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Abstract

Photometric stereo using unorganized Internet images is
very challenging, because the input images are captured un-
der unknown general illuminations, with uncontrolled cam-
eras. We propose to solve this difficult problem by a sim-
ple yet effective approach that makes use of a coarse shape
prior. The shape prior is obtained from multi-view stereo
and will be useful in twofold: resolving the shape-light am-
biguity in uncalibrated photometric stereo and guiding the
estimated normals to produce the high quality 3D surface.
By assuming the surface albedo is not highly contrasted, we
also propose a novel linear approximation of the nonlinear
camera responses with our normal estimation algorithm.
We evaluate our method using synthetic data and demon-
strate the surface improvement on real data over multi-view
stereo results.

1. Introduction

Shape recovery is a fundamental problem in computer
vision. Over the past decade, both the capturing devices
and 3D reconstruction algorithms have been improved dras-
tically that brings surface reconstruction from small scale
desktop objects to large scale outdoor sculptures. Given
multiple images of the same large scale object, for which
Internet is an important image resource, recent progress in
structure from motion (SfM) and multi-view stereo (MVS)
allow reconstruction even up to city scale. There are exist-
ing works that recover sparse 3D points [6] and depth map
[25] for large scale objects using Internet images. These
works focus more on acquiring the rough depth using geo-
metric constraints rather than high quality surface.

Photometric stereo, on the other hand, can recover high-
ly detailed surface geometry at pixel-level accuracy in the
form of surface normal map, by using scene radiances ob-
served under varying lightings [21]. Recently, photometric
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stereo in an outdoor setting is possible by using a mirror
sphere to calibrate the natural illumination [24]. However,
for Internet images the natural illumination is completely
unknown.

When the lighting conditions are unknown, the problem
becomes uncalibrated photometric stereo, whose solution
can only be derived up to some ambiguity, such as the
generalized-bas-relief (GBR) ambiguity [3] for unknown
directional lightings, or a high-dimensional linear ambigui-
ty [2] for unknown general lightings. Besides the unknown
illumination, uncontrolled sensor is another difficult issue
since automatic gain control and nonlinear radiometric re-
sponse deteriorate the resultant shape. Therefore in most
of the previous photometric stereo approaches, sensor gain-
s and responses are either pre-calibrated or assumed to be
known; however, sensor parameters are usually inaccessi-
ble in Internet images.

In this paper, we focus on Internet images of large out-
door sculptures which are difficult to capture by Lidar or
flying drone due to their size or security reason. We propose
a unified approach by using the shape prior – coarse shape
information obtained by SfM and MVS – to show its im-
portant roles in various steps throughout the whole pipeline:
from preparing the organized input images for photometric
stereo, resolving the ambiguity in uncalibrated photometric
stereo to guiding the final surface reconstruction. We also
show that the effect of nonlinear sensor responses can be
approximated by a high-dimensional linear transformation
applied over the illumination component except for highly
contrasted albedos. This can be viewed as pseudo multiplex-
ing of natural lightings which allows highly accurate shape
estimation without the influence of nonlinear responses of
sensors. The key contribution of this paper is to extend
photometric stereo method to work with a wild setting of
unknown general illumination and uncontrolled sensors on
unorganized Internet images.

2. Related Work
The Internet images contain comprehensive contents for

the same place of interest from various viewpoints and il-
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Figure 1. Pipeline of our method, which contains 6 main steps. We take unorganized Internet images as input to first generate a shape
(normal) prior, which is then used to produce high quality surface reconstruction with great details.

luminations. Considering the geometric constraint from
multi-view images, recent progress in SfM and MVS show
that sparse yet reliable 3D points can be recovered from
Internet images [20, 6, 5]. In more recent works, Shan et
al. [17] propose a large scale system combining Internet
photos from many resources (ground-level, aerial images,
and street view) for realistic reconstruction, and Zheng et
al. [25] propose a multi-view depth estimation method with
consideration of pixel-level view selection. By integrating
the photometric cues, Shen and Tan [18] obtain sparse nor-
mals that are useful for weather estimation. Ackermann et
al. [1] apply MVS using Internet images to compute sparse
surface normals and transfer them to images under varying
lightings for estimating dense normal. By using Internet
face photos as a shape prior and combining shading con-
straints from photometric stereo, the 3D face models can be
reconstructed in the wild [12].

