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Abstract

In recent years, there has been increasing interest in ap-
plying stylization on 3D scenes from a reference style image,
in particular onto neural radiance fields (NeRF). While per-
forming stylization directly on NeRF guarantees appearance
consistency over arbitrary novel views, it is a challenging
problem to guide the transfer of patterns from the style image
onto different parts of the NeRF scene. In this work, we pro-
pose a stylization framework for NeRF based on local style
transfer. In particular, we use a hash-grid encoding to learn
the embedding of the appearance and geometry components,
and show that the mapping defined by the hash table allows
us to control the stylization to a certain extent. Stylization
is then achieved by optimizing the appearance branch while
keeping the geometry branch fixed. To support local style
transfer, we propose a new loss function that utilizes a seg-
mentation network and bipartite matching to establish region
correspondences between the style image and the content
images obtained from volume rendering. Our experiments
show that our method yields plausible stylization results with
novel view synthesis while having flexible controllability via
manipulating and customizing the region correspondences.

1. Introduction
Stylizing a visual world is an increasingly popular and

demanding task in games, movies, or extended reality ap-
plications. Imagine that one can navigate in an artistic vir-
tual world that resembles the painting styles by different
renowned artists. This problem is generally known as 3D
style transfer.

Traditionally, 3D style transfer can be achieved via post-
processing. For example, in the well-known traditional com-
puter graphics pipeline, it typically involves a programmable
shading stage to post-process the appearance of the rendered
geometry or screen images. Neural radiance field [20] is a
recent advance in 3D deep learning that aims to represent
a 3D scene implicitly by using a neural network trained
with multi-view images and differentiable volume render-

Figure 1. We propose a stylization method for NeRF, aware of
correspondences between different style patterns and local regions
within the rendered image.

ing. Since this pioneer work, significant milestones have
been made to greatly improve the performance of neural
radiance fields in practice, including improved spatial repre-
sentation [17], training convergence [21], explicit geometry
representation [31]. It is therefore promising to revisit the
3D style transfer problem by stylizing a 3D scene implicitly
represented by a neural radiance field.

In this work, our goal is to transfer the appearance from a
reference style image to a neural radiance field and keep the
style transfer consistent across novel views rendered from
the radiance field. We are inspired by works in image [3, 7]
and video style transfer methods that have received great
attention since the introduction of modern neural networks.
While previous works [22, 32] have proposed adapting the
style transfer problem to neural radiance fields as well, the
stylization results lack diversity and controllability.

To address these limitations, we devise a new style trans-
fer method that considers the local transfer between a ref-
erence style image and the radiance field rendering. In par-
ticular, our method treats style transfer as a post-processing
step after the original geometry and appearance of the neural
radiance field is learned and therefore aim to perform style
transfer while keeping the geometry implicitly represented
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by the neural radiance field unchanged. We propose a new
backbone suitable for stylizing neural radiance fields that
has a dual-branch architecture to learn the density and the ap-
pearance field, respectively. We devise a hash-grid encoding
scheme with an extended hash function to support storing
multiple styles in a single parametric embedding of the ap-
pearance field. Given the same reference style image, it is
possible to diversify the stylization results by customizing
the hash function used for positional encoding.

We further propose a new segmentation-based stylization
loss which subdivides both the 3D scene and style image
into subregions; different regions in the scene are matched
with a region in the style image and stylized accordingly.
The matching between scene and style image regions are for-
mulated as a bipartite matching problem and solved by the
Hungarian algorithm. We show that our method automati-
cally generates plausible stylization results with high-quality
geometry and appearance, reflecting a diverse range of local
styles found in the style image. In addition, the generated
matching can also be manually edited by the user, making
the stylization process controllable.

To summarize, our contributions are:

• A reference-guided style transfer method for neural
radiance fields. Our architecture for learning a neural
radiance field is a dual-branch network that aims at
optimizing the appearance while keeping the geometry
fixed during stylization;

• An extended hash-encoding scheme for stylization. We
provide an analysis of hash-encoding and its influence
on the style transfer on radiance fields and multiple
style support;

• A new style loss that adopts optimal assignment from
bipartite matching on segmented regions between the
reference style image and the radiance field rendering
for style transfer.

