
IE
EE

Pr
oo

f

3D Navigation on Impossible Figures
via Dynamically Reconfigurable Maze

Chi-Fu William Lai, Sai-Kit Yeung,Member, IEEE, Xiaoqi Yan,

Chi-Wing Fu,Member, IEEE, and Chi-Keung Tang, Senior Member, IEEE

Abstract—Previous research on impossible figures focuses extensively on single view modeling and rendering. Existing computer

games that employ impossible figures as navigation maze for gaming either use a fixed third-person view with axonometric projection

to retain the figure’s impossibility perception, or simply break the figure’s impossibility upon view changes. In this paper, we present a

new approach towards 3D gaming with impossible figures, delivering for the first time navigation in 3D mazes constructed from

impossible figures. Such result cannot be achieved by previous research work in modeling impossible figures. To deliver seamless

gaming navigation and interaction, we propose i) a set of guiding principles for bringing out subtle perceptions and ii) a novel

computational approach to construct 3D structures from impossible figure images and then to dynamically construct the impossible-

figure maze subjected to user’s view. In the end, we demonstrate and discuss our method with a variety of generic maze types.

Index Terms—Computational geometry and object modeling, impossible figure, game, dynamic and procedural modeling

Ç

1 INTRODUCTION

THE impossible figures designed by Escher [1] (see
Fig. 1a for the INFINITE STAIRCASE) have intrigued

generations of scholars, artists, game developers, and
entertainers. One popular example was the box office hit
Inception [2] in 2010, where a set of staircases were care-
fully arranged (see Fig. 1b) for a specific camera view, so
that the staircases form the INFINITE STAIRCASE from the
audiences’ perspective. When Arthur (Joseph Gordon-
Levitt) and Ariadne (Ellen Page) were walking on the INFI-

NITE STAIRCASE, they kept seeing the same busy secretary
collecting the fallen papers.

Such visual effect violates our normal physical percep-
tion and requires tedious manual preparation in camera
planning and scene arrangement, e.g., see the two realisti-
cally-looking impossible figures in Figs. 2a and 2c; they
were created and photographed at some specific views.
Hence, for the scene shown in Inception, if we change the
camera view, a gap would appear between certain steps,

i.e., breaking the INFINITE STAIRCASE and the impossibility per-
ception (see Fig. 1b).

Impossible figures have been used as mazes in games,
e.g., Echochrome [3]. However, all existing games, including
the popular action RPG game Diablo II [4] and the recent
award-winning game Monument Valley [5] (see Fig. 1c)
that we are aware of assume an axonometrically-projected
view. So far, no robust algorithms have been formally
reported for building a virtual 3D maze of impossible
figures for free-style first person navigation. Such problem
is challenging but essential for immersive 3D gaming with
impossible figures.

In computer graphics, there have been several pieces of
research dedicated to model and render impossible figures,
e.g., allowing us to rotate an impossible figure and to see it
from another angle. Owada and Fujiki [6] formulated a con-
straint solver using multiple meshes to obtain a rotatable
2D impossible figure, while Wu et al. [7] employed thin
plate spline to model an impossible figure via constrained
deformation. However, none of them considered 3D naviga-
tion over a virtual world built from an impossible figure.

1.1 Our Goal

Here, we aim to develop novel geometric modeling meth-
ods for immersive 3D gaming with mazes built from impos-
sible figures. By this, users (or game players) can move over
an impossible figure with first/third person views as if it is
a normal 3D world, and experience the figure’s subtle
impossibility, similar to INFINITE STAIRCASE in Inception.

The word “subtle” refers to the perception of impossi-
bility when one experiences (e.g., sees) an impossible
figure. This is a perception of realizing the figure’s struc-
tural inconsistencies, which is not obvious with a quick
glance on local parts in the figure, but could soon appear
after we recognize certain structural inconsistency in the
figure. Considering the INFINITE STAIRCASE in Inception as
an example, one initially may not notice the structure’s

� C.-F.W. Lai is with the School of Computer Engineering, Nanyang Tech-
nological University, Singapore, and Singapore University of Technology
and Design. E-mail: la0001fu@ntu.edu.sg.

� S.-K. Yeung is with the Singapore University of Technology and Design,
Singapore. E-mail: saikit@sutd.edu.sg.

� X. Yan is with the School of Computer Engineering, Nanyang Technologi-
cal University, Singapore. E-mail: yanx0005@ntu.edu.sg.

� C.-W. Fu is with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, and the School of Computer Engineer-
ing, Nanyang Technological University, Singapore.
E-mail: cwfu@acm.org.

� C.-K. Tang is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong.
E-mail: cktang@cse.ust.hk.

Manuscript received 8 Dec. 2014; revised 19 Nov. 2015; accepted 30 Nov.
2015. Date of publication 0 . 0000; date of current version 0 . 0000.
Recommended for acceptance by S. Takahashi.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2015.2507584

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. X, XXXXX 2015 1

1077-2626� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:
mailto:

IE
EE

Pr
oo

f

subtle-ness by seeing some of its local parts, but could
later find the staircase going either up or down forever
after recognizing the overall staircase structure.

Our goal is challenging. First, we cannot employ existing
computer graphics methods, e.g., Owada and Fujiki [6] or
Wu et al. [7], since we cannot twist the geometry of an
impossible figure nor break it at fixed gaps, see Fig. 2. Sec-
ond, the virtual maze needs to inherit the structure of the
impossible figure, so that when the user navigates in the
maze, he/she may experience the subtle impossibility per-
ception. Lastly, more than static objects, we need to consider
gaming elements, e.g., how users interact with one another
and with dynamic moving objects, over the maze. These
issues were not studied in any previous work.

1.2 Our Approach

To address the above issues, we develop a novel approach
to model and render impossible figures. More specifically, it
has the following contributions:

1) We revisit the notion of impossible figures and pres-
ent a set of guiding principles for producing seamless
3D navigation and interaction experience when
building a gaming maze from an impossible figure
(Section 3).

2) We develop dynamically-reconfigurable maze, which
has the following three novel parts:
a) The first part is an automatic method that ana-

lyzes and turns line-art images of impossible fig-
ures into box-based 3D structures (Section 4).

b) Then,we propose a novel procedure that dynami-
cally reconnects and re-structures an impossible-
figure maze based on the user’s view, so that we
can achieve the guiding principles and enable
seamless single-player navigation and interaction
(Section 5).

c) Lastly, we adopt and extend the basic modeling
technique for different game maze types
(Section 6): i) open space, ii) a maze of corridors, and
iii) multiple platforms. To show the feasibility of
our methods, we develop a game prototype for
each of them.

2 RELATED WORK

The first impossible figure was believed to be designed
in 1934 by the Swedish artist Reutersvard, who found a new
way of arranging nine cubes in a drawing [8]. Later,

Escher [1] popularized impossible figures and embedded
them in a number of his famous drawings, e.g., see Fig. 1a.

In general, there are four classes of impossible figures,
each with a different construction mechanism for achieving
the perceptual impossibility: depth contradiction, depth inter-
position, disappearing normals, and disappearing space, see
Fig. 3, Ernst [9], and Wu et al. [7]. In this work, we cannot
deal with the last class since it does not have a clear bound-
ary between the foreground and background, so offering no
maze for one to walk over. Below, we discuss various areas
of work related to impossible figures and 3D dynamic and
procedural modeling.

2.1 Computer Games with Impossible Figures

Alexeev’s impossible world website [10] best summarizes
computer games that feature impossible figures. Among
these games, we discuss some of those that employ impossi-
ble figures for gaming. A Flash game called Adynatopia [11]
allows a player to move on a 2D static image of an impossi-
ble figure, and to play with its confused depth perception.
The popular game Diablo II [4] embedded an impossible
figure as a part of a huge 2.5D gaming terrain in a level
called Secret Sanctuary. Though both games used impossible
figures in some interesting ways, they show only a fixed
view of an impossible figure with an axonometric projection
without offering 3D camera controls like most conventional
3D games. A recent game on mobile platform called Monu-
ment Valley [5] (see Fig. 1c) allows us to rotate and play
with a 3D object built by breaking an impossible figure at
fixed gaps. This is similar to the paper model shown in
Figs. 2c and 2D. Though it plays with impossible figures
in a novel way, we can only see an impossible figure at a
preconditioned view rather than walking and navigating
over the figure.