The Internet images are highly unorganized and captured
in an uncontrolled setup. To apply photometric stereo on In-
ternet images, the uncalibrated lighting needs to be estimat-
ed. For uncalibrated photometric stereo, it is well known
that there exists a 3×3 linear ambiguity [8] in the recovered
surface normals for general surfaces, and a three-parameter
GBR ambiguity for integrable surfaces [3]. Recent works
mainly focus on estimating the three unknowns to obtain
final normal estimates (e.g., [19]). Under a general un-
known lighting, there is a 9 × 3 (= 27 unknowns) linear
ambiguity in surface normals under illuminations modeled
by second order spherical harmonics. Unfortunately, this
high-dimensional ambiguity cannot be completely removed
without additional information [2]. We propose to resolve
this ambiguity by using the shape prior.

Another challenging issue for Internet images is that the
sensors are uncontrollable and their parameters are inac-
cessible, so methods that require controlled exposure time
(e.g., [7]) are unsuitable to calibrate the radiometric re-

sponse for linearizing Internet images. Self-calibration to
radiometric response can be applied for directional light-
ing [19] or directional plus ambient lighting [4], but for
natural lighting and uncontrolled sensors it is still an open
problem. Instead of explicitly estimating the response func-
tion, we disregard it in a self-contained pipeline.

3. Proposed Method: Overview
The main challenges of solving photometric stereo using

Internet images are uncontrolled illuminations and sensors.
The first problem can be formulated as an uncalibrated pho-
tometric stereo with general unknown lightings, and the lat-
ter one is to deal with unknown exposures and radiometric
responses. We tackle these two problems by taking advan-
tages of a coarse shape prior.

The complete pipeline of our method is shown in Fig. 1.
We collect Internet images of an outdoor sculpture and
apply SfM [20] (Step 1) and PMVS [5] (Step 2) to ob-
tain sparse point clouds. Then a Poisson reconstruction
method [11] is used for creating a water-tight coarse depth
prior. Based on the depth prior we align multiview images
to the reference view via 3D warping (Step 3) to prepare
the input for photometric stereo. A mask is added manually
to exclude the sky. Note that in Fig. 1, the Internet images
are unorganized pictures from multiple viewpoints, but the
registered images contain the object from exactly the same
viewpoint and varying natural illumination.

From the shape prior which is a rough depth map, we
first convert it to a rough normal map that gives us the nor-
mal prior (Depth to normal, Step 4). The normal prior and
registered images are then combined to solve the uncalibrat-
ed photometric stereo (Step 5) problem. Finally, the esti-
mated normal and shape prior are integrated to produce the
final 3D surface (Depth Normal Fusion, Step 6) which has
more details due to the accurate normal information.

In the next section, we will explain the details of solving
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the uncalibrated photometric stereo problem with the shape
prior, i.e., Step 4-6, especially Step 5; after that, we will
explain how the shape prior helps to relieve the uncontrolled
camera issue in Sec. 5.

4. Normal Estimation from Internet Images
4.1. Depth to normal

Since our method works in the surface normal domain,
we first convert the coarse depth prior into a surface normal
prior for solving our problem (Step 4). A naı̈ve computation
of derivatives over a coarse depth map results in a noisy
normal map; therefore, we use a plane principal component
analysis method introduced in [13] for robustly computing
the surface normal prior. Given the depth map and camera
intrinsics of the reference view, the method first projects
the depth map to 3D points in the world coordinate system.
For each 3D point, the method groups a set of points within
a short distance d. For the i-th group that contains qi 3D
points, by stacking them in a matrix Q ∈ Rqi×3, the surface
normal is computed as

ñ = argmin
n
‖(Q− Q̄)n‖F, (1)

where Q̄ ∈ Rqi×3 is a matrix containing the centroid of
Q in all the rows. A larger d produces a smoother normal
estimate when the input depth contains more noise. The
calculated normals are then projected back to the image
plane of reference view. This step produces the normal pri-
or Ñ ∈ Rp×3 where p is the number of foreground pixels in
a registered image.

