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Abstract

With recent developments of convolutional neural net-
works, deep learning for 3D point clouds has shown sig-
nificant progress in various 3D scene understanding tasks,
e.g., object recognition, semantic segmentation. In a safety-
critical environment, it is however not well understood how
such deep learning models are vulnerable to adversarial ex-
amples. In this work, we explore adversarial attacks for
point cloud-based neural networks. We propose a unified
formulation for adversarial point cloud generation that can
generalise two different attack strategies. Our method gen-
erates adversarial examples by attacking the classification
ability of point cloud-based networks while considering the
perceptibility of the examples and ensuring the minimal
level of point manipulations. Experimental results show
that our method achieves the state-of-the-art performance
with higher than 89% and 90% of attack success rate on
synthetic and real-world data respectively, while manipu-
lating only about 4% of the total points.

1. Introduction
Deep learning has shown great potentials in solving a wide
spectrum of computer vision tasks. In life-crucial appli-
cations, one concern is that deep neural networks can be
vulnerable to adversarial examples, a special kind of inputs
that can fool the networks to make undesirable predictions.
Several adversarial attack techniques have been proposed
to generate such examples. In contrast, adversarial defense
methods have been developed to detect and neutralise ad-
versarial examples. Therefore, understanding how adver-
sarial attacks and defenses operate is of great importance to
make deep learning techniques more reliable and robust.

With the growing popularity of low-cost 3D sensors and
light-field cameras, the community has also started investi-
gating the vulnerability of neural networks on 3D data, es-
pecially 3D point clouds [39, 18, 19, 42, 35]. However,
existing works focus on common scenarios, such as gener-
ating adversarial point clouds by perturbing points in input
point clouds. While such approaches have a high attack suc-

Figure 1: Left: input point cloud (1,024 points) classified
correctly by PointNet [26] and 15 selected points (in green).
Right: adversarial point cloud misclassified by PointNet
and perturbed locations (in red).

cess rate, the perturbations are not imperceptible and can be
identified easily by outlier detection or noise removal algo-
rithms. In addition, existing adversarial attack methods do
not perform optimally since all points in a point cloud are
involved in the manipulation.

In this work, we study 3D adversarial attack in a more
extreme but practical setting: how to generate an adversar-
ial point cloud with minimum number of points perturbed
from an original point cloud while maintaining the percep-
tibility of the original point cloud (see Figure 1). To address
this problem, we propose a new formulation for adversarial
point cloud generation that can be adapted to different at-
tack strategies. The novelty of our work lies in both the
research problem and proposed solution. Specifically, min-
imal 3D point cloud attack is an unexplored problem. We
are also the first to propose a formulation that (i) considers
both the perceptibilty and optimality of adversarial samples,
and (ii) generalises both point perturbation and addition in a
unified framework. In summary, our contributions include:

• A new technique to generate minimal 3D adversarial
point clouds;

• A unified formulation that generalises two adversarial
point clouds generation strategies: point perturbation and
point addition;
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• A vulnerability analysis on the relation between the per-
turbed points found by our method and the concept of
critical points in PointNet [26]

• A benchmark of adversarial attacks on both synthetic and
real-world 3D point clouds, which shows our method
achieves consistent performance over both domains.

2. Related Work
3D Deep Learning. Recent availability of 3D
datasets [38, 5, 13, 2, 7, 4, 33] has led to signif-
icant advances in deep learning on 3D data. In
this domain, most existing works focus on design-
ing convolution operations that enable convolutional
neural networks to learn features directly from point
clouds [26, 27, 17, 40, 14, 34, 30, 15, 46]. Several attempts
have been made to create rotation invariant convolu-
tions [28, 45, 25, 43]. Such convolutions allow scene
understanding tasks, e.g., object recognition, semantic
segmentation, to be trained directly with various input
point clouds. Other improvements have also been found
in the literature. For instance, Liu et al. [20] proposed an
RNN-based model to extract the correlations of local areas.
Yan et al. [41] extended the pointwise MLP network by
adopting adaptive sampling to handle outilers and noise.

In this work, we adopt PointNet [26] as a target neural
network to investigate important aspects of our method due
to its popularity. However, we also verify our method with
different deep learning models including PointNet++ [27],
DGCNN [34], SpiderCNN [40], and PointASNL [41].

Adversarial Point Clouds. There exist studies on ad-
versarial attacks and defenses for point cloud classifica-
tion [39, 18, 19, 42, 47, 32, 12, 49, 16]. For instance, Xiang
et al. [39] proposed an algorithm for point perturbation and
addition based on the attack framework in [3] using Cham-
fer and Hausdorff distance. Liu et al. [18] extended the fast
gradient sign method in [11] for constructing 3D adversar-
ial examples using mesh and clipping norm. In general, the
basic ideas in these works follow previous adversarial at-
tack techniques in 2D domain, which focus on how a point
cloud should be perturbed to make an adversarial example.
Readers are referred to [44] for a comprehensive review on
adversarial attacks and defenses on images.