In sharp contrast, this work, for the first time, constructs
and provides a 3D gaming maze from an impossible figure.
By our approach, the user can walk on an impossible-figure
maze with first/third-person 3D perspective viewing and
camera control during the immersive navigation.

Fig. 1. (a) Ascending & Descending, M. C. Escher’s painting showing
monks walking indefinitely in the INFINITE STAIRCASE; (b) a making-of
photograph showing the INFINITE STAIRCASE in movie Inception; and
(c) a game level in Monument Valley, embedding an impossible-
figure structure.

Fig. 2. (a) PENROSE TRIANGLE photographed at a specific view of (b) a
highly-twisted solid; (c) another PENROSE TRIANGLE based on (d) a discon-
nected paper model.

Fig. 3. Classes of impossible figures: i) depth interposition, e.g., IMPOSSI-

BLE CUBOID (a); ii) disappearing normals, e.g., IMPOSSIBLE STAIRCASE (b); iii)
disappearing space, e.g., IMPOSSIBLE TRIDENT (c); and iv) depth contradic-
tion, e.g., PENROSE TRIANGLE (Fig. 2a).

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. X, XXXXX 2015

IE
EE

Pr
oo

f

2.2 Modeling and Rendering Impossible Figures

Previous work in computer graphics research focused
mainly on generating plausible views of an impossible
figure. Tsuruno [12] created an interesting computer anima-
tion that shows different views of Belvedere, one of Escher’s
drawings [1] with impossible figures. Later, Savransky
et al. [13] proposed using relative transformations from user
input to model impossible figures.

Khoh and Kovesi [14] first developed a method to model
impossible figures, so that we can create a perception of
rotating an impossible figure. However, their method is
only applicable to certain impossible figures. Later, Owada
and Fujiki [6] developed a more general optimization
method to broaden the range of plausible views, and built a
game-like system called theRelativity [15], [16]. However,
the range of viewing angles on impossible figures is still
limited. Hence, Wu et al. [7] proposed using user-markup
constraints to model and render impossible figures through
a thin-plate-spline optimization model, so that much wider
plausible viewing ranges can be achieved at interactive
speed. More recently, Elber [17] proposed using line-of-
sight deformation to physically construct impossible figures
at pre-conditioned views. However, the resulting geometric
models of impossible figures produced from Wu et al. [7]
and Elber [17] are highly twisted in the world space, so we
cannot apply these methods to model a navigable virtual
world as in our case. Compared to the above works, we
present a novel approach that can offer 3D immersive gaming
adventure with impossible figures. Such result cannot be
achieved by any of the above computer graphics methods
for modeling impossible figures.

2.3 3D Dynamic and Procedural Modeling

Parish and M€uller [18] proposed CityEngine, a L-system-
based procedural modeling engine capable of generating a
large-scale virtual city. After that, Wonka et al. [19] devel-
oped a grammar-based method to automatically generate
complex buildings, while M€uller et al. [20] improved it with
a shape grammar, especially considering façade details.
Later, Lipp et al. [21] proposed an interactive visual editing
paradigm for shape grammars.

More recently, Danihelka et al. [22] developed a real-time
procedural modeling method that can support multiple
users navigation with consistent views among the users.
Steinberger et al. [23] proposed a GPU acceleration method
for generating and rendering an infinite city, where visibil-
ity information is integrated into the grammar evaluation
process. These works aim to procedurally generate conven-
tional virtual environments, which can be dynamically var-
ied given different inputs. In contrast, we present a novel
method to dynamically reconstruct a 3D gaming maze from
an impossible figure with immersive 3D navigation and
interaction. Our solution takes user location and viewing
information as input for keeping the maze consistent among
the views of all the users.

3 GUIDING PRINCIPLES

Before presenting the guiding principles and our method
for supporting 3D navigation over impossible-figure
mazes, this section first revisits the notion of impossible

figures and looks at a conventional 3D animation to
explore how one would navigate in a 3D virtual world of
an impossible figure.

3.1 The Notion of Impossible Figure

An impossible figure is a type of optical illusion that con-
fuses our visual system in reconstructing 3D geometry from
the 2D drawing.

Since our visual system subconsciously tries to interpret
a 2D drawing as a projection of 3D objects, it will attempt
to reconstruct an impossible figure’s 3D geometry when
such a figure is given. So, when we start to look at a small
local region on the figure, the interpretation works well:
locally as a normal (possible) 3D object. However, prob-
lems could arise in the interpretation when we consider a
larger region on the figure, since certain geometric contra-
diction, or subtle structural inconsistency, could turn out
when our visual system attempts to interpret the figure’s
full 3D geometry. This happens for all classes of impossible
figures, see again Fig. 3.

3.2 Conventional 3D Animations

Navigating (via a game character) through a 3D virtual world
built from an impossible figure is analogous to looking (via
our eyes) over a 2D image of an impossible figure. When
navigating within a small local part in such a 3D virtual
world, our 3D perception of the world works well since we
can always reconstruct and interpret a normal (possible) 3D
world locally. However, when we walk through a larger 3D
region in such a virtual world, certain geometric contradic-
tion, or subtle structural inconsistency, could arise when we
attempt to interpret the full 3D geometry of the virtual
world that we have experienced.

Taking Hallucii [24], a conventional 3D animation, as an
example, see Fig. 4. This animation features a drunk man
walking down a 3D infinite staircase, which appears to be
ordinary when the camera focuses on a small portion of the
staircase (see Fig. 4(top-left)). During the walk, the drunk
man kicks a glass bottle downstairs (see top-left image

Fig. 4. A key frame sequence (following the orange arrows) in 3D anima-
tion Hallucii, showing a drunk man who walks over a 3D infinite stair-
case. Top-left image shows a local view on the drunk man while the
others show the entire staircase.

LAI ET AL.: 3D NAVIGATION ON IMPOSSIBLE FIGURES VIA DYNAMICALLY RECONFIGURABLE MAZE 3

IE
EE

Pr
oo

f

again), but later, he was dramatically hit by the same bottle
from above, see the orange arrows in the figure for the ani-
mation sequence. Furthermore, he also finds the same brief-
case again at the same corner after completing one cycle
down the staircase (see Fig. 5). This certainly violates our
normal perception in the physical world, but demonstrates
how one would experience in a 3D virtual world built from
an impossible figure.

3.3 Guiding Principles

From the ways one would see and explore virtual worlds
built from impossible figures, e.g., Hallucii and Inception, we
summarize a set of guiding principles to describe the per-
ceptual experience that one would have in the exploration.
These principles help us with the development of our
computational method.

� Maze geometry: First, the geometry of any local part of
the maze should conform to the corresponding local
(possible) structure in the given impossible figure,
see Fig. 4(top-left) for a local view and Fig. 4(top-
right) for a view of the entire impossible figure.

� Seamless viewing: Second, the 3D maze should appear
to be a normal (possible) 3D object in both first and
third person views during the virtual navigation, see
Figs. 4(top-left) and 5. In other words, we should not
see any gap or convolved surface like Figs. 2b and 2d.

� Object bondage: Third, since we cannot define a global
3D space for the entire maze, 3D elements on the
maze, including objects and avatars, should be
bounded to associated local space, i.e., local parts of
the maze. Thus, when the avatar walks over the
maze, e.g., we may find the same object indefinitely
at the same location (e.g., the briefcase in Hallucii
(Fig. 5) and the secretary in Inception) even though
the path that we walk over is structurally-impossible
in normal 3D space.

� Subtle impossibility perception: Lastly, since the maze
is built from an impossible figure, one may subtly
experience certain structural inconsistency when
walking over it (e.g., the drunk man inHallucii seems
to be descending but is actually cycling), as well as
interacting with other avatars or objects in the virtual
world (e.g., in Hallucii, the glass bottle, which was
kicked downstairs by the drunk man, could later hit
him from above).