4.2. Uncalibrated photometric stereo

4.2.1 Image formation model

We begin Step 5 with a Lambertian image formation mod-
el under natural lightings. Given a scene point with Lam-
bertian albedo ρ and surface normal n = [nx, ny, nz]>, its
radiance r can be written as:

r =

∫
Ω

ρL(ω) max((n>ω), 0)dω, (2)

where ω ∈ R3×1 is a unit vector of spherical directions Ω,
and L(ω) is the light intensity from the direction ω. This
integration can be approximated using spherical harmonics
as

r = s>l, (3)

where s = [s1, s2, . . . , sk]> ∈ Rk×1 are harmonics images
of surface normal n and albedo ρ, and k is the number of
elements determined by the order of spherical harmonics.
The vector l ∈ Rk×1 is the k-dimensional lighting coeffi-
cients.

Given p pixels observed under q different illumination-
s, we store all these p × q radiance values into a radiance
matrix R ∈ Rp×q . By a row-wise stacking of p transposed
harmonics images s> in a shape matrix S ∈ Rp×k and a
column-wise stacking of q lighting coefficients l in a light-
ing matrix L ∈ Rk×q , Eq. (3) can be written in a matrix
form as:

R = SL. (4)

We further include the effect of sensor gains and respons-
es in the image formation model. Under varying illumina-
tion, the exposure time for each image is likely different for
an uncontrolled sensor. Each exposure time corresponds to
a scaling of its lighting coefficient l, which is one column in
the lighting matrix L. For simplicity of notations, we still
use L to represent the scaled lighting coefficient matrix. In
addition, a nonlinear response function transforms the radi-
ance R. Let us denote the camera’s radiometric response
as f . For now, we assume the response function f is the
same for all images. The registered images are vectorized
and stacked together in a column-wise manner to form the
observation matrix I ∈ Rp×q . I can be expressed using the
response function f , which is applied in an element-wise
manner using an operator ◦, as:

I = R ◦ f = (SL) ◦ f. (5)

Our method approximates the nonlinear response function
f using a high-dimensional linear transformation F ∈ Rq×q

as

I = (SL) ◦ f ≈ SLF. (6)

The transformation F varies with the response function f
and radiance R. We will explain and verify the appropri-
ateness of this approximation in Sec. 5. Since our goal is
to estimate the shape component S, we rewrite Eq. (6) as
I = SLF by LF = LF so that the illumination component
embeds the transformation caused by response functions.

4.2.2 Normal estimation algorithm

Similar to previous approaches [8, 2], we perform the sin-
gular value decomposition (SVD) on the observation matrix
I to estimate the shape matrix S up to a linear ambiguity
B ∈ Rk×k. In other words, the ambiguous S̃ and L̃F are
related to their ground truths S and LF by S̃B = S and
B−1L̃F = LF , respectively. As discussed in [2], the sur-
face normal is encoded in the second to fourth columns of
S̃. Therefore, a k × 3 matrix A is sufficient for computing
normal from S̃ as S̃A.

Given the coarse normal prior Ñ from Step 4, we can
estimate A to remove the ambiguity:

Â = argmin
A

‖S̃A− Ñ‖F, (7)
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Algorithm 1 Normal estimation with shape prior

1: Decompose observation matrix I as I = S̃L̃F ;
2: Solve the linear equations for Â using Eq. (7);
3: Nonlinear refinement to obtain A∗ using Eq. (8);
4: Compute normal by N∗ = O(S̃A∗).

By applying Â to the original S̃, we obtain disambiguated
normals N̂ by N̂ = O(S̃Â), whereO is a row-wise normal-
ization operator forcing each row of the matrix to be a unit
vector. In practice, we apply Gaussian smoothing to both Ñ
and the ambiguous shape matrix S̃ before solving for Â.