2. Related Work
Image and video style transfers. Image style transfer can
be dated back to early work for image analogies [4], which
uses a pair of images as the training data to learn a filter
which can be subsequently applied on new images to simu-
late analogous filtered results. Deep image analogies [16]
performs visual attribute transfers by using deep features
from a neural network to derive dense correspondences be-
tween the input and the style image, which is only applicable
when these images are semantically similar, e.g., images of
human faces. Neural style transfer [3] instead uses deep
features to build content and style constraints and optimizes
a random noise image to output a new image with matched
content and style statistics. The optimization can be replaced
by a feed-forward prediction by training a neural network on

pairs of original and stylized images with improved results
using instance normalization [29] and perceptual loss [10].
Recent methods aim at supporting arbitrary style images at
test time without the need to retrain the stylization network
by leveraging adaptive instance normalization [7], patch-
based transfer [27, 26], feature transform [15] as well as
multiple style support [23].

As an extension of image style transfer methods, video
style transfer methods further deal with the temporal consis-
tency problem for transferring styles across video frames [9,
28]. Different from video style transfer methods, we focus
on stylization of 3D scenes, where view-consistent styliza-
tion is required to achieve high-quality novel view synthesis.
3D style transfers. Stylizing a 3D scene can be performed
explicitly on point clouds and mesh representations [11, 6, 5].
However, this approach is error-prone due to imperfect ge-
ometry and texture rendering. In contrast, NeRF [20] allows
representing a 3D scene by learning a neural network using
multiple-view images and differentiable volume rendering.
As a result, NeRF can smoothly and consistently interpolate
its rendering at different angles, which is an ideal application
for novel view synthesis. The last few years witness tremen-
dous research interests in this area with significant progress
in improving NeRF in various aspects including its spatial
representation [17], training convergence [21], explicit ge-
ometry representation [31], to name a few. Stylizing a 3D
scene by using a NeRF representation is therefore gaining
attention recently.

A simple approach to stylize a NeRF model is to regress
a NeRF and constrain its rendering to 2D image stylization
results with a content loss and a style loss. SNeRF [22]
follows this approach and demonstrate consistent stylization
across novel views. Their style loss is a global constraint and
ignores any spatial correspondences between the rendering
and the style image. ARF [32] defines a nearest-neighbor
feature matching loss but since their correspondence assign-
ment is fixed, their results do not support diverse stylization
results. Our work differs in that we propose a spatial match-
ing between the style image and NeRF rendering so that the
dynamically assigned correspondences can be used to guide
the stylization with diverse results.

To speed up stylization process, the optimization on NeRF
can be replaced by a feed-forward prediction. Chiang et
al. [1] used a hypernetwork to predict the weights of a NeRF
MLP given an arbitrary style. Our work utilizes the hash
encoding [21] for style transfer, which significantly speeds
up the optimization process.

Other attempts have been made to improve consistency
in the 2D and 3D space during style transfer such as using
a point cloud as an intermediate representation for 2D-3D
feature transfer [6], or using mutual learning by distilling
spatial consistency and stylized rendering between a NeRF
and a 2D style transfer network [8].
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Figure 2. Stylization results from modifying the hash function coefficients. This yields similar and consistent global styles while having
local diversity.

3. Our Method

The stylization of NeRF models are typically completed
in two stages - the reconstruction stage, where a base NeRF
model is trained with respect to the MSE reconstruction loss,
similar to regular NeRF training; followed by the stylization
stage, where the parameters of the NeRF model is fined
tuned against style-transfer specific losses. Our method fol-
lows this paradigm, but we reconsider several design choices
discussed below.

3.1. Dual-branch NeRF model

In this work, we propose a dual-branch architecture for
our neural radiance fields. Our model is illustrated in Fig-
ure 3. Our dual-branch architecture consists of a geometry
branch to encode the density component of the neural ra-
diance field, and an appearance branch to encode the color
component, respectively. This design allows us to subse-
quently only optimize the appearance branch for the styliza-
tion task while keeping the geometry unchanged.

