; € K do
pose: p; from motion model;
tracked points: ¢; conforming to motion p;;
if number of tracked points less than threshold then
break; /* Recovery thread 1 unsuccessful/x
end if
end for
Parallel running of bundle-adjustment point cloud recon-
struction using ORB-features and p; poses.
11: if Recovery thread 1 successful then
12: return 3D-points
13: end if

B A A S s

—
=

15: /x Recovery thread 2/x

16: for frame F; € K do

17: Sj :SIFTmatch(Fj,Fj_l)

18: pose: pj = PnP(S;)

19: end for

20: Parallel running of bundle-adjustment point cloud recon-
struction using ORB-features and p; poses.

21: if Recovery thread 2 successful then

22: return 3D-points

23: else

24: return failure

25: end if

B. Recovery thread

Two different recovery threads are run sequentially. The
first recovery thread is similar to a basic ORB-SLAM. If
the first recovery thread fails, i.e. ORB-SLAM is unable to
propagate pose throughout the buffer, the second recovery
SLAM is activated. This SLAM uses SIFT [16] features
and a PnP [24] based pose estimation. The procedure is
summarized in algorithm 1.

After the recovery thread processes all buffer frames, the
new map will have 3D points that overlap with the old map.
We use these common points to fuse the maps.

C. Map Fusion

Old and new maps are related by a 3D similarity trans-
formation, which if estimated, will enable the fusion of the
two maps. As the recovery thread has extended the new map
backward over the buffer, it now has 3D key-points whose
locations overlap with those of the old map. We use these 3D
key-points to estimate the required similarity transformation.

Each key-point has a corresponding key-frame ID. This
means that for each key-point in the new map, its candidate
key-point matches in the old map can be restricted to only
those with similar key-frame IDs. This limits the search to
a small portion of the map.

Resjp:.
Inll‘la/izanbn
.

e« Buffer region [egee e
oo
® Co-visibility map points .
y map P Map fusion
between two maps

Fig. 5: Fusing old and new maps with the buffer region.

The final matching is decided on the basis of ORB features
descriptors. The result is a set of 3D-to-3D match hypotheses.
X j,X;- are a pair of matched 3D points from the old and
new maps respectively, they will be related by the expression:

X/, = sRX; + T,)

where R is a 3 x 3 rotation matrix, T is a 3 X 1 translation
matrix, and s is a scaling factor. The similarity transformation
parameters s,R, T can be estimated by applying RANSAC
with Horn’s [25] algorithm. This similarity transform allows
the merger of the maps, as shown in Figure 5. After the
merger, SLAM can resume normal operation.

D. Enhanced version: Dual-SLAM™

As mentioned earlier in Sec. III-A, rapid initialization is
important to Dual-SLAM’s performance. To achieve this, we
modify ORB-SLAM’s initialization with an advanced feature
matching based on the GMS [26] algorithm. We term this
enhanced version Dual-SLAM™.

This modification prevents the often unacceptable lag that
occurs with basic Dual-SLAM, greatly improving overall
performance as demonstrated in Figure 6.

IV. EVALUATION

We evaluate the proposed algorithm on KITTI [1] visual
odometry and TUM [27] monocular datasets. These afford a
wide variety of scenarios including outdoor, indoor and on-
road scenes. Experiments are performed on an Intel Core
17-6700K laptop. As SLAM is non-deterministic, in all
experiments, we perform 10 trials on each sequence.

A. Comparisons

We benchmark Dual-SLAM against both classic baseline
SLAM systems and new state-of-the-art SLAM algorithms.
ORB-SLAM [2], a feature-based monocular SLAM system
is used as the baseline. This is a classic SLAM algorithm
that requires no further introduction. LDSO [13] represents
the current state-of-the-art. It is a sophisticated SLAM
framework that fuses traditional feature correspondence with
direct image differences and pose-graph optimization. We
find LDSO’s performance is significantly better than its
predecessors, LSD-SLAM [12] and DSO [28].