4 GEOMETRY REPRESENTATION

4.1 Inputs and Pre-Processing

Our approach takes an image-based representation of an
impossible figure as input, which consists of an RGB image

and a corresponding normal map (per-pixel normal vector),
see Fig. 6a. Such impossible-figure image can be easily
obtained from the Internet, while its normal map can be eas-
ily prepared with the help of existing photo editing tools.1

i) Geometry representations. Given the impossible-
figure input, our next step is to convert it into a geometry
representation, see Fig. 6b. Since different kinds of geometry
representation could be needed for different working sce-
narios, we support two kinds of geometry representations:

� Image-based triangles (Fig. 6b(top)): Here we construct
a gradient-aware triangulation (based on the gradi-
ent of the RGB image) on the image space of the
input impossible figure, where each triangle is
locally planar and consistent with the normal map.
To avoid long and thin triangles, this mesh is further
subdivided and re-triangulated to produce a finer
mesh, see again Fig. 6b.

� Solid Primitives (Fig. 6b (bottom)): Other than image-
based triangles, which are surface-based open
meshes, we develop an automatic method (see
Section 4.2) to convert the input impossible figure
into solid 3D primitives. The output here is a set of
connected boxes, each with a position (relative to
each neighbor) and an 3D orientation in the image
space, see again Fig. 6b.

Note that both geometry representations should not contain
relatively large components, i.e., size comparable to the whole
model. This is required since the dynamic modeling method
needs to progressively reconnect components to avoid gaps in
user views, see Section 5. Hence, subdividing large components
in this step allows greater flexibility in the reconnection.

ii) Relative Position Graph. Next, to facilitate real-time
processing of impossible-figure structures for supporting var-
iousworking scenarios, we create the relative position graph:

� Nodes (denoted by fPig) in the graph represent indi-
vidual triangles (for the case of image-based triangles)
or primitives, e.g., boxes (for solid primitives); and

� Edges connect neighboring triangles/primitives
based on the impossible-figure structure. For each
edge ðPi; PjÞ, we pre-compute the following informa-
tion: For the case of solid primitives, we compute the

vectors between the centroids of Pi and Pj: ~dðPi; PjÞ
from Pi to Pj in the virtual 3D space. For the case of
image-based triangles, we compute the relative dis-
tance between the centroids: dðPi; PjÞ, in the 2D
image space. In addition, we also pre-compute the
angle between the normal vectors of Pi and Pj, i.e.,
aðPi; PjÞ; note that the normal vectors are retrieved
from the input normal map.

4.2 Constructing Box-based Solid 3D Primitives

We develop an automatic method to arrange and tile con-
nected 3D boxes over an impossible-figure image, see the

Fig. 5. Another key frame sequence from Hallucii, showing that the drunk
man finds the same briefcase again at the same corner after completing
one cycle down the 3D infinite staircase. The yellow arrows indicate his
walking direction.

1. To prepare a normal map image, we develop a simple program
that renders a cube in orthogonal view with faces colored based on
their normal vectors in the screen space (see Figs. 7a and 7b). By rotat-
ing the cube until its orientation matches that of the given impossible
figure, we can find the normal map colors for the impossible figure,
and then use GIMP to flood-fill each surface region of the impossible
figure accordingly (see Fig. 7c).

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. X, XXXXX 2015

IE
EE

Pr
oo

f

result in Fig. 6b(bottom). Here we assume that the input
impossible figure is an orthogonal projection with three
major axis directions in image space, see the RGB arrows in
Fig. 8a. Hence, we can fit axis-aligned boxes to match the
local geometry of the image. There are two major stages in
our method:

Stage 1: Partition the Impossible Figure. First, we partition
the foreground of the input impossible figure into quadran-
gles in the image space, see Procedure 1:

Procedure 1. PARTITIONING THE IMPOSSIBLE FIGURE

1: Identify all contour lines in the impossible-figure image
2: Identify three major axis directions among contour lines
3: Assign a direction to each contour line
4: for each contour line do
5: for each endpoint p of the line do
6: while p not extend out of the figure foreground and

not at a Y-junction /* See Fig. 8(b) */ do
7: /* Case 1: Occluded Linkage (See Fig. 9a) */
8: if p is at a T-junction then
9: if a contour line is found in p’s extend direction

then
10: join the two lines
11: update p as far endpoint of line found
12: else
13: break /* end while loop */
14: end if
15: end if
16: /* Case 2: Join lines (See Figs. 8b & 8c)) */
17: if p touches a parallel contour line then
18: join the two lines
19: update p as far endpoint of line found
20: continue /* goto step 6 */
21: end if
22: /* Case 3: Change direction (See Fig. 8d) */
23: if p is about to extend to a perpendicular face then
24: modify p’s extend direction
25: end if
26: Extend p until it intersects/touches a contour line
27: end while
28: end for
29: end for

Lines 1-3: Extract Contour Lines. Here we locate the fore-
ground image region, examine the gradient in the normal
map, and identify contour lines in the impossible figure (see
Fig. 8b). By further analyzing the line orientations, we can
find the three major axis directions in the orthogonal projec-
tion (Fig. 8a) and assign a direction to each contour line.

Lines 4-29: Extend Contour Lines. Second, we partition the
impossible figure by extending the contour lines one by one
over the image space. This is done by extending the contour
lines from their endpoints until the endpoints meet at a Y-
junction (see Fig. 8b) or reach the foreground boundary:

1) Lines 7-15: Occluded (Layered) Linkage. For geometric
structure that are occluded by others in the image
space, we have to recover them, so that the relative
position graph to be built later can be a connected
structure that represents the impossible figure.

One such case happens at a T-junction, see
Fig. 9a: when we extend a contour line from end-
point p towards to the T-junction, we have to look
for a parallel line matched with another T-junction.
If found, there is hidden geometry in-between, and
we should join the two lines and update p to be the
far endpoint of the other contour line. By this lay-
ered representation, we can reconstruct the hidden
geometry later in stage 2.

2) Lines 16-21: Join parallel lines. When extending a
contour line, if its endpoint meets another contour
line, we should join the two lines and continue
the line extension from the other end of the joined
line, see Figs. 8b and 8c, so we can produce a
larger quadrangle.

Fig. 7. (a and b): our simple rotating-cube program for finding normal
map colors of impossible figure images. (c) we then use GIMP to fill cor-
responding regions in the figure image.

Fig. 6. Our computational pipeline (a) takes an impossible figure (RGB image and normal map) as input, (b) converts it into a set of triangles or primi-
tives (later encoded by a relative position graph), and then (c) adapts it for different maze types.

LAI ET AL.: 3D NAVIGATION ON IMPOSSIBLE FIGURES VIA DYNAMICALLY RECONFIGURABLE MAZE 5

IE
EE

Pr
oo

f

3) Lines 22-25: Change line direction. When extending a
contour line, if endpoint p is about to move into a
face perpendicular to the contour line, the line parti-
tion does not make sense if we continue with the
same line direction, see Fig. 8d. Rather, we should
adjust the direction along which the line is extended
to make it stay on the next plane it enters.

Lastly, we extract the (planar) quadrangles in the foreground

image space of the impossible figure, see Fig. 8e.

Stage 2: Fit and Connect Boxes. Next, we fit and construct
connected boxes in the image space and a relative position
graph to represent the input impossible figure. Before
showing our method, we first present the following two
observations:

� First, there are two kinds of quadrangles: full quad-
rangles, whose opposite edges are in parallel, see
Fig. 10a, and partial quadrangles, see the marked
quadrangles in Fig. 10b. Note that full quadrangles
are simply fully visible faces of boxes in the impossi-
ble-figure structure.

� Second, there are four kinds of boxes: boxes with
three, two, one, and zero “fully visible” faces (full
quadrangles), see Fig. 11(top row), (middle row),
(bottom row), and the star junctions in Fig. 9b,
respectively.

i) Initialization. The box-fitting stage starts by searching for

a Y-junction shared by three full quadrangles, see Fig. 11(top).