We utilize contributions from Instant-NGP [21] to rep-
resent each branch, which uses a parametric embedding
to replace the original fixed positional embedding used in
vanilla NeRF. Particularly, the bounded scene volume is sub-
divided into a large number of voxels each corresponding to
a set of learnable parameters, which is stored in a fixed-size
hash map. Thus, the learned embedding provides a rich,
descriptive set of features representing the scene geometry
and appearance. The depth and no. of parameters of the sub-
sequent MLP networks can be greatly reduced, improving
the training time by a few orders of magnitude. The pro-
posed model differs from the vanilla architecture proposed
in Instant-NGP [21] in the following ways. First, we train
two separate sets of hash-grid encodings, EC and ED to rep-
resent the appearance and geometry, respectively. Second,
we discard the view direction input. This is a common prac-
tice found in prior NeRF stylization work, considering that
style-transferred scenes often do not require view-dependent
effects during rendering.

During the reconstruction stage, we train our model with
multi-view images and the MSE loss, similar to [21]. During

Hash-grid Encoding MLP network Volumetric rendering

Figure 3. Our dual-branch architecture for neural radiance fields.
We optimize only the appearance branch for the stylization task.

the stylization stage, we fix the weights of components ED

and MD, such that the density value σ corresponding to
each input point x remains fixed. We then optimize the
appearance component EC and MC with a novel style loss,
to be discussed in Section 3.3.

Effect of hash-grid encoding in stylization. In our for-
mulation, the large number of parameters in the learned
hash-grid encoding EC describes the rendered appearance
of the radiance field. Specifically, the encoding correspond-
ing to the voxel at (x, y, z) is given by the geometric hash
function H described in [21]:

H(x, y, z) = (h1x⊕ h2y ⊕ h3z) mod NH , (1)

where h1, h2, h3 are large prime numbers and NH is the
total size of the hash-grid. By picking different values for
h1, h2, h3, we demonstrate in Figure 2 that different pat-
terns can be generated after the stylization training stage.
Compared with existing stylization methods where a single
stylization result is generated per style image / scene, this
gives a wider level of variation.

In addition, our architecture can be used to stylize multi-
ple styles simultaneously, as opposed to prior methods that
focus on transferring a single style. This is done by adding a
fourth term to the hash function:

H(x, y, z) = (h1x⊕ h2y ⊕ h3z ⊕ h4si) mod NH , (2)
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where si is a discrete style index. In other words, we store
encodings for multiple styles inside the same hash-grid, al-
lowing stylization of more than one style at inference time.
We demonstrate the results of training multiple styles simul-
taneously in Section 3 of the supplementary material.

3.2. Preliminaries on style loss

Given a pair of rendered output image y and style image
s, stylization losses typically operate on high-level features
fy = F(y), fs = F(s) extracted with a pre-trained and fixed
feature extraction networkF ; for example, StylizedNeRF [8]
follows the training setup of AdaIN [7], which uses a style
loss that matches statistics (i.e. mean and standard deviation)
between fy and fs, where F is a pretrained VGG-16 [24]
network.

However, the matching of global statistics means that
the style may not be properly transferred across every local
region in I . The nearest-neighbor feature matching (NNFM)
loss introduced in [32] uses the following formulation in-
stead:

LNNFM(y, s) =
1

NF

∑
fi∈fy

min
fj∈fs

d(fi, fj) (3)

where every individual feature vector fi in fy is paired with
the closest style feature vector fj in fs, in terms of the cosine
angle distance d. The NNFM loss is then defined as the
mean of distances over all NF pairs of vectors, where NF is
the no. of vectors in fy .