® Uninitialized mtracking == Initialization time

Frame (KITTI 12)
1,060
1,000

100s

800

600

400

200

rial 1 10 1 10
Dual-SLAM Dual-SLAM™*

Fig. 6: Comparison of initialization performance on the
KITTT 12. This sequence contains 1060 frames. Horizontal
axis: 10 different trials. Left vertical axis: initialization time
in sequence frames numbers. Right vertical axis: initializa-
tion time (s). Out of 10 trials, on average, Dual-SLAM takes
50.51s to initialize, while Dual-SLAM™ takes 0.5s.

= Uninitialized mtracking s recovery

Frame (KITTI 17)
490

400
300
200

100

0.
trial 1 1 10 1 10

ORB-SLAM Dual-SLAM Dual-SLAM*
(ORB-SLAM+recovery) (ORB-SLAM + recovery + GMS)

Fig. 7: Comparing SLAM algorithms on KITTI, sequence
17. Horizontal axis: Trial number. Vertical axis: Frame index.
ORB-SLAM fails early in the sequence, leaving most of its
profile white. Dual-SLAM can recover from the failure, pro-
viding a complete map. However, the recovery is very slow.
Finally, Dual-SLAM*demonstrates rapid recovery, making
the overall navigation system more viable.

In evaluations, we use ORB-SLAM at default parameters
but make minor modifications to LDSO. This is because
LDSO at default parameters, often terminates prematurely
on easy KITTI sequences. We find that this is due to the
sensitivity of LDSO’s loop-detection module. Thus, to make
the comparisons more meaningful, we modify LDSO’s loop-
detection sensitivity for KITTI sequences.

B. KITTI Dataset

The KITTI [1] visual odometry dataset is captured from
a vehicle. It includes scenes from urban and rural areas, as
well as highways. The high speed of the data acquisition
vehicle coupled with occasional rapid rotations, make KITTI
especially challenging.

TABLE I: Results on the KITTI [1]. Each sequence is run
10 times for a total of 110 trials. The median RMSEs of
the keyframes trajectory is reported. Dual-SLAM™ maintains
ORB-SLAM’s accuracy but is more stable. These results are
comparable with state-of-art, LDSO.

Sequence ORB-SLAM Dual-SLAM Dual-SLAM™ LDSO
RMSE(m) RMSE(m) RMSE(m) RMSE(m)
KITTI 00 8.18 ~ 7.48 7.30 9.30
KITTI 01 ® ® ® ® ® ® 10.31
KITTI 02 24.11 n 24.74 23.35 2573
KITTI 03 1.18 1.29 1.25 2.14
KITTI 04 1.65 1.39 1.20 0.79
KITTI 05 8.23 8.23 6.26 543
KITTI 06 15.84 17.86 13.29 12.57
KITTI 07 243 2.50 2.59 1.54
KITTI 08 51.34 N 50.23 49.99 115.90
KITTI 09 50.69 > 13.72 6.97 70.59
KITTI 10 7.68 7.68 6.92 14.79
Failure trial 28 10 6 0

® : the system cannot process the sequence map at all
~ : the system has possibilities of tracking failure on this sequence

The KITTI dataset contains 22 sequences, of which 11
sequences (00-10) possess ground truth trajectories. Standard
ORB-SLAM fails to construct an intact map on 5 sequences
(KITTI 00, 01, 02, 08, and 09). Dual-SLAM reduces the
failures to just one sequence, KITTI O1. The break-down
of failures by individual sequences is presented in Tab. I.
Observe that Dual-SLAM™’s improvements are so large that
it makes the older (and simpler) ORB-SLAM framework
competitive with state-of-the-art LDSO SLAM. This is most
evident on sequences 08, 09 and 10. A profiling of the
Dual-SLAM algorithm is provided in Figure 7, with visual
comparison on selected sequences presented in Figure 8.

C. TUM-Mono Dataset

TUM [27] monocular visual odometry dataset contains
50 sequences, recorded in both outdoor and indoor envi-
ronments. Ground-truth camera trajectories are not avail-
able. However, as the agent moves in a loop, its start and
end points are identical. Hence, accuracy can be measured
through end-point error. Results are tabulated in Figure 9.

Figure 9 shows that ORB-SLAM'’s performance exhibits
a distinctive dichotomy, with the system either failing com-
pletely or providing highly accurate maps. This supports our
hypothesis that many of ORB-SLAM’s errors are caused by
stochastic pose estimation errors, which destroy an other-
wise, very accurate map.