Solving Eq. (7), however, can only provide a correct so-
lution if the object’s albedo is uniform. When a scene con-
tains variant albedos, the norm of rows of S̃Â varies, while
Ñ only contains unit normal vectors. To explicitly handle
the albedo variations, we further optimize A using the fol-
lowing objective function:

A∗ = argmin
A

‖O(S̃A)− Ñ‖F. (8)

The above optimization problem is highly nonlinear, but we
can use the linear solution Â as an initial guess to solve for
A. The optimization is solved using a Matlab build-in func-
tion “fminsearch”. While the global optimum is not guar-
anteed, in our experiments this nonlinear refinement works
well because of the good initialization. The final surface
normal is computed by N∗ = O(S̃A∗).

The complete normal estimation method (Step 5) is sum-
marized in Algorithm 1.

4.3. Depth normal fusion

The shape prior is beneficial not only for surface normal
estimation, but also for surface reconstruction (Step 6) by
serving as anchor points for the surface recovery from the
normal map [16, 10, 9]. To estimate the optimal depth Z∗ ∈
Rp×1 by combining the estimated surface normal N∗ (Step
5) and a vectorized noisy depth map Z ∈ Rp×1 (Step 1
and 2), we can form a linear system of equations as [16] to
reconstruct the surface:[

λId
∇2

]
[Z∗] =

[
λZ
∂N∗

]
, (9)

where ∇2 is a Laplacian operator, Id is an identity matrix
and λ is a weighting parameter controlling the contribution
of depth constraint. ∂N∗ is the stacks of − ∂

∂x
nx

nz
− ∂

∂y
ny

nz

for each normal n ∈ N∗. While it forms a large linear sys-
tem of equations, because the left matrix is sparse, it can be
efficiently solved using existing sparse linear solvers (e.g.,
QR decomposition based solvers), or multigrid techniques.

5. Linear Approximation of Sensor Responses

A useful byproduct of our pipeline is that by using the
shape prior, our method naturally ignores the nonlinear re-
sponse functions embedded in Internet images. This is an-
other challenging issue of using Internet images for photo-
metric stereo, due to that for each input image the nonlinear
response function is unknown and arbitrary. Further, the un-
controlled cameras used for recording Internet images bring
difficulty in performing radiometric calibration using con-
ventional methods [15]. We address this challenge using
a practical approximation by aligning the shape estimates
with the shape prior and encoding the unknown responses
to a linearly multiplexed lighting component.

5.1. Intuition

The shape estimation method in Sec. 4 relies on a high-
dimensional linear approximation of nonlinear responses
(Eq. (6)), which allows us to separate the effects of un-
known sensor gains and responses from the shape estima-
tion as I = S(LF). The resulting lighting component
LF (= LF) becomes different from the actual L. Howev-
er, it is a linear combination of the original lightings, and it
can be viewed as pseudo multiplexing of natural lightings,
which allows us to effectively account for unknown sensor
responses. Intuitively speaking, for each image, the pseudo
multiplexing can be explained as such a process: A uniform
surface is illuminated by a natural illumination l and cap-
tured via a nonlinear response function f that maps r = Sl
to i = r ◦ f ; the observed image is approximately equal to
that of the same surface illuminated by lF (one column of
LF ) and captured with a linear camera, i.e., i = SlF .

Qualitatively, the linear approximation becomes less ac-
curate when a surface contains more diverse albedos. For
example, consider two surface points that have the same
normal n but different albedos ρ1 and ρ2 (ρ1 6= ρ2). With a
little bit abuse of notations, we use s = ρn for simplicity 1.
The radiance at these two points are r1 = s>1 l = ρ1n

>l
and r2 = s>2 l = ρ2n

>l, respectively. A camera re-
sponse function maps these radiance values to f(r1) and
f(r2). Since f is a nonlinear function, generally, the ra-
tio f(ρ1n

>l) : f(ρ2n
>l) becomes different from ρ1 : ρ2.