However, matching up nearest neighbor features between
fy and fs may not always lead to good results. Figure 4
shows two stylization results by ARF onto the same scene.
We see that in both cases, recurrent patterns are generated
over the entire scene. In (a), different parts of the scene
(e.g. floor, walls) gets the same pattern, even though there
are multiple distinct patterns in the original style image to
choose from. In (b), recurrent patterns are generated on
the “blank” walls, even when equally “blank” regions are
present in the style image. We suggest that applying nearest
neighbor search over the entire image does not lead to the
best choice in stylization, especially in cases where vectors
in fy are dissimilar to all vectors in fs.

3.3. Style loss with region correspondences

Our key observation is that, instead of only comparing
between nearest neighbors on the feature level, we can di-
vide up y and s into coarse regions {yi} and {sj}, where
features in region yi is matched towards features within a
corresponding region sj . The idea of matching feature statis-
tics between regions has previously been explored in [18],
which segments content and style images into regions by
semantic segmentation and pair-up the regions by semantic
labels. It is nontrivial, however, to extend this method to
NeRF stylization, for the following reasons. First, in order

(a) (b)
Figure 4. Stylization results using nearest-neighbor feature match-
ing (NNFM) [32] are not always satisfactory, for example, recurrent
patterns occur in the stylization results and not all regional styles
are transferred.

to stylize an entire scene, the scene will need to be dissected
into regions in a manner that is consistent over any arbitrary
novel view. Second, the method proposed in [18] is designed
for photorealistic style images; in contrast, semantic segmen-
tation is unlikely to give meaningful results on artistic style
images. Third, the lack of semantic segmentation labels also
means that there is no intuitive way to pair-up the regions.

To this end, we propose a training pipeline which seg-
ments both y abd s. A matching is derived automatically
from the segmented regions, which is used to influence the
calculation of the style loss. An overview of this pipeline is
described in Figure 5.

Defining regions for y and s. The first step to our pipeline
is to subdivide y and s into C scene regions and S style
regions. We use the unsupervised segmentation method
Segment Anything [13] to segment s into S style regions
with diverse local patterns and styles.

Computing the segmentation of y is nontrivial, as we
require a consistent segmentation that assigns regions con-
sistently over any arbitrary novel views from the same scene.
To solve this problem, we first segment the set of training im-
ages {ŷ} into C regions, using a variant of the unsupervised
image segmentation method proposed by Kim et. al. [12];
which allows simultaneous segmentation of multiple unseen
images without prior semantic knowledge.

We then introduce an additional MLP network MK in
our NeRF backbone as shown in Figure 5, which produces a
C-dimensional vector output:

k̃ = MK(Ec(x)). (4)

The list of k̃s computed over a single ray are integrated
together with density values from MD using the volumet-
ric equation, and subsequently passed through the softmax
function. The result is a probability vector k ∈ RC describ-
ing the probabilities of the pixel belonging to each of the
C scene regions. During the reconstruction stage, MK is
trained simultaneously with other components with respect
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Ground truth

Pre-computed
regions

VGG16

Reconstruction stage Stylization stage

Hash-grid encoding

MLP network

Volumetric rendering

Inter-region Matching

Figure 5. Our two-stage pipeline for NeRF stylization. During the reconstruction stage, the entire network is trained to simultaneously render
a novel view y of the target scene and generate a segmentation map k. During the stylization stage, the appearance components (EC and
MC ) are fine-tuned with our novel style loss LS which considers the matching between regions in y and s.

to the cross-entropy loss LK . For each vector ki computed
from a pixel, we have

LK(ki, k̂i) =

C∑
i=1

−k̂iki log ki, (5)

where k̂i is the corresponding scene region (in one-hot vector
form) from the segmentation map k̂, pre-computed from the
ground truth training image ŷ. After the reconstruction stage
is completed, the NeRF backbone can simultaneously render
a novel view y and generate its corresponding segmentation
map k. Note that our stylization pipeline is agnostic to the
segmentation method used to segment s and {ŷ}. The choice
of C and S are automatically determined during unsuper-
vised segmentation; for the results shown on this paper, we
have C ≈ 5 and S ≈ 10.

In Section 1 of the supplementary material, we describe
the implementation of segmentation in greater detail, as well
as provide an ablation experiment to demonstrate the effect
of using higher values of C through segmenting the scene
and style image into finer regions.