It is also possible to mix newly added points with per-
turbed points in a point cloud to make adversarial exam-
ples [19]. Yuxin et al. [35] considered the consistency
of local curvatures in a loss function to guide perturbed
points lean towards object surfaces. Tsai et al. [32] incor-
porated the K-Nearest Neighbor loss in [39] to constrain
adversarial samples to become physical objects. Zhao et
al. [47] showed the vulnerability of isometry transforma-
tion by making perturbations on isometry matrix. Hadmi

et al. [12] proposed the use of auto-encoders in perturba-
tion to improve the transferability of adversarial examples
across different deep neural networks. Lee et al. [16] added
perturbation noise into the latent space of auto-encoders to
maintain the shape of input point clouds. Zhou et al. [49]
employed GAN [10] in generating adversarial point clouds
with predefined target labels.

In addition to creating adversarial examples by perturb-
ing existing points or adding new points into point clouds,
one can fool classification techniques by removing points
from input data [48, 36, 42]. For instance, Zheng et al. [48]
eliminated important points on saliency map of an input ob-
ject. Matthew et al. [36] iteratively removed critical points
from an input point cloud until a target classification tech-
nique failed to classify the point cloud.

In contrast to adversarial attacks, countermeasures for
adversarial point clouds have been so far scarce. Typi-
cal defense approaches include outlier or salient point re-
moval [18] and noise removal [42, 50]. Recently, Dong et
al. [8] used relative position of each local part of a clean
point cloud to global object center as adversarial indicator.
Wu et al. [37] proposed a method to predict implicit func-
tions capturing clean shapes of point clouds.

Minimal Adversarial Attacks. In 2D domain, there are
techniques that focus on perturbing a minimum number
of pixels in adversarial attacks. For instance, Papernot et
al. [24] perturbed pixels on saliency maps. Carlini et al. [3]
extended this method and used `0-norm optimisation to
minimise the number of pixels to perturb. Recently, Modas
et al. [21] and Croce et al. [6] focused on how to perturb a
sparse set of pixels while still achieving good perceptibility.
Local search and evolutionary algorithms were also applied
to obtain sparse perturbations in [22, 31, 29].

In this paper, we also explore adversarial attacks that
only manipulate a minimal set of points. However, unlike
the above works, we propose a new formulation that is gen-
eral and can be adapted to various adversarial point cloud
generation strategies. In addition, we also consider the per-
ceptibility of adversarial examples in our formulation.

3. Proposed Method

Our problem of interest can be stated as follows. Let
P = {p1, ...,pN} be an input set of N points where
each point pi is represented by a vector of its coordinates
pi = [pi,x, pi,y, pi,z]

> ∈ R3. Let F denote a point-based
neural network, e.g., PointNet [26], and Fi(P ) denote the
probability that the point set P is classified into the i-th
class. Ideally, if i∗ is the true class label of the point cloud
P , then i∗ = argmaxi Fi(P ). Let P ′ be an adversarial ex-
ample generated from P . We aim to find P ′ that satisfies
the following conditions:



(i) The perceptibility of P is maintained, i.e., the gener-
ated point cloud P ′ should not much deform from P ;

(ii) A minimum number of points in P are manipulated;

(iii) argmaxi Fi(P ) 6= argmaxi′ Fi′(P
′), i.e., P ′ and P

are classified into different classes by the network F .

Note that generation of adversarial point clouds by com-
promising the attack success rate and perceptibility of ad-
versarial samples has been investigated in the literature,
e.g., [39]. However, our work differs from [39] in the fol-
lowing points. First, our focus is untargeted attack while
that is targeted attack in [39]. Second, the number of manip-
ulated points is not considered in [39], leading to extremely
high numbers of points are manipulated (as shown in our
experiments). Third, while critical points proposed in Point-
Net [26] are used to drive the solution in [39], we show that
our method could reach those critical points yet occupy a
small portion, proving the capability of our method of find-
ing compact yet vulnerable point sets.

In the following, we present a new formulation to gen-
erate P ′ using `0-norm optimisation and describe in details
how our formulation can be applied to point perturbation
and point addition.