If found, we create a cornerstone box with such a quadrangle.

Otherwise, we look for a 2-face pattern, see Fig. 11 (middle

row) and fit a cornerstone box with the two full quadrangles.

ii) Box fitting. Then, for each invisible face of the corner-
stone box, we attempt to fit another box from the invisible
face (as a shared face), so that we can find a neighboring
box (node) of the cornerstone box. Here we apply the 1-face
and 2-face box patterns shown in Fig. 11 to reconstruct a
neighboring box. Note that in the relation position graph
structure, each box is a node and neighboring nodes are
connected by an edge.

iii) Breadth-first traversal.We iterate this box-fitting process
with a breadth-first traversal until all visible quadrangles
have been visited. However, such a traversal may stop at the
star junctions, see Fig. 9b, since the hidden box behind a star
junction cannot be recovered by the patterns shown in Fig. 11.
Hence, whenever we reach a star junction, we reconstruct the
hidden box by using the three shorter edges around it.

Fig. 9. (a) Occluded linkage: the dotted line between the two visible blue
lines; (b) Star-junction (orange dots), where six contour lines meet and a
cube is hidden behind.

Fig. 10. (a) A single box. (b) orange circles mark partially-occluded faces
(partial quadrangles) of boxes. (c) box-fitting results: we assign the
same color to faces of the same box.

Fig. 11. Three different groups of patterns for box-fitting; note that these
patterns can be rotated during the matching.

Fig. 8. Partition the foreground region of the input impossible figure into quadrangles: (a) an input impossible figure, and the three major axes in
orthogonal projection; (b) extract contour lines and identify their directions; (c-e) extend the contour lines one by one in the image space to partition
the figure, see (e) for the result and Procedure 1 for the pseudo code outline.

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. X, XXXXX 2015

IE
EE

Pr
oo

f

iv) Subdivision. Lastly, after the traversal is complete, we
avoid long boxes by subdividing them into smaller boxes,
see Fig. 10c for the result. This is to give greater flexibility to
the dynamic modeling method to be presented in Section 5.

5 DYNAMICALLY-RECONFIGURABLE MAZE

Using the relative position graph as a representation of
the input impossible figure, we can dynamically recon-
figure and construct a maze geometry of the impossible
figure, which is a view-dependent geometry, subject to
user’s viewpoint.

Procedure 2 presents the pseudo code of our modeling
method given Pc, see also Table 1 for the meaning of the
notations in the procedure. Note that Pc is a specific primi-
tive (in the relative position graph) that contains the point
of interaction, e.g., the component on which the user’s ava-
tar is located (see Sections 6.2.1, 6.2.2 and 6.2.3). To achieve
the guiding principles (in particular, maze geometry) for
these working scenarios, we develop the following key idea
in constructing the dynamically-reconfigurable maze:

Procedure 2. GENERATING THE DYNAMICALLY-RECONFIGURA-

BLE MAZE SUBJECT TO Pc

1: Queue Q = { Pc }
2: dðPcÞ ¼ 0 and dðPiÞ ¼ 1 for all Pi 6¼ Pc

3: pðPcÞ ¼ ; /* Pc is root */
4: position Pc as it is in 3D
5: while Q 6¼ ; do
6: /* step 1: connect Pf to parent of Pf (if any) */
7: Pf = pop front of Q
8: mark Pf visited
9: if pðPfÞ 6¼ ; then
10: if the case of image-based triangles then
11: CONNECTTRIANGLE(Pf , p(Pf))
12: else
13: ~cðPfÞ ¼~cðpðPfÞÞ þ ~dðpðPfÞ; PfÞ
14: end if
15: end if
16: for each v 2 vertices of Pf do
17: /* vertex amendment: avoid tiny gaps */
18: SNAPVERTICES(v)
19: end for
20: /* step 2: add Pf ’s unvisited neighbors to Q */
21: for each Pi 2 NbðPfÞ do
22: if Pi not visited then
23: if the case of image-based triangles then
24: tempD ¼ dðPfÞ þ dðPf ; PiÞ
25: else
26: tempD ¼ dðPfÞ þ jj ~dðPf ; PiÞ jj
27: end if
28: if dðPiÞ > tempD then
29: dðPiÞ ¼ tempD
30: pðPiÞ ¼ Pf

31: if Pi =2 Q, add Pi to Q
32: end if
33: end if
34: end for
35: /* step 3: sort primitives in Q */
36: SORTQUEUE(Q)
37: end while

5.1 Continuously Shifting Gaps Over the Maze

When we construct a rigid (not twisted) 3D solid for an
impossible figure in the physical world, such as the one
shown in Figs. 2c and 2d, we have to break certain location
(s) in the impossible figure and introduce gap(s) in its physi-
cal construction. The same applies to the construction of a
virtual 3D maze for an impossible figure: there must be
certain gaps in the 3D maze model since we cannot twist
the maze model (see Figs. 2a and 2b) and have to maintain
the maze’s geometrical rigidity.

However, since we deal with interactive scenarios, the
maze geometry does not need to be static with fixed gaps.
Rather, we can continuously shift the gaps over the impossible
figure (i.e., relative position graph) and keep them far away
from the avatar when the avatar moves over the maze. In this
way, the game avatar can never reach the gaps in the gam-
ing maze, and yet can seamlessly walk over the entire
impossible figure. This is one of the key ideas in this work.

To achieve this, the general framework of Procedure 2 is
to dynamically construct the 3D maze starting from the
avatar location (i.e., Pc), progressively connecting nearby
primitives (which could be image-based triangles or solid
primitives) to Pc, and expanding the maze model (Pc’s
dominion) until it includes (visited) all the nodes in the rela-
tive position graph. To keep the gaps far away from the ava-
tar, we use dðPiÞ to keep track of the traversed distances to
every node from Pc over the graph, and in each iteration

TABLE 1
Notations and Functions Used in Procedure 2

Notations/Functions: Meaning:

Pc the specific primitive containing the point of
interaction, e.g., the current user location

dðPiÞ traversed distance along the path from Pc to
Pi over the relative position graph

pðPiÞ parent of Pi during the traversal

NbðPiÞ set of neighboring nodes of Pi in the graph

SORTQUEUE(Q) a procedure to sort the primitives in Q in
ascending order of dðPiÞ

SNAPVERTICES(v) a procedure to snap together all vertices with
the same image coordinates as v if their world
coordinates are near one another; this helps
avoid tiny gaps in the 3D construction

For the case of image-based triangles:

n̂ðPiÞ normal vector of Pi

aðPi; PjÞ given angle between n̂ðPiÞ and n̂ðPjÞ
~eðPi; PjÞ vector along the edge shared by Pi and Pj in

the image plane

CONNECTTRIANGLE

(Pi, Pj)
a procedure to position and connect Pi to Pj

in 3D: i) compute n̂ðPiÞ by rotating n̂ðPjÞ
about~eðPi; PjÞ by angle aðPi; PjÞ; ii) find Pj’s
shared vertices with Pi and assign z of Pj’s
vertices to z of the related vertices of Pi; and
iii) for Pi’s vertices (say v) without z assign-
ment, we determine v’s z value by n̂ðPiÞ (from
step i) and the 3D positions of the other verti-
ces (from step ii). Note: X,Y denote the image
space while Z is the out-of-the-paper direc-
tion (see Fig. 6).

For the case of solid primitives:

~cðPiÞ Pi’s centroid in 3D space relative to Pc

LAI ET AL.: 3D NAVIGATION ON IMPOSSIBLE FIGURES VIA DYNAMICALLY RECONFIGURABLE MAZE 7

IE
EE

Pr
oo

f

of the main while loop, we pick the primitive with the
smallest dðPiÞ (after sorting) and connect it to the maze
model. Since a gap is in fact an unconnected edge in the rel-
ative position graph, see Fig. 6b, after completing Proce-
dure 2, these unconnected edges should be far away from
Pc, thus keeping the gaps far from the avatar. Furthermore,
when the avatar moves, we update Pc, and apply Proce-
dure 2 again with the new Pc to continuously shift the gaps
over the relative position graph. Therefore, we can continue
to keep the gaps far away from the avatar.