Style loss. Following the procedure in Section 3.3, we have
C scene regions {yi} segmented from y; as well as S style
regions {sj} segmented from s. To avoid multiple regions
being mapped to a single local pattern in s, we formulate this
as a bipartite matching problem where no two scene regions
are mapped to the same style region.

To do so, we construct a cost matrix W ∈ RC×S , where
each individual entry Wij represents the affinity between
regions yi and sj . The cost is determined by the feature
distance and the patch distance, defined as follows. The
feature distance is defined as the cosine angle distance be-
tween the means of features in yi and sj . The patch distance
is defined as the Euclidean distance between the centroids
(i.e. arithmetic mean position of all pixels constituting the
region) of yi and sj ; each centroid position is normalized

as a value in [0, 1] given the image dimensions. The patch
distance dictates that scene regions are more likely to be
paired with style regions that are roughly located in the same
relative position. Using the previous example in Figure 4 (a),
the scene regions corresponding to the ceiling and floor are
more likely to be mapped to patches in the sky and floor in
the style image.

After computing W, an optimal injective mappingM :
[1, C] 7→ [1, S] can be obtained by applying the Hun-
garian algorithm, such that the following mapping cost∑

i∈C Wi,M(i) is minimized. Given a mapping M, our
updated style loss is formulated as follows:

LS(y, s,M) =
1

NF

∑
fi∈fy

min
fj∈sj

d(fi, fj) (6)

such that if fi ∈ yi, then sj is the corresponding style region
of yi inM.

Custom matching. While the above method provides an
automatic matching between {yi} and {sj}, the exact pair-
ing can be further modified to produce a wide variety of style
transfer results for different scenarios. We demonstrate this
capability in Section 4.3.

3.4. Training and implementation details

Reconstruction stage. The model is first trained for
20,000 iterations with the objective function:

LR(y, ŷ) + λCE

NT∑
i=1

LK(ki, k̂i), (7)

where we mix the reconstruction loss LR with the cross-
entropy loss LK multiplied by a fixed constant λCE = 0.01.
NT is the number of pixels sampled during each training iter-
ation. It is further trained for 2,000 iterations after applying
color transformation from s to y, as proposed in [32].
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Figure 6. Qualitative comparison results with SNerf [22] and ARF [32] on the LLFF dataset [19].

Stylization stage. The pairingM between scene regions
and style regions is first computed using the heuristic func-
tions described above. We fixM through the entire styliza-
tion stage to avoid instability during training. We then train
the model with the following objective function:

λCLC(y, ŷ) + λSLS(y, s,M), (8)

where LC is the content loss ∥fy − F(ŷ)∥22; λC is fixed to
0.001; and LS is the style loss with the pairingM enforced.

In addition, we follow the experimental settings in [32],
where the feature extractor F collects all the post-ReLU
features from the conv3 block of VGG-16 and concatenates
them together; as well as utilizing deferred backpropagation
to allow optimizing the loss function over entire images
under limited GPU memory.

4. Experiments
4.1. Qualitative comparisons

We demonstrate qualitative comparisons in Figure 6 with
ARF [32] and SNerf [22], another relatively recent baseline
for NeRF stylization. As SNerf do not release their code

implementation, we perform comparison on the same scenes
and style images used in Figure 5 in their paper, using scenes
in the LLFF [19] dataset.

In general, the results produced by SNerf do not have
significant change in terms of the pattern of the image; only
the color has been altered to match the style image. SNerf
directly computes the MSE loss between fy, fs as their style
loss, meaning that the style similarity is being compared
on an image-wide level. Thus, it is hard to predict which
style region will be transferred to which scene region. ARF
is successful in transferring local patterns from the style
image; however, in either scenes large parts of the scene has
been blanketed with the same pattern. In the second scene,
the dinosaur head is difficult to identify after applying the
mosaic pattern.