However, the linear approximation is limited in representing
this nonlinear effect, and this error becomes more obvious
as the difference between ρ1 and ρ2 becomes larger.

For our method, it is not necessary to estimate the mul-
tiplexing matrix F; however, the approximation power of
the linear transformation F is of interest because it is re-
lated to the shape estimation accuracy. We therefore as-
sess the appropriateness of the approximation using the

1Strictly speaking, s1 = ρ, s2 = ρnx, s3 = ρny , s4 = ρnz , s5 =
ρ(3n2

z − 1), s6 = ρn2
x, s7 = ρnxnz , s8 = ρnynz , s9 = ρ(n2

x − n2
y)

for a second order spherical harmonics representation.
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Figure 2. Reconstruction errors of Eq. (6) w.r.t. varying number-
s of images (q) for scenes containing two spheres with different
albedos. α = {1, 2, 3, 4, 5} indicate that left/right spheres have
albedo values of {0.5/0.5, 0.4/0.6, 0.3/0.7, 0.2/0.8, 0.1/0.9}.

database of measured response functions [7]. Fortunately,
as we will see below, the approximation error is consistent-
ly and sufficiently small for the real world response func-
tions even for variant albedos, due to the high regularity of
real response functions and good approximation capability
of high-dimensional linear multiplexing.

5.2. Verification

We use synthetic images 2 to assess the approximation
ability. We simulate the imaging process where f is ap-
plied to R in two different manners: 1) “Nonlinear-fixed”:
the same response is applied to all images under varying il-
luminations. This case corresponds to a scenario with an
uncontrolled camera. And, 2) “Nonlinear-random”: each
image under one lighting condition is distorted by a ran-
domly selected response function in the database. This
case more closely mimics Internet images, where each im-
age is recorded via a distinct unknown and nonlinear re-
sponse. We average the results over all 201 response func-
tions in “Nonlinear-fixed” case, and 201 random trials are
performed and averaged for “Nonlinear-random” case. The
test scene consists of two spheres with different albedos,
whose values are shown at bottom of Fig. 2.

To assess the approximation ability, we evaluate the re-
construction error of Eq. (6). Given R and I, we solve for
F by linear least squares as F̂ = R+I, where R+ is the
pseudo-inverse of R. Then, a reconstruction of RF is com-
puted as RF = RF̂. The reconstruction error is evaluated

2We use a 9D spherical harmonics expansion of both normal and light-
ing to create these images.
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Figure 3. Input radiance r is transformed by a nonlinear response f
(shown on rightmost) to i as i = r ◦ f . Top row: two spheres with
the same albedo (α = 1); bottom row: two spheres with greatly
different albedo (α = 5). Our linearly approximated rF shows
very close appearance to i. The errors below show mean of relative
differences of r and rF from i, respectively. Color encoded images
are used for better visualization.

as the mean of |i − rF |/i, where i is a pixel observation
of I and rF is the corresponding element in RF . This is a
relative error (percentage) defined for each observation. We
show the reconstruction errors with respect to the varying
numbers of input images q and albedo contrast in Fig. 2.
The errors are pretty low (about 1%) when the number of
input images q becomes q ≥ 9 for the case of uniform albe-
do (α = 1). On the other hand, as the albedo contrast be-
comes greater, the errors increase accordingly. Except for
the extreme case (α = 5) 3, the reconstruction errors are
consistently low (below 5%). Therefore, the approximation
generally works well, except for scenes that exhibit signifi-
cantly high contrast. The high correlation of different radio-
metric response functions makes our method works for both
“Nonlinear-fixed” and “Nonlinear-random” cases (their re-
construction errors are always similar), i.e., our approxima-
tion is valid for Internet images.

As an intuitive example, we show linearly approximat-
ed images of uniform abledo (α = 1, top row) and strong
contrast case (α = 5, bottom row) in Fig. 3. Note that i
and rF have very small difference visually, especially for
uniform albedo case, which shows the validity of our linear
approximation.