5.1.1 Numerical Issues in Connections

In step 1 of Procedure 2, when we progressively construct
the maze model by connecting Pf , we have to avoid produc-
ing tiny cracks in the geometric connections among primi-
tives due to numerical errors when transforming the
vertices. Hence, we introduce the SNAPVERTICES procedure at
the end of step 1 to merge together nearby vertices between
Pf and its neighbors.

5.1.2 Performance

Procedure 2 is designed to run at ultra-high speed because
its time complexity is linear in the number of primitives/
nodes in the relative position graph. We evaluate its perfor-
mance on the PENROSE TRIANGLE (image-based version) with
792 2D triangles. Each update takes only �0.00048 seconds
(averaged over 100 runs at different Pc) on a computer with
Intel(R) Core(TM) i7 CPU 960 3.20 GHz and 9 GB memory.
With such a good performance, commodity laptops can
have sufficient computing power to support the user inter-
action even for heavy real-time 3D gaming applications.

6 ADAPTATION TO DIFFERENT MAZE TYPES

The last part of our approach adapts and extends the basic
modeling procedure presented in Section 5 for seamless
viewing, and for various generic maze (terrain) types: 1) a
maze of corridors, 2) open space, and 3) multiple platforms.

Here, we use Procedure 2 to dynamically generate the
maze (broken) geometry subject to the avatar, e.g., the red
box in Fig. 13b, so that we can fulfill the maze geometry prin-
ciple and the avatar can seamlessly move over the entire
maze. However, when the user looks around the virtual
world, he/she may see the broken gap somewhere in the
maze at certain view directions (see Fig. 12d), thus violating
the seamless viewing principle (see Section 3). Below, we will
describe how we overcome this issue in general and then
discuss our adaptation to various generic maze types. Note

that all the results presented here are box-based models (see
Fig. 6b) except Figs. 12 and 15, which are surface-based
models mimicking the mazes in Hallucii [24] and a specific
scene in Diablo II, respectively.

6.1 Achieving Seamless Viewing

Our key idea to achieve seamless viewing is by modifying
the broken geometry from Procedure 2, i.e., by pushing the
gaps out of user’s view frustum. However, we still keep
the broken geometry from Procedure 2 for supporting the
navigation, and the modified version of the maze is only for
rendering.

Here is our procedure to modify the maze geometry.
First, we identify the gap(s) and their related nodes (next to
the gaps) in the relative position graph. Then, we copy the
geometry of the missing node next to each visible node at
the gaps to cover the gap. Lastly, we look for further visible
gaps neighboring to the new node in a breadth first tra-
versal manner; if found, we apply the steps above to the
next gap(s), etc. By these steps, we can put the gap(s) away
from user’s view, and achieve seamless viewing (Fig. 12e)
upon view changes.

6.2 Different Generic Maze Types

6.2.1 Type 1: A Maze of Corridors

Since we can take solid primitives as inputs, we can produce
a maze of corridors, where the users navigate internally
inside the solid primitives as walls, floor, and ceiling.

Game Prototype: chasing game. To show how our approach
works with this type of maze, we built a chasing game pro-
totype using the impossible figure shown in Fig. 13a. By our
method, the user can never reach and see gaps in the scene
in the navigation (Figs. 13c, 13d, 13e) even though the scene
is actually broken somewhere (see Fig. 13b). Moreover, to
promote the object bondage and subtle impossibility perception
principles, we put some landmark objects in the scene, e.g.,
the goddess sculpture at the starting location of the game.
Hence, when the user moves over the scene, he/she may
return to the same goddess sculpture even the path that he/
she has travelled is physically impossible in 3D.

This game prototype shows that our method offers 3D
navigation that is (locally) consistent to that in a normal 3D
virtual world, without implementing specific teleport tricks
and non-Euclidean connections as in Portal and Portal
2 [25], and Antichamber [26], respectively. In Portal, the
user has to shoot at the walls in the scene to create teleport-
ing holes for the avatar to move across the virtual world

Fig. 12. Endless runner game prototype: (a) the input impossible figure (top) and the maze model dynamically reconstructed by Procedure 2 w.r.t. Pc

(green dot); (b & c) the starting and ending views, respectively, where the game avatar keeps running upwards endlessly to collect the coins on the
impossible-figure maze; (d) without the adaptation strategy, the gap can be seen when the user looks around; and (e) the adaptation strategy can
help avoid the gap and achieve seamless viewing.

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. X, XXXXX 2015

IE
EE

Pr
oo

f
in a physically-impossible manner; though this idea is inno-
vative, there is no dynamic scene reconstruction and the
scene is essentially a possible object attached with pairs of
teleport holes.

6.2.2 Type 2: Open Space

Another maze type is open space, where the virtual
pathways that the avatar walks through have no walls
and ceilings. Careful reader may notice that in this open
space environment, if the field of view of the user is too
large, it may be possible for the user to see a large por-
tion of the virtual world, so we may not be able to avoid
the gaps any more.

Here, we define a concept called impossible loop, which is
a loop in the relative position graph, such that the geometry
along the loop cannot be reconstructed as a valid possible
object in 3D space. In the situation of open space mazes, if
user’s view covers an entire impossible loop, we cannot
hide/shift the gap away from user’s view any more unless
with some special visual effects, e.g., fog. Please refer to the
limitation section for detail. Below, we present two game
prototypes of this maze type:

Game Prototype i): Endless Runner Game. The first one
is an endless runner game, featuring fast movement
through an impossible-figure world, see Fig. 12 for the
screenshots and the impossible figure we employed. By
using Procedure 2, we can dynamically reconfigure the
maze, so that no matter how far the game avatar runs, it
can never reach the end, i.e., the gap. By our method, the
user can look around and gaps can be avoided accordingly
in user’s view (by shifting gaps out of the view frustum),
see Figs. 12d and 12e. Please see our supplementary video,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TVCG.2015.2507584, for the navigation experience.

Since the infinite staircase is repetitive by nature, an alter-
native approach to model it is by duplicating multiple
instances of its structure and vertically connecting them

into a mega staircase structure. Fundamentally, this dupli-
cation approach shares the same spirit as our approach in
terms of reconnecting scene components for achieving
seamless navigation and viewing. However, it connects
multiple instances of the entire maze (per-maze), while we
connect boxes in the maze in a finer scale. Hence, we can
see the following issues with this alternative approach: i)
structure duplication requires us to explicitly define a possi-
ble solid by defining gaps to break the impossible figure
structure into a possible solid, so that the rendering system
can connect instances of the maze at the gaps; and ii) we
need to render multiple instances of the entire maze if the
avatar stands on one instance and sees another instance(s)
in the view. Hence, our box-based approach can offer higher
flexibility in terms of modeling the impossible-figure struc-
ture, allowing us to intuitively represent the impossible-
figure structure as a graph and reconnect boxes in the graph
according to user’s view.

Note that our method can also support mazes built with
the “depth interposition” class (see Fig. 14). This can be
achieved by invisibly connecting the pair of interposition
links with one or more invisible boxes in the relative posi-
tion graph (see the double-ended arrows on Fig. 14(left)).
Hence, our dynamic modeling method will force an unnatu-
ral positioning between the scene geometries around the
interposition links.

Fig. 13. Chasing game prototype: (a) input impossible figure (box-based
solid primitives); (b) the maze model built from Procedure 2 w.r.t. Pc (red
box); and (c-e) subsequent screenshots, demonstrating subtle impossi-
bility perception when we move over the maze, see also the mini-map
(lower-left).

Fig. 14. Left: our box fitting method can also work with impossible figures
of the depth interposition class. Right: by manually connecting the inter-
position links with invisible boxes (see the double-ended arrows on the
left), our method can also work with this class of impossible figure.