Dual-SLAM eliminates most of these errors. Thus, out of
500 trials, ORB-SLAM failed 126 times, while Dual-SLAM
and Dual-SLAM™ only failed 14 and 12 times respectively.
The resultant Dual-SLAM system is arguably even better
than the state-of-art LDSO [13].

Figure 10 shows a qualitative comparison on sequence 41
of TUM-Mono dataset. This is a challenging scene, where the
agent navigates across two floors of an indoor environment.

500

500

= Ground Truth
= Dual-SLAM+
= ORB-SLAM
—LDSO

400 S

300 f §

200 200

100 100

KITTI
sequence 00

-100

400

§
300

-100
-300

-200 -100 100 200 300

-300

-100

-200 -100 100 200 300 -300 -200 -100 100 200 300

1000 1000 1000
800 800 800
600 600 600
400 400 400
KITTI
sequence 02 200 200 200
0 or' ¢ 0
o
o
-200 : : : -200 : : : -200 : : :
0 200 400 600 0 200 400 600 0 200 400 600
600
600 600
500
500 500
400
400 400 300
300 300
200
KITTI
200 200
sequence 09 100
100 100 0
0 0 -100
-100 -100 -200
-200 0 200 400 -200 0 200 400 -200 0 200 400
Dual-SLAM™* ORB-SLAM LDSO

Fig. 8: Overlay of SLAM and ground-truth trajectories on KITTI sequences. Ground-truth is in blue. Ideally, the SLAM
trajectory would completely cover the ground-truth, making it no longer visible. In cases where the SLAM breaks, large
sections of ground-truth become visible. Observe that Dual-SLAM greatly improves ORB-SLAM’s results, making it

competitive with LDSO.

We observe that DUAL-SLAM is able to rescue breakages
and perform accurate map fusion upon recovery. The result
is a reconstruction of a much larger floor area.

V. ANALYSIS
A. Failure Rates

The evaluation section suggests that Dual-SLAM is much
stabler than basic ORB-SLAM. Table II quantifies this, show-
ing Dual-SLAM reduces failure rates by 84%-88%. This is
a remarkable result for a relatively simple modification.

B. Ablation Study

Table III provides a break down of performance statistics
based on the initialization (Dual-SLAM vs Dual-SLAM™)
and the number of recovery threads deployed. Dual-SLAM
and Dual-SLAM™ deployed recovery threads 153 and 156

TABLE II: Comparing failure rates of the base ORB-SLAM
with our improved Dual-SLAM. Note that Dual-SLAM re-
duces the number of failures sharply.

Failure rate = # failure / # trials
ORB-SLAM Dual-SLAM Dual-SLAM™
KITTI [1] 28/110 10/110 6/110
TUM-Mono [27] 126/500 14/500 12/500
Total 154/610 24/610 18/610
Failure Reduction N.A. 1-24/154 =0.84 1-18/154 = 0.88

times respectively. Successful recovery occur in 84.3% and
88.5% of the cases. Of these, in 95.3% and 95.7% of the
cases, recovery was successful at the first attempt.

The high success of the first recovery thread has prac-
tical and theoretical implications. At a practical level, this
phenomenon makes recovery much faster, enhancing Dual-

Dual-SLAMT Dual-SLAM ORB-SLAM

LDSO

So01 s10

S20 S30 S40 S50

Fig. 9: Evaluation on TUM-Mono [27]. Horizontal axis: SO1-
S50 represents sequence names. Vertical axis: Results from
10 trials. Colors represent the end-point error in meters.
Observe that traditional ORB-SLAM [2] alternates between
high accuracy and total failure. Dual-SLAM eliminates
90.47% of the failures while maintaining its high accuracy.

TABLE III: Ablation study of performance on KITTI [1]
and TUM-Mono [27] datasets. For both datasets, we run
each sequence for 10 trials and deploy a maximum of
two recovery threads in case of breakage. We tabulate the
statistics of the number of times recovery is needed, the
number of successful recoveries, the number of recovery
threads used in the successful cases and the average time
needed for recovery.