Our results strike a balance between the two baselines.
In the second scene of Figure 6, the background area is
mapped to the dark blue suit in the style image; whereas
the top area is mapped to the top of the style image where
the mosaic pattern is not as obvious. The matching is both
consistent and predictable, resulting in a diverse combination
of patterns over the entire scene.
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Figure 7. Further qualitative comparison results with ARF [32] on an LLFF scene [19] (top rows) and on a Replica scene [25] (last rows).

We further compare our stylization results with ARF on
more examples in Figure 7. We use another scene in the
LLFF dataset, followed by another scene in the Replica [25]
dataset. Our method is capable of drawing diverse patterns
and styles within the given style image, applying to consis-
tent regions across the content image. For example, in the
style image to the right, we can better distinguish different
parts of the scene by the use of different patterns and colors.
We provide further qualitative comparisons of even more
scenes and style images in the supplementary material.

4.2. Ablation experiments

It is mentioned previously in Section 3.4 that the pairing
M is determined at the start of the stylization stage, and
influences the computation of style loss LS . Without this
pairing, the style loss falls back to the NNFM loss which
looks for the nearest neighbor feature across the entire style
image. In Figure 8, we evaluate the effect of computingM
by comparing the results with using the vanilla NNFM loss
on our NGP-based rendering backbone.
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Figure 8. Ablation comparison with (a) and without (b) pairing between scene and style regions.

Figure 9. Stylization results via custom pairings between scene and style regions. Best view with zoom.

4.3. Effect of different pairings

In Figure 9, we demonstrate the capability to customize
the stylization result via modifying the pairing M, given
the same scene and style image. In both cases, the scene
is segmented into 3 classes, which are manually mapped
to two different set of style regions. In (a), the tree in the
foreground undergoes a significant change in appearance
when it is mapped to different plants in the style image;
whereas in (b), the scene regions also changes appearance
based on the different pairing.

5. Further discussion

Extension to unbounded scenes. While Instant-NGP pro-
vides a form of 3D scene representation that is efficient to
render, it requires the scene to be contained within a bounded
volume, which will be mapped to the 3D hash grid for param-
eter storage. This makes it non-trivial to extend our method
towards unbounded scenery, e.g. Tanks & Temples [14]. It
would be helpful to extend the hash-grid encoding towards
unbounded scenes by reparametrizing the coordinates within
a bounded volume, such as the inverse-distance approach
used in NeRF++ [33].
Optimizing density. In contrast to stylization methods
where the density component of the backbone is fixed, recent
methods such as SNerf [22] and NerfArt [30]) has suggested

that optimizing both the density and appearance components
will lead to improvement in stylization results. It is debatable
whether optimizing the density field is really necessary or
not. We opt for leaving density untouched.

6. Conclusion

In this work we present a novel framework for stylizing a
neural radiance field. We optimize the appearance branch in
a dual-branch radiance field represented by a parametric em-
bedding learned with an extended hash function. We devise
a new style loss based on region correspondences between
the style image and the content images from rendering the
radiance field. Our method generates diverse stylization re-
sults, where the stylization can be controlled by the extended
hash function and the region correspondences.

Our method is not without limitations. First, our method
is not (yet) suitable for interactive use even though the hash-
encoding scheme reduces the required time for optimizing
the neural radiance fields to minutes. Second, our method
support multiple styles but these styles have to be known in
advance of the stylization. Supporting arbitrary style transfer
at test time would be an interesting future work.
Acknowledgment. This paper was partially supported by
an internal grant from HKUST (R9429) and the HKUST-
WeBank Joint Lab.
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Supplementary material
In this supplemental document, we provide additional

details and experiment results for our proposed method. In
particular, we provide an in-depth description of the seg-
mentation procedure used in our stylization procedure; a
user study; and more qualitative results on the LLFF and the
Replica dataset.

A. Segmentation procedure
In this section, we describe in greater detail the segmen-

tation procedures used for creating scene regions and style
regions. As mentioned in the main paper, our stylization
method can be performed irrespective of the segmentation
method used.