Fig. 15. Screenshots from the game prototype (Role-Playing Game)
that mimics the Arcane Sanctuary level in Diablo II (which is simply a
2.5D impossible world). Top-left: an example position and view direc-
tion of the avatar. (a-c): our method can reconstruct this impossible-
figure world in 3D.

LAI ET AL.: 3D NAVIGATION ON IMPOSSIBLE FIGURES VIA DYNAMICALLY RECONFIGURABLE MAZE 9

http://doi.ieeecomputersociety.org/10.1109/TVCG.2015.2507584
http://doi.ieeecomputersociety.org/10.1109/TVCG.2015.2507584

IE
EE

Pr
oo

f

Game Prototype ii): Role-Playing Game. The other
open-space prototype we built is a role-playing game envi-
ronment that mimics the 2.5D Arcane Sanctuary level in
Diablo II [4]. Here, we use a third person view and the user
can freely look around in the 3D virtual world, see Figs. 15a,
15b, and 15c for screenshots with corresponding mini-
maps, which indicate the avatar’s corresponding location
and viewing direction.

In this prototype, we purposely model the impossible
figure structure, such that looking from certain locations in
the scene, the user may see an entire impossible loop, e.g.,
see the mini-map in Fig. 15a, so the gap in the impossible
loop cannot be shifted away from user’s view. In this situa-
tion, we introduce a rendering effect with fog into the vir-
tual world, so that the gap may be hidden by shifting
beyond the fog region. Note that in this prototype, while
maintaining the seamless viewing principle, we have care-
fully adjusted the size of the fog region, so that we can still
maximize the amount of object parts in the impossible loop
that can be seen by the user.

6.2.3 Type 3: Multiple Platforms

We can also adapt our approach into multiple platform
gaming environment; that is, to allow multiple users (or
game players) to interact with one another simultaneously
within the same impossible-figure maze. This problem is
very challenging since the broken geometry produced from
Procedure 2 cannot be used to achieve the maze geometry
and the seamless viewing principles for all the players in the
same maze. However, we need a common 3D space in-
between the players in order to accommodate the interac-
tion among them.

Here, we demonstrate this challenge by the first-per-
son shooting game prototype shown in Fig. 16. For exam-
ple, when a user shoots at the other, we have to ensure
proper 3D calculation over the maze, even though the
maze is modelled in the form of an impossible figure.
We propose certain adaptation strategies to allow multi-
ple players to simultaneously move and interact with

one another, apparently in the same 3D virtual world
built from a nontrivial impossible figure, e.g., see the
top-left of Fig. 16.

Achieving multi-player interaction. We propose an egocen-
tric approach to resolve the above issue: i) we first apply
Procedure 2 to create a maze geometry locally for each
game avatar; and ii) when considering Player 1, we dupli-
cate an instance of Player 2 (and all others) in the local
(broken) maze geometry of Player 1, so that Player 1 can
see and interact with other players using his/her own
maze geometry. Likewise, Player 2 interacts with Player 1
through duplicated instances of Player 1 in Player 2’s own
(local) maze geometry.

Note that there is an assumption behind the second
step. We assume that the virtual path along which Player 1
sees Player 2 (in Player 1’s own world) should be consis-
tent with the virtual path along which Player 2 sees Player
1 in Player 2’s own world. Such a property can be achieved
by our method because Procedure 2 actually constructs a
dynamic maze in the form of a minimum spanning tree over
the relative position graph. Hence, the path along which
Player 1 sees Player 2 is the shortest path from Player 1 to
2, so Player 2 can also see and interact with Player 1 along
the same shortest path (but in reversed direction) in his/
her own world.

Game prototype: Multi-player shooting game. Fig. 16 shows
screenshots of our game prototype. We can see from the
perspective of Players 1 and 2 in top and bottom rows of
the figure, respectively. From the screenshots (see the sup-
plementary video, available online), although Player 1 has
secured the lift to move up to a seemingly upper level,
Player 2 can still reach him through the structural impossi-
bility in the scene by moving horizontally over the impos-
sible-figure maze. By then, the avatars of the two players
can meet each other, and start the shooting interaction
over the maze.

By our adaptation strategies for multi-player interaction,
each user can move seamlessly in his/her own impossible-
figure maze without reaching and seeing any gap. And at

Fig. 16. Multi-player shooting game prototype: The nontrivial impossible figure (top-left) from which the maze of corridors is built; and the maze
model (bottom-left) reconfigured by Procedure 2 w.r.t. Pc (the red box); Player 1 (in blue) took the lift to move up to a seemingly “upper” level
(Player 1: top-left). Next, Player 2 (in brown) entered the game and found Player 1 inside the lift above him (Player 2: bottom-left). After adventur-
ing through the impossible-figure maze for some time, the two players encountered each other in their own views, and then try to shoot at the other
(Players 1 and 2: right column).

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. X, XXXXX 2015

IE
EE

Pr
oo

f

the same time, they can see and interact with one another
without breaking any guiding principle, even though they
do not share the same maze model in the interaction.

7 DISCUSSION

7.1 User Study

We conducted a user study to examine user’s cognition and
experience when navigating in a virtual 3D world built
from an impossible figure.

Preparation. First, we slightly modified the multi-player
shooting game prototype presented in Section 6.2.3 with
the followings: i) instead of showing the whole maze, the
mini-map on the gaming interface shows only a local por-
tion of the maze surrounding the gaming avatar; and ii)
we created a possible 3D maze (see Fig. 17) that resembles
the impossible-figure maze used in the multi-player shoot-
ing game prototype. This maze was created by flattening
the impossible figure, i.e., replacing the vertical lifts with
horizontal corridors.

Participants.Werecruited 20 participants (volunteer-based)
aged from 17 to 32: 13 male and seven female. All of them
have at least five years of experience in playingmobile or con-
sole games. We randomly paired them up into ten groups,
each with two participants, and we performed the user study
procedure described below in a group-basedmanner.

Procedure. When a group of participants came, we first
gathered their personal information: gender, age, gaming
experience (years), shooting game experience (years), 3D
gaming experience (years), knowledge of impossible figures
(poor 1 to good 7), experience in playing games related to
impossible figures (list, if any), the ability of perceiving 3D
objects from a 2D figure (poor 1 to good 7), and the ability
of knowing direction in a 3D virtual world (e.g., will you
easily get lost in a 3D maze?) (poor 1 to good 7).

Tutorial session. Then, we presented to the group the
knowledge of impossible figures using the contents in
Section 3: “The Notion of Impossible Figure.” We then
showed the INFINITE STAIRCASE in Fig. 4 (top-right) to the par-
ticipants: “An example would be theINFINITE STAIRCASEthat is a
two-dimensional depiction of a staircase in which the stairs make
four 90-degree turns as they ascend or descend yet form a continu-
ous loop, so that it gives an impossibility perception that one could
climb them forever and never get any higher.”

Next, we showed to them the impossible figure for
building the maze in the multi-player shooting game, i.e.,
Fig. 16(top-left), and discussed with them to ensure that
they understood the perceptual impossibility in the
figure. The two participants in a group were then ran-
domly assigned as Player A and Player B, sat on opposite

sides of a table, and tried our multi-player shooting game
prototype on his/her own computer screen.

Practice session. After the tutorial session, the two partici-
pants were given 3 minutes to individually try the game in
a single player mode, so that they can get familiar with the
gaming controls. Moreover, we prevented them from
understanding the maze structure by restricting them to
explore only a very small local area around the starting loca-
tion in the maze.

Gaming sessions. There were two gaming sessions for each
group of participants: one with the impossible-figure maze
in Fig. 16 and the other with the possible 3D maze in Fig. 17.
The order of these two gaming sessions was randomly
assigned but evenly balanced, so that five out of the ten
groups tried the impossible-figure maze first and then the
possible 3D maze, and the other five groups did the other
way around. Note that the participants did not know the
actual order.