3.1. Point Perturbation

3.1.1 Formulation

Given a point cloud P , we aim to find a minimal set of
points that can be shifted to generate an adversarial point
cloud P ′ to attack the network F . We express the selection
of points in P for perturbation by a binary indication vector
a = [a1, ..., aN ]

> ∈ {0, 1}N where ai is 1 if pi is selected,
and 0 otherwise. Suppose that E = {e1, ..., eN} is the set
of perturbations, in which ei = [ei,x, ei,y, ei,z]

> ∈ R3 is
the perturbation vector to be applied on pi to obtain p′i.
Applying perturbation set E on the point cloud P results in
an adversarial point cloud P ′ as

P ′ = {p′i = pi + aiei | pi ∈ P} . (1)

The process of generation of P ′ can be formulated as,

min
a,E

f(P,a, E) = min
a,E
{λ1‖a‖0 + λ2D(P, P ′)}

s.t. argmax
i

Fi(P ) 6= argmax
i′

Fi′(P
′)

(2)

where ‖a‖0 = #{i : ai 6= 0, i = 1, ..., N} is the `0-
norm of a (i.e., the number of non-zero elements in a) and
D(P, P ′) is some distance between P and P ′.

The optimisation problem defined in Eq. (2) covers all
the aforementioned conditions. In particular, the first term,
‖a‖0 in the objective function f(P,a, E) imposes the quan-
tity of selected points in the point selection process while

the second term, D(P, P ′) constrains the perceptibility of
the adversarial point cloud P ′ w.r.t. the original point cloud
P . As will be explained later in this section, D(P, P ′) can
be defined using different distance metrics. The constraint
argmaxi Fi(P ) 6= argmaxi′ Fi′(P

′) ensures the generated
point cloud P ′ can fool the network F , i.e., F would not
classify P and P ′ into the same class.

3.1.2 Perceptibility

There are several ways to realise the perceptibilityD(P, P ′)
in Eq. (2). If we assume the correspondence between each
point pi ∈ P and its perturbed point p′i ∈ P ′ defined in
Eq. (1) is maintained, then we can define D(P, P ′) using
the Euclidean distances between pi and p′i as,

DEuclidean(P, P
′) =

1

N

N∑
i=1

(ai‖ei‖2) . (3)

However, such correspondences are not always well de-
fined, e.g., when the number of points changes in the case
of point addition, making Euclidean distance not a valid
choice. We further propose to use Chamfer distance and
Hausdorff distance to measure perceptibility. Specifically,
we can define D(P, P ′) as

DChamfer(P, P
′) = max

{
1

|P |
∑
pi∈P

min
p′j∈P ′

‖pi − p′j‖2,

1

|P ′|
∑

p′j∈P ′
min
pi∈P

‖p′j − pi‖2
}
(4)

or

DHausdorff (P, P
′) = max

{
max
pi∈P

{
min
p′j∈P ′

‖pi − p′j‖2
}
,

max
p′j∈P ′

{
min
pi∈P

‖p′j − pi‖2
}}

.

(5)
As shown in Eq. (4)-(5), both Chamfer distance and

Hausdorff distance do not require the same of number of
points in the point clouds P and P ′. Hence, they can be
adapted easily to different point generation methods, e.g.,
point addition as presented in Section B.

3.1.3 Relaxed Formulation

To solve the constrained optimisation problem in Eq. (2),
we convert it into an unconstrained optimisation problem
using a Lagrange multiplier-like form as:

min
a,E

f(P,a, E)

=min
a,E
{λ1‖a‖0 + λ2D(P, P ′) + h(P ′)}

(6)



where, like [39], we define,

h(P ′) = max

{
0, Fi∗(P

′)−max
i∗ 6=i′

Fi′(P
′)

}
(7)

where i∗ is the true class label of the point set P .
Since the problem in Eq. (6) is NP-hard in general [23],

we further relax it as `1-norm optimisation [1, 9] as:

min
â,E

f(P, â, E)

=min
â,E
{λ1‖â‖1 + λ2D(P, P ′) + h(P ′)}

(8)

where â = [â1, ..., âN ]
> ∈ [0, 1]N , and ‖â‖1 =

∑N
i=1 âi is

the `1-norm of â.
To solve Eq. (8), we apply the iterative gradient method

in [11, 18]. Since the final aim is to obtain a binary vector
for a, we randomly initialise â with near-binary values, i.e.,
âi is randomly set to either 0.0001 or 0.9999. Near-binary
values are used to give âi chances to turn into 1 (or 0) if
pi is selected (or otherwise). Finally, we achieve the final
solution for a as,

ai =

{
0, if âi = 0

1, otherwise .
(9)

Note that we aim to find solutions for both a and e.
Given a obtained from Eq. (9), we only consider pertur-
bations ei if ai = 1.

The optimisation problem defined in Eq. (8) formulates
our proposed adversarial generation method. This formu-
lation is general and can be adapted conveniently to other
adversarial generation strategies, e.g., point addition.