A.1. Scene regions

Given a set of training images {ŷ}, we want to generate a
set of segmentation maps {k̂}, where every pixel is classified
into a finite set of C scene regions. The segmentation process
should be unsupervised (i.e. C is not set to a fixed value, and
is determined during segmentation), and can be applied to
any arbitrary set of scenes.

To satisfy these requirements, we base our implementa-
tion on the segmentation procedure proposed by Kim et. al.
[12]. In their method, a single image is passed into a CNN
model producing a response map r ∈ RH×W×Q, where Q
is the upper bound of no. of scene regions. A segmenta-
tion map c ∈ RH×W can be obtained from r by taking the
argmax function.

This network is trained with a combination of the similar-
ity loss Lsim and continuity loss Lcon. The similarity loss
is defined as the sum of cross-entropies between response
vector rn and the target vector cn:

Lsim(r) = −
∑
n

Q∑
i=1

cn,i log rn,i, (9)

where cn is the one-hot vector in c corresponding to rn. The
continuity loss is defined as the sum of L1 distances between
horizontally and vertically adjacent features in r:

Lcon(r) =

W−1∑
i=1

H−1∑
j=1

∥ri+1,j − ri,j∥1 + ∥ri,j+1 − ri,j∥1.

(10)

It can be seen that Lsim encourages similar features in r to
be grouped together and form a single cluster; Lcon ensures
spatial continuity of clusters and prevents the segmentation
from being too fragmented. In general, the unique number
of classes in c is initially high (i.e. close to Q), and gradually
decreases over time as more and more feature vectors in r
are clustered into the same region.

To extend this method to segmentation of multiple images
simultaneously, we train the segmentation network by sam-
pling a batch of B images during each iteration, instead of a
single image. The loss values for each individual response
maps {r1, · · · , rB} are computed and summed together. Af-
ter the network is trained, we can run segmentation over all
of {ŷ}, obtain the set of C remaining active classes, and
re-index the segmentation maps from 1 to C.

A.2. Style regions

Given a style image s, we want to segment it into a set of
S style regions {sj}, once again without explicit supervision.
Unlike section A.1, we only need to apply segmentation on
a single image. We use the robust Segment-Anything method
[13] as it has good performance outside real-life images,
which is the case for style images in artistic style transfer.
We use the official pretrained weights based on ViT-H [2].

Directly applying the method results in a set of regions
{sj} which may overlap with each other. To fix this issue,
we first sort the regions in decreasing order of size, and run
the procedure in Algorithm 1. Here, {s1, · · · , sN} is the

Algorithm 1 Filtering overlapping style regions
m← 0
k← −1
i← 0
for sj in {s1, · · · , sN} do

if
∑

m[sj ]/|sj | ≥ λt and |sj |/∥s∥ ≥ λm then
(m[sj ])← 1
(k[sj ])← i
i← i+ 1

end if
end for

list of regions from largest to smallest; m ∈ RH×W is a
binary map that keep tracks if a pixel has been assigned to a
style region; and k ∈ RH×W is the segmentation map. The
notation m[sj ] and k[sj ] represents the subset of pixels in
m and k belonging to region sj . λt determines if the current
sj is overlapping with previous regions; λm ensures that
regions too small are not considered. We set λt as 0.05 and
λm as 0.004 (i.e. 0.4% of total image area).

After the procedure, each pixel of k should be given an
integer value from [−1, S − 1], where 0 to S − 1 indicates
the S style regions. An index of -1 means that the pixel
is not assigned to any region, and is not considered during
stylization.

Last but not least, k is downscaled by nearest neighbor in-
terpolation to match the dimensions of fs, the VGG features
extracted from s.

9



A.3. Fine vs. coarse regions

The values of C and S determines the level of fineness
during the segmentation of scene and style regions. We
provide an ablation experiment to experiment on the effect
of using larger values of C and S on the stylization result.

The value of C can be indirectly controlled by modifying
the number of iterations of training the unsupervised seg-
mentation network; in general, by using a smaller number of
iterations, the network output will contain a larger number of
classes as it has not fully converged. For this experiment, we
segment the style image s with the same procedure as scene
regions, creating different segmentation maps with different
values of S.