Tasks. After the practice session, the first gaming session
started by randomly assigning a starting location to the ava-
tar of each participant, while keeping the two random loca-
tions to be far away from each other in the maze. Then, the
two participants were given the following tasks:

1) Explore the virtual world.
2) Find and shoot the other player (until no more hit

point).
After one of the players finished the tasks, we ended the gam-

ing session and proceed to a questionnaire session (see below)

before the second session (same task but different maze).

Questionnaire. After each gaming session, we asked each
participant to fill a questionnaire to examine their experi-
ence in the session. The questionnaire consists of five varia-
bles designed based on [27] using a Likert scale of 1 to 7
(very unlikely 1-very likely 7):

Perceived Impossibility (1-7):

1) The maze I navigated is an impossible figure like the
one shown to me.

2) I have always tried to mentally reconstruct a 3D pic-
ture of the virtual world I have navigated.

3) I think I moved to a higher (lower) ground, but then
found I went back to the lower (higher) ground.

4) I am confused on which level I am currently
located at.

5) I do not think I have been navigating on the same
ground.

Fig. 17. A flattened figure resembling the impossible figure input in the
multi-player shooting game prototype.

Fig. 18. Statistical results gathered from the 20 participants who tried our
multi-player gaming prototype: mean and standard deviation of variables
(1)-(5) for the case of impossible-figure maze (left) and possible 3D
maze (right).

LAI ET AL.: 3D NAVIGATION ON IMPOSSIBLE FIGURES VIA DYNAMICALLY RECONFIGURABLE MAZE 11

IE
EE

Pr
oo

f

In the questionnaire, the five variables attempt to explore
the navigation experience of the participants: variable
(1) directly asks the participants on whether they find the
maze to be an impossible figure or not; variable (2) examines
if the participants are aware of the mental process of recon-
structing the virtual world, while variables (3-5) explores lit-
erally the experience of the participants when they navigate
in themaze.We expect high scores (in Likert scale) in the five
variables for the case of impossible-figuremaze.

Results. Fig. 18 presents the statistical results, showing the
mean and standard deviation of variables (1)-(5). First of all,
from the plots of variable (2) in the two cases (impossible-
figure maze and possible 3D maze), we can see that the par-
ticipants generally tried to reconstruct a 3Dmental picture of
the virtual world. Moreover, by comparing (3)-(5) across the
two cases, we can see that the scores of these variables are
generally higher in the case of impossible-figure maze, sug-
gesting that the participants perceived higher degree of
impossibility for the case of impossible-figuremaze.

Lastly, we performed a paired t-test on variable (1) to
examine whether there is a significant statistical difference
on the perception of impossible-figure maze and possible
3D maze in the gaming sessions. The null hypothesis H0 is
the mean values of variable (1) in the two cases are equal. After
the computation, we found that the resulting t value is
6.565, which is larger than the critical value from the t-test
table: 4.59 with degree of freedom DOF=19 and a signifi-
cance level of 99.99 percent. Hence, we can reject H0 at the
significance level and suggest that there is a statistical differ-
ence between participants’ perception on the two mazes.

7.2 Limitations

7.2.1 Input Impossible Figures

We design our method exclusively for impossible figures
related to depth: Depth contradiction (e.g., PENROSE TRIANGLE)
and Depth interposition (e.g., IMPOSSIBLE CUBOID), see Fig. 3.
These are common classes of impossible figures used exten-
sively in existing games.

For Disappearing normals, some of its image regions do
not have consistent normals, e.g., see the plane marked with
an arrow in Fig. 3b, this ambiguous plane could appear to
be horizontal when seeing from top/bottom, or vertical
when seeing from the right. Hence, we cannot form a con-
sistent geometry representation for working with this class
of figures. For Disappearing space, due to its incomplete

silhouette, there are no clear boundary for foreground and
background, see Fig. 3c, so our method cannot form a con-
sistent geometry representation for impossible figures of
this class neither.

7.2.2 Hidden Geometry

When modeling impossible figures from images, our cur-
rent method considers two common cases of hidden geome-
try: i) in-between known structures along a straight line
(Procedure 1: lines 7-15), and ii) hidden corner boxes behind
star junctions (Stage 2: step ii - box fitting). It cannot handle
arbitrary hidden geometry, e.g., see Fig. 19a: in this case,
our current method cannot automatically reconstruct and
connect the hidden structure marked by the arrow in
Fig. 19b. In this situation, extra user input is needed.

7.2.3 Avoiding Gaps in User’s View

Our dynamic modeling method by geometry reconnection
and gap shifting assumes that user’s view is always local to
a portion of the impossible world such that the portion is a
“possible” object. However, if the user is able to move to a
certain location in the impossible world such that he/she
can see a larger portion of the world that includes an impos-
sible loop structure (e.g., a INFINITE STAIRCASE), then the gap
cannot be hidden from his/her view, e.g., in the case of an
open space maze without walls. To circumvent this issue,
other than having walls, we may use some rendering effects
such as fog at specific locations in the virtual world, or rede-
sign the virtual world with a larger impossible-figure struc-
ture so that it cannot be seen within a perspective view.

7.3 Other Applications

Although we focus our modeling method on gaming appli-
cations, we may also apply it to other applications. For
example, we may use it to construct a virtual world for ani-
mation production similar to that of Hallucii. Moreover, we
may extend our method with stereoscopic viewing for sup-
porting VR applications on Oculus Rift and Google Card-
board. Lastly, we may also adopt our method to construct a
dynamically-varying 3D model of an impossible figure, so
that one may touch and feel the surface of an impossible
figure with haptic.

8 CONCLUSION

This paper presents novel computational methods that con-
struct virtual mazes using impossible figures for 3D gam-
ing. Our method delivers seamless interaction and viewing
with impossible figures, so that we can navigate through
impossible-figure mazes in 3D gaming for the first time.

There are four contributions in this work. First, we revisit
the notion of impossible figures, and propose a set of guid-
ing principles for delivering seamless 3D navigation and
interaction experience with 3D impossible-figure maze. Sec-
ond, we develop an automatic method to analyze 2D impos-
sible-figure images and construct connected 3D boxes to
model the figure for supporting 3D gaming. Third, we
devise a real-time procedure to dynamically reconfigure
and reconnect the maze model subject to the user’s position,
thereby achieving seamless navigation over the maze even
though a complete maze cannot be modeled plausibly in 3D

Fig. 19. (a) An input impossible figure with a covered region behind the
wall (see arrow); there could be many possible ways of reconstruction;
(b) extra user input is needed, if we want to reconstruct the hidden struc-
ture marked by the arrow; otherwise, our current method will leave it
unconnected.

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. X, XXXXX 2015

IE
EE

Pr
oo

f

(without gap and twist). Lastly, we adopt and extend the
method to support various generic maze types, and develop
several game prototypes to demonstrate the applicability of
our method.

ACKNOWLEDGMENTS

The authors thank anonymous reviewers for the various con-
structive comments, ustwo studio Ltd. and Goo-Shun Wang
for the permission to use the images in Fig. 1c and Figs. 4
and 5, respectively. Figs. 1, 2, 3, 4, and 5 belong to their
respective owners. Note that by Copyright Disclaimer Under
Section 107 of the Copyright Act 1976, allowance is made for
fair use which explicitly applies to use of copyrighted work
for research purposes. This work was supported in part by
the MOE Tier-2 fund (MOE2011-T2-2-041(ARC 5/12)).
Sai-Kit Yeung is supported by SUTD-ZJU Collaboration
Research Grant 2012 (SUTDZJU/RES/03/2012), SUTD-MIT
International Design Center Grant (IDG31300106) and MOE
Tier-2 fund (MOE2013-T2-1-159). Part of the work was done
when Chi-Fu William Lai was visiting SUTD and supported
by the National Research Foundation (NRF) Singapore
under its Interactive Digital Media (IDM) Strategic Research
Programme. They acknowledge the support of the SUTD
DManDCentre which is supported by the Singapore NRF.