6. Experiments
6.1. Quantitative evaluation

We use a synthetic scene, CAESAR, to quantitatively e-
valuate our method. The data is synthesized in the same
way as the simulation test did in Sec. 5.2. We fix the number
of distinct lightings q = 40 for this test. We evaluate how
the varying albedo contrast and coarseness of shape prior
influence the normal estimates given nonlinear images, by
applying various real-world response functions [7] to input
images. We found that our method works well for most
albedo variations except for the highly contrasted one, and
even a severely contaminated shape prior is quite useful in
estimating accurate normal. We provide the complete anal-

3α = 5 mimics a scene of almost black and white spheres.
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True surface        Shape prior       Normal integ.           Fusion

Input images       True normal       Normal prior   Estimated normal

Err. = 0.10           Err. = 0.17         Err. = 0.06

Err. = 21.3o Err. = 7.4o

Figure 4. Surface normal estimation (top row) and surface recon-
struction result (depth and surface in two bottom rows) using syn-
thetic data. The numbers on normal maps show the angular errors
and the numbers on surface show the reconstruction errors.

ysis in the supplementary material.
Here, we show a typical example in Fig. 4. In this exam-

ple, a severely contaminated depth map, quantized to 4 bits
with zero-mean Gaussian of standard deviation 0.04 being
added, is used as shape prior. The normal estimation ac-
curacy is evaluated using angular difference (degree) w.r.t.
the true normal. With a noisy normal prior of angular er-
ror 21.3◦, we obtain a normal map with much smaller er-
rors, which is about 14◦ smaller than the prior. The sur-
face reconstruction error is defined as the mean value of
|z0 − z∗|/z0 across pixels, where z0 is the true depth and
z∗ is the depth estimate. The original rough depth (Shape
prior) is noisy, but it still provides useful positional infor-
mation. On the other hand, direct integrating a surface from
the normals results in a distorted reconstruction with a larg-
er bias (Normal integ.). By fusing the normal and depth
information, a more accurate surface can be reconstructed
(Fusion), as pointed out by previous work [16].

6.2. Result using Internet images

In addition to the KAMAKURA BUDDHA data shown
in Fig. 1, we show results of three more scenes named
MOTHERLAND CALLS, STATUE OF LIBERTY, and MOUN-
T RUSHMORE in Fig. 5. These four datasets contain 200,
109, 320, and 128 downloaded images respectively, which

Shape prior                                                                           Our result

Shape prior Our result
Figure 6. 3D reconstruction results using Internet images. Close-
up views are indicated by red rectangles.

are used for SfM and MVS. We use 163, 109, 63, and 42
images in each dataset which roughly have the same view-
points for 3D warping and normal estimation. We mod-
el the natural illumination using the third order spherical
harmonics (k = 16) for all the experiments. We compare
our method to [1] by using the same input for reference.
Our normal estimates show more meaningful shape infor-
mation than the results from [1], because of the capability of
handling natural lightings and variations of camera respons-
es. For example, in the pedestal of STATUE OF LIBERTY,
our result shows consistent normals for plane structures and
clearer details of the bricks. We also show the reconstructed
surfaces by fusing our estimated normal and the shape prior
from MVS (as baseline for surface reconstruction compar-
ison) in Fig. 6, where more details can be observed thanks
to the refined surface normals by photometric stereo.

When the Internet images have almost the same view-
points, SfM and MVS will produce degenerated results. But
if a scene contains (partly) regular shapes, we can directly
use this knowledge as the shape prior. We show such an ex-
ample of TAJ MAHAL where the shape of the dome has a
comprehensive structure. We manually assign a hemisphere

6



Input images                         Template normal                        Estimated normal                    Normal from [XX]

Input images Normal prior Our results Results using [1]
Figure 5. Surface normal estimation results using Internet images. Four representative images from the input dataset are shown in the left
column; the image on top left is the reference image to which other images are registered. Close-up views of estimated normal maps are
indicated by red rectangles.

surface normal map to the dome part as the shape prior. The
Internet images of TAJ MAHAL are registered to a reference
view via homography using SIFT [14] features in this case,
as the 3D shape information is unavailable. The result us-
ing 66 images is shown in Fig. 7. The rendered Lambertian
shading using the estimated normal under a distant lighting
[ 1√

3
, 1√

3
, 1√

3
]> is shown on the rightmost for verification.