Dataset Average
KITTI | TUM-Mono | Recovery Time
Total Trials 110 500
Needs Recovery | 28 125
Dual-SLAM Failure 10 14 16.30s
Success 18 111
With 1 thread 17 106
With 2 threads 1 5
Total Trials 110 500
Needs Recovery | 30 126
Dual SLAM* |—_Llure 6 12 9.37s
Success 24 114
With 1 thread 22 110
With 2 threads 2 4

SLAM’s viability as a navigational technique. At a theoret-
ical level, it validates Eq. (1) which predicts that a small
amount of redundancy is sufficient to significantly reduce
the likelihood of failure.

C. Relation to RANSAC

RANSAC is another algorithm that relies on stochastic
pose prediction. In RANSAC, a small number of putative

correspondences are used to estimate the pose between two
frames. This process is iterated N times and the pose that is
in agreement with the largest number of correspondences, is
assumed to be the correct pose estimate.

Despite the superficial similarity between RANSAC and
Dual-SLAM, more RANSAC iterations cannot solve the
ill-conditioning of narrow baseline pose estimation as ill-
conditioning implies the global minimum of a RANSAC cost
may correspond to a highly incorrect pose estimate. Dual-
SLAM addresses this problem by considering pose solutions
over much wider baselines.

D. Framework Limitations

Dual-SLAM has two primary weaknesses. The first is its
assumption that mapping errors always lead to breakages.
As explained earlier, the well-conditioned nature of wide-
baseline pose estimation makes this a good assumption.
However, it is occasionally violated. When this occurs, the
resultant maps often exhibit large drift errors. Note that in
these cases the problems are not caused by the introduction
of new errors but the result of a failure to correct existing
errors. Examples of such failures are present in sequence 01
of KITTI and sequence 50 of TUM-Mono.

Dual-SLAM’s other major weakness is its vulnerability to
low textured scenes. This causes problems for all feature-
based SLAM systems and Dual-SLAM is no exception. An
example of this case occurs in sequence 40 of TUM-Mono.

E. Relation to LDSO and Future Work

Results in Table I and Figure 9 show that overall, Dual-
SLAM’s performance is comparable to LDSO. However,
closer inspection reveals that the two techniques are very
different, with each one favoring a different scene type. For
general scenes, Dual-SLAM is typically more stable and
accurate. However, LDSO has an advantage on scenes with
extremely low textures or high motion blur.

These strengths and weaknesses are the result of different
design philosophies. Dual-SLAM assumes tracking errors are
the result of pose estimation failures, which it attempts to
correct through re-estimation. In contrast, LDSO assumes
tracking failures are the result of insufficient features, which
it attempts to rectify trough dense matching.

We believe that neither the Dual-SLAM or LDSO ap-
proach is fully correct and that the ideal SLAM would be
one that fuses both of these design philosophies. This offers
the exciting potential for further performance improvements.

VI. CONCLUSION

This paper hypothesizes that the source of monocular
SLAM brittleness is stochastic errors incurred by narrow
baseline pose estimations. We develop a Dual-SLAM frame-
work to address this problem, creating a simple but general
framework for enhanced SLAM performance.

ACKNOWLEDGMENT

This research is supported by the Singapore Ministry of
Education (MOE) Academic Research Fund (AcRF) Tier 1
grant and internal grant from HKUST(R9429). We also thank
Weibin Li and Miaoxin Huang for their generous help.

Dual-SLAM

= top view

S

side view

ORB-SLAM

side view

top view

Fig. 10: Sequence 41 of TUM-Mono. Reconstructed 3D points are shown in black, key-frames in blue, linkages between
adjacent frames in green and breakage locations in red. Dual-SLAM is stable on this very difficult sequence, allowing it to

recover much more of the map than the original ORB-SLAM.

[1]

[2]

[4]

[5

=

[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), vol. 157, no. 10, pp.
3354-3361, 2012.

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a
versatile and accurate monocular slam system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015.

W.-Y. Lin, S. Liu, N. Jiang, M. N. Do, P. Tan, and J. Lu, “Repmatch:
Robust feature matching and pose for reconstructing modern cities,”
in European Conference on Computer Vision. Springer, 2016, pp.
562-579.