Figure 11 demonstrates segmentation results under three
sets of scene regions and style regions. In the first example,
the change from C = 8, S = 14 to C = 19, S = 25 results
in a more varied stylization result; the walls and ceiling
are dissected into smaller scene regions which are given
different styles. However, ”over-segmentation” of the style
image s will only result in smaller style regions with similar
patterns and colors, i.e. it will not create significant changes
towards the stylization result, as demonstrated by the results
of increasing C, S to C = 41, S = 47. A similar trend can
be observed for the second example as well.

A.4. Injective and surjective mapping

When computing the mappingM, our current method
assumes that C ≤ S, i.e. M is injective. Under this as-
sumption, every scene region is matched to a unique style
region, which prevents a single local style from dominating
the stylization.

However, the computation of our style loss LS can take
in any arbitrary mapping function. For example, in the case
where C < S, we can produce a surjective mapping where
every style region has to be used for stylization.

To demonstrate this point, we provide an additional abla-
tion experiment comparing between injective mapping and
surjective mapping in Fig. 10. Under our default injective
setting, we have C = 4, S = 15. By reducing the number of
training iterations during the segmentation of scene regions,
we can increase the number of C from 4 to 26. To generate a
surjective mapping with 26 scene regions, we run our current
Hungarian algorithm matching to obtain a bijective mapping
for 15 scene regions; then run the algorithm again to match
the remaining 9 scene regions.

In this example, we observe that the increase in scene
regions means a more diverse stylization result; for example,
the chairs are no longer constrained to be stylized in the
same style as the ceiling. Nevertheless, many scene regions
similar in nature are stylized similarly. This arises from the
fact that multiple scene regions are now assigned to the same
style region, or style regions that have similar patterns and
appearances.

Figure 10. Injective vs. surjective mapping comparison.

One future direction to extended our current method is
to improve the automatic matching algorithm such that any
general mappingM can be considered as a candidate.

B. User study

We conduct a user study to verify the performance of
our proposed method compared with ARF [32]. The study
consists of 20 questions presented in random order; each
question consists of two images rendered from a scene styl-
ized by our method; as well as the two ARF-generated im-
ages with the same scene and camera pose. The order of the
two choices are randomized. In addition, the correspond-
ing ground truth training image and the style images are
also shown. The user is asked to select the choice that
preserves the content of the ground truth image, and simul-
taneously appears similar to that of the style image. Out
of the 20 questions, 12 of them correspond to images ren-
dered from the trex, room and fern scenes from the
LLFF [19] dataset; and 8 of them correspond to images ren-
dered from the office3 and frl apartment3 scenes
in the Replica dataset [25].

We collected a total of 23 replies and the percentage
of picking each method is summarized in Figure 12. The
study shows that on average our method is picked at a higher
percentage than ARF on both the LLFF and Replica datasets.

C. Further qualitative results

We show in this section the results of simultaneously
training the stylization of multiple styles within a single hash
grid. Figure 13 shows the fern scene from LLFF stylized
in four distinct styles. Figure 14 compares the difference
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Figure 11. Stylization results by using segmentation maps of different degree of fineness.

Figure 12. User study results.

between with and without regional matching.

We provide further qualitative results for the LLFF dataset
in Figure 15, and for the Replica dataset in Figure 16. Both
figures illustrate that our method is less likely to transfer sim-
ilar, repetitive patterns to the NeRF scene. This is especially
the case in low-frequency regions, e.g. concrete walls and
bare surfaces.

Our algorithm for matching content-style regions work by
assuming that the regions can be paired up in a meaningful
sense. However, even in cases where there is little to no
correlation between regions from the NeRF scene and style
image, our method is able to transfer local patterns on the
scene.

Finally, we provide two further examples of modifying
the pairing between content and style regions in Figure 17.
We demonstrate that our method can achieve diverse and
customizable stylization results via adjusting the pairing.
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[28] Ondřej Texler, David Futschik, Michal Kučera, Ondřej
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