7. Conclusion

We present a photometric stereo method that works with
unorganized Internet images, captured under general un-

known illumination, with uncontrolled sensors. We suggest
using shape priors from SfM and MVS to fully remove the
ambiguity in uncalibrated illumination setting, to guide the
normal to surface integration, and to avoid the effect of un-
controlled sensor. The proposed method shows high-quality
3D modeling over existing MVS method.

Limitations In our current solution, cast shadows are not
handled. Due to the shape-light ambiguity, it is difficult to
explicitly calculate the visibility map like [22]. We have in-
vestigated some robust algorithm [23] to handle cast shad-
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Registered images                        Template normal                        Estimated normal                 Relighting result

Registered images Normal prior Estimated normal Relighting result
Figure 7. Surface normal estimation result using Internet images and the known shape as a prior.

ows as outliers by forcing the input matrix to be rank-k.
However, the result showed almost no improvement in our
context, because the ideal rank-k matrix is seldom observed
for Internet images. Properly modeling cast shadows in our
pipeline is left as our future work. Combining our method
with recent works of MVS reconstruction using Internet im-
ages, which consider large scale data [17] and view selec-
tion [25], is also an interesting direction.
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Figure 1. Normal estimation accuracy (angular error in de-
grees) w.r.t. different albedo contrasts. α = {1, 2, 3, 4, 5} in-
dicate that left/right half of the object have albedo values of
{0.5/0.5, 0.4/0.6, 0.3/0.7, 0.2/0.8, 0.1/0.9}. Two different di-
mensions of lighting coefficients k are evaluated.

This document shows the complete quantitative evalua-
tion in Sec. 6.1.

Effect of albedo contrast We evaluate the effect of albe-
do contrast to normal estimation accuracy. To exclude other
factors except for nonlinear sensor responses, in this we use
the ground truth normal as Ñ to remove the ambiguity. Fig-
ure 1 shows the normal estimation accuracy with respect to
varying albedo contrast α for different dimensions of light-
ing coefficients k. As we have observed in Sec. 5, the ac-
curacy is affected by the greater albedo contrast in general,
and the errors become smaller with a larger k. This indi-
cates that the higher-order lightings make the pseudo mul-
tiplexing more effective. The “Nonlinear-fixed” cases show
larger errors than “Nonlinear-random” cases due to large er-
rors caused by some response functions in unusual shapes
that are difficult to approximate.
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Figure 2. Normal estimation accuracy (angular error in degrees)
w.r.t. varying noise levels in shape priors. β = {1, 2, 3, 4, 5}
are labels to represent corruptions where the clean depth maps are
quantized to {8, 6, 5, 4, 3} bits, with zero-mean Gaussian noise of
standard deviations {0.02, 0.03, 0.04, 0.04, 0.05} added. Two d-
ifferent dimensions of lighting coefficients k are evaluated.

Effect of noise in shape priors Figure 2 shows the vari-
ation of normal estimation errors with different noise levels
in shape priors. The input depth values are quantized to 3
bits in the worst case, and Gaussian noise with standard de-
viations up to 0.05 is further added in order to simulate the
real-world shape priors. The computed surface normal pri-
ors have errors from about 13◦ to 25◦. In this test, the albe-
do is set as uniform to remove the effect from albedo vari-
ations. The errors increase with the roughness of the shape
priors. Except for the extreme case (β = 5), the normal es-
timation accuracy is consistently high even with nonlinear
responses. Under severe noise, a large k lowers the normal
estimation accuracy, because it allows too much freedom in
the ambiguity matrix, which makes the solution sensitive to
noise. In practice, k should be adjusted according to the
tradeoff between nonlinearity of responses (prefers a larger
k) and the coarseness of shape prior (prefers a smaller k).
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