W.-Y. Lin, F. Wang, M.-M. Cheng, S.-K. Yeung, P. H. Torr, M. N. Do,
and J. Lu, “Code: Coherence based decision boundaries for feature
correspondence,” IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 1, pp. 34-47, 2017.

G. Klein and D. Murray, “Parallel tracking and mapping for small
ar workspaces,” in Proceedings of the 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented Reality. 1EEE
Computer Society, 2007, pp. 1-10.

R. Li, J. Liu, L. Zhang, and Y. Hang, “Lidar/mems imu integrated
navigation (slam) method for a small uav in indoor environments,” in
2014 DGON lInertial Sensors and Systems (ISS). 1EEE, 2014, pp.
1-15.

M. W. Achtelik, S. Lynen, S. Weiss, L. Kneip, M. Chli, and
R. Siegwart, “Visual-inertial slam for a small helicopter in large
outdoor environments,” in 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 1EEE, 2012, pp. 2651-2652.

A. Concha, G. Loianno, V. Kumar, and J. Civera, “Visual-inertial
direct slam,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2016, pp. 1331-1338.

R. Mur-Artal and J. D. Tardos, “Orb-slam2: an open-source slam
system for monocular, stereo and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, 5, Oct 2017.

J. Engel, J. Stiickler, and D. Cremers, “Large-scale direct slam
with stereo cameras,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 1EEE, 2015, pp. 1935-1942.
L. Von Stumberg, V. Usenko, and D. Cremers, “Direct sparse visual-
inertial odometry using dynamic marginalization,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2018, pp. 2510-2517.

J. Engel, T. Schops, and D. Cremers, “Lsd-slam: Large-scale di-
rect monocular slam,” in European conference on computer vision.
Springer, 2014, pp. 834-849.

X. Gao, R. Wang, N. Demmel, and D. Cremers, “Ldso: Direct
sparse odometry with loop closure,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1EEE, 2018,
pp. 2198-2204.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp- 381-395, 1981.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” IEEE International Conference on Computer
Vision, vol. 58, no. 11, pp. 2564-2571, 2011.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

D. G. Lowe et al., “Object recognition from local scale-invariant
features.” in iccv, vol. 99, no. 2, 1999, pp. 1150-1157.

H. Li and R. Hartley, “Five-point motion estimation made easy,”
in I8th International Conference on Pattern Recognition (ICPR’06),
vol. 1. IEEE, 2006, pp. 630-633.

D. Nistér, “An efficient solution to the five-point relative pose prob-
lem,” IEEE transactions on pattern analysis and machine intelligence,
vol. 26, no. 6, pp. 0756-777, 2004.

H. C. Longuet-Higgins, “A computer algorithm for reconstructing a
scene from two projections,” Nature, vol. 293, no. 5828, p. 133, 1981.
D. Gélvez-Lépez and J. D. Tardés, “Bags of binary words for fast place
recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188-1197, October 2012.

E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of pose
graphs with poor initial estimates,” 2006, pp. 2262-2269.

R. I. H. B. Triggs, P. F. McLauchlan and A. W. Fitzgibbon, “Bundle
adjustment a modern synthesis,” International Workshop on Vision
Algorithms: Theory and Practice, vol. 1883, no. 1883, pp. 298-372,
1999.

D. Knoblauch, M. Hess-Flores, M. A. Duchaineau, K. I. Joy, and
F. Kuester, “Non-parametric sequential frame decimation for scene re-
construction in low-memory streaming environments,” in International
Symposium on Visual Computing. Springer, 2011, pp. 359-370.

V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n)
solution to the pnp problem,” International journal of computer vision,
vol. 81, no. 2, p. 155, 2009.

B. K. P. Horn, “Closed-form solution of absolute orientation using
unit quaternions,” J. Opt. Soc. Amer. A, vol. 4, no. 4, pp. 629-C642,
1987.

J. Bian, W.-Y. Lin, Y. Matsushita, S.-K. Yeung, T.-D. Nguyen, and
M.-M. Cheng, “Gms: grid-based motion statistics for fast, ultra-robust
feature correspondence,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 4181-4190.

J. Engel, V. Usenko, and D. Cremers, “A photometrically calibrated
benchmark for monocular visual odometry,” in arXiv:1607.02555, July
2016.

J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” [EEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 611-625, 2018.