REFERENCES

[1] M. C. Escher Foundation. (2005). The official M.C. Escher website
[Online]. Available: http://www.mcescher.com

[2] C. Nolan. (2010). Inception [Online]. Available: http://www.
imdb.com/title/tt1375666/

[3] Game Yaruoze, SCE Studios Japan, Sony Computer Entertain-
ment. (2008). Echochrome [Online]. Available: http://www.jp.
playstation.com/scej/title/mugen/.

[4] Blizzard Entertainment, Inc. (2000). Diablo II [Online]. Available:
http://www.blizzard.com/diablo2/

[5] ustwo studio Ltd. (2014). Monument valley [Online]. Available:
http://www.monumentvalleygame.com/

[6] S. Owada and J. Fujiki, “DynaFusion: A modeling system for inter-
active impossible objects,” in Proc. Int. Symp. Non-Photorealistic
Animation Rendering, 2008, pp. 65–68.

[7] T.-P. Wu, C.-W. Fu, S.-K. Yeung, J. Jia, and C.-K. Tang, “Modeling
and rendering of impossible figures,” ACM Trans. Graph., vol. 29,
no. 2, pp. 13:1–13:15, 2010.

[8] Lilly Library. (2014). Swedish designer Oscar Reutersvard’s
impossible images [Online]. Available: http://libraries.iub.edu/
swedish-designer-oscar-reutersv%C3%A4rds-impossible-images

[9] B. Ernst, Adventures with Impossible Figures. Stradbroke, England:
Tarquin, 1987.

[10] V. Alexeev. (2001). Impossible world - impossible figures in com-
puter games [Online]. Available: http://im-possible.info/
english/art/games/index.html

[11] Louis (t). (2012). Adynatopia [Online]. Available: http://www.
kongregate.com/games/iiaopsw/adynatopia

[12] S. Tsuruno, “The animation of M.C. Escher’s ‘Belvedere’,” in Proc.
ACM SIGGRAPH Vis., 1997, p. 237.

[13] G. Savransky, D. Dimerman, and C. Gotsman, “Modeling and ren-
dering Escher-like impossible scenes,” Comput. Graph. Forum,
vol. 18, no. 2, pp. 173–179, 1999.

[14] C. W. Khoh and P. Kovesi. (1999). Animating impossible objects
[Online]. Available: www.csse.uwa.edu.au/�pk/Impossible/
impossible.html

[15] J. Fujiki and S. Owada. (2008). theRelativity. Proc. ACM SIG-
GRAPH ASIA Art Gallery: Emerging Technol., p. 15, demo movie
[Online]. Available: http://jun-fujiki.com/theRelativity/movie/
theRelativity.mpg.

[16] J. Fujiki and S. Owada. (2008). theRelativity+inPossible [Online].
Available: http://jun-fujiki.com/theRelativity/index.html

[17] G. Elber, “Modeling (seemingly) impossible models,” Comput.
Graph., vol. 35, no. 3, pp. 632–638, 2011.

[18] Y. I. H. Parish and P. M€uller, “Procedural modeling of cities,” in
Proc. 28th Annu. Conf. Comput. Graph. Interactive Techn., 2001,
pp. 301–308.

[19] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, “Instant
architecture,” ACM Trans. Graph., vol. 22, no. 3, pp. 669–677, 2003.

[20] P. M€uller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool,
“Procedural modeling of buildings,” ACM Trans. Graph., vol. 25,
no. 3, pp. 614–623, 2006.

[21] M. Lipp, P. Wonka, and M. Wimmer, “Interactive visual editing of
grammars for procedural architecture,” ACM Trans. Graph.,
vol. 27, no. 3, pp. 102:1–102:10, 2008.

[22] J. Danihelka, L. Kencl, and J. Zara, “Stateless generation of distrib-
uted virtual worlds,” Comput. Graph., vol. 44, pp. 33–44, 2014.

[23] M. Steinberger, M. Kenzel, B. Kainz, J. Mueller, P. Wonka, and
D. Schmalstieg, “On-the-fly generation and rendering of infinite
cities on the GPU,” Comput. Graph. Forum, vol. 33, no. 2, pp. 105–
114, 2014.

[24] G.-S. Wang. (2006). Hallucii [Online]. Available: http://www.
imdb.com/title/tt1139791/

[25] Valve Corporation. (2007). Portal and Portal 2 [Online]. Available:
http://www.valvesoftware.com/games/portal.html and http://
www.valvesoftware.com/games/portal2.html

[26] Alexander Bruce. (2013). Antichamber [Online]. Available:
http://www.antichamber-game.com/

[27] F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology,” MIS Quart., vol. 13, no. 3,
pp. 319–340, 1989.

Chi-Fu William Lai received the BEng degree in
computer science (minor in mathematics) from
the Hong Kong University of Science and Tech-
nology in 2008. He is currently working toward
the PhD degree under the School of Computer
Engineering, Nanyang Technological University,
Singapore. He is a visiting scientist in the Singa-
pore University of Technology and Design. His
research interests include computer graphics,
recreational modeling, optimization, and com-
puter-aided design.

Sai-Kit Yeung received the BEng degree (First
Class Honors) in computer engineering, the
MPhil degree in bioengineering, and the PhD
degree in electronic and computer engineering
from the Hong Kong University of Science and
Technology (HKUST) in 2003, 2005, and 2009,
respectively. He is an assistant professor at the
Singapore University of Technology and Design
(SUTD), where he leads the Vision, Graphics and
Computational Design (VGD) Group. He was
also a visiting assistant professor at MIT and

Stanford University. Before joining SUTD, he was a postdoctoral scholar
in the Department of Mathematics at UCLA. He was also a visiting stu-
dent at the Image Processing Research Group at UCLA in 2008 and at
the Image Sciences Institute, University Medical Center Utrecht, the
Netherlands, in 2007. His research expertise is in the areas of computer
vision and computer graphics. He has served in the technical program
committee of Pacific Graphics, Eurographics, SIGGRAPH Asia Poster
and Technical Brief. His recent research focuses on scene acquisition,
understanding and re-modeling. He is a member of the IEEE and the
IEEE Computer Society.

Xiaoqi Yan received the BS degree in computer
science and technology form Si Chuan University
in 2009. She is currently working toward the PhD
degree in the School of Computer Engineering at
Nanyang Technological University in Singapore.
Her research interests are in mathematical visu-
alization, interactive interfaces, and computer
graphics.

LAI ET AL.: 3D NAVIGATION ON IMPOSSIBLE FIGURES VIA DYNAMICALLY RECONFIGURABLE MAZE 13

IE
EE

Pr
oo

f

Chi-Wing Fu received the BSc and MPhil
degrees in computer science and engineering
from the Chinese University of Hong Kong, and
the PhD degree in computer science from Indiana
University Bloomington. His research interests
include user interaction design in HCI and com-
puter graphics. He has served in the technical
program committee of SIGGRAPH Asia technical
brief, SIGGRAPH Asia emerging technology,
IEEE visualization, and ACM CHI Work-in-
Progress, and is currently serving as associate

editor of Computer Graphics Forum. His research interests include com-
puter graphics, visualization, and human-computer interaction. He is a
member of the IEEE.

Chi-Keung Tang received the MSc and PhD
degrees in computer science from the University
of Southern California, Los Angeles, in 1999 and
2000, respectively. He is currently an associate
professor in the Chinese University of Hong
Kong. Since 2000, he has been with the Depart-
ment of Computer Science and Engineering at
the Hong Kong University of Science and Tech-
nology, where he is currently a full professor.
He was an adjunct researcher at the Visual Com-
puting Group of Microsoft Research Asia. His

research areas are computer vision, computer graphics, and human-
computer interaction. He was an associate editor of IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), and was on the
editorial board of International Journal of Computer Vision (IJCV). He
served as an area chair for ACCV 2006, ICCV 2007, 2009, 2011, & 2015
and as a technical papers committee member for the inaugural
SIGGRAPH Asia 2008, 2011, 2012, 2014 & 2015, and SIGGRAPH
2011 & 2012. He is a senior member of the IEEE and IEEE Computer
Society.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. X, XXXXX 2015