3.2. Point Addition

In addition to point perturbation, we can generate an adver-
sarial example P ′ by extending P with a minimum number
of additional points. We show that our proposed formu-
lation in Eq. (8) can also be applied in this task. Specifi-
cally, suppose that there are no more than K points added
to the original point cloud P . We can construct a new
point set P̃ including all the points in P and K new points.
These K new points can be generated by randomly choos-
ing K points in P and adding them to P̃ . We note that this
way of construction of P̃ does not change the perceptib-
lity of P as D(P, P̃ ) = 0 for either the Chamfer distance
or Hausdorff distance used to define D(P, P̃ ). In addition,
both P and P̃ are treated equally by the network F , i.e.,
∀i, Fi(P ) = Fi(P̃ ), as the geometric structure of the point
clouds remains unchanged.

Similarly, we also construct a vector ã =

[ã1, ..., ãN+K ]
> ∈ [0, 1]N+K and a perturbation set

Ẽ = {ẽ1, ..., ẽN+K} by extending a and E with K
new elements and solve the optimisation problem in

Eq. (8) with a new objective function f(P̃ , ã, Ẽ). The
vector ã is initialised as follows, ãi is set to 0 for
i ∈ {1, .., N}, and to a random value in {0.0001, 0.9999}
for i ∈ {N + 1, .., N + K}. Furthermore, during the
optimisation process, we fix ãi = 0, ∀i = 1, .., N , i.e.,
original points in P will not be changed. Finally, the
adversarial point cloud P ′ is obtained by including points
p̃i ∈ P̃ such that ãi = 1.

4. Experiments and Results
4.1. Experiment Setup

Datasets. We experimented our method on Model-
Net40 [38] and ScanObjectNN [33] dataset. ModelNet40 is
a benchmark dataset for classification of 3D CAD models.
It consists of 9,843 models for training and 2,468 models
for testing. We followed the experimental setup in [26] to
sample the surfaces of the models in ModelNet40 uniformly
and normalised points into a unit cube. ScanObjectNN is an
object dataset from real-world indoor scans including prac-
tical challenges such as view occlusions and object partial-
ity. It has 15,000 objects organised in five challenging vari-
ants, e.g., objects with background, translated objects, ro-
tated objects, and scaled objects. In our experiments, we
used ‘OBJ BG’, the most challenging variant including ob-
jects with background. We followed Uy et al. [33] to nor-
malise the point clouds containing background using mean
and furthest point distance.

Implementation Details. We adopted PointNet [26] as a
test base network to conduct important experiments. To
adapt with point clouds of varying sizes, we modified the
max-pooling operator and batch norm accordingly. We used
Adam optimiser with learning rate of 0.01. For our ad-
versarial attack algorithm, we performed exhaustive search
for the parameters in Eq. (8) and empirically set them as
λ1 = 0.15 and λ2 = 50. Iterative gradient method in [18]
with 250 iterations was employed to solve Eq. (8).

4.2. Evaluation and Comparison

We evaluated our method based on attack success rate, per-
ceptibility of adversarial examples, and average number of
manipulated points. The perceptibility of adversarial exam-
ples was measured using Chamfer and Hausdorff distance.
We report the performance of our method on ModelNet40
and ScanObjectNN dataset in Table 1 & 2 respectively.

We also compared our method with existing methods.
In particular, we tested the method by Xiang et al. [39],
which also generated adversarial examples by point pertur-
bation and addition. Since this method aimed for targeted
attack, for fair comparison, we altered it to untargeted at-
tack. We re-implemented the method by Liu et al. [19]
which made attacks in two manners: adversarial sink (i.e.,



(a) ModelNet40 (b) ScanObjectNN

Figure 2: Performance trend of our adversarial attack and existing methods.

(a) ModelNet40

(b) ScanObjectNN

Figure 3: Adversarial examples generated by our method and existing methods. Red points represent perturbed points. On
ScanObjectNN, our method is able to create examples that are indistinguishable from realistic noise.

pulling points towards a sink point) and adversarial stick
(i.e., resampling points on added sticks). In addition, we
evaluated the method by Wicker and Kwiatkowska [36], and
by Zheng et al. [48]. Since both [36] and [48] created ad-

versarial examples by removing points, for fair comparison,
we applied their point selection strategies but then replaced
the point removal by point perturbation and point addition.
In detail, the authors in [36] selected points either randomly



or from a critical point set determined by PointNet [26].
In [48], selected points were sampled from saliency maps
of input point clouds in three different ways: (i) critical fre-
quency (i.e., points frequently chosen by the max-pooling
operator in PointNet [26]), (ii) low-score (i.e., points hav-
ing small loss gradient for a target network), and (iii) high-
score (i.e., point having large loss gradient). We will further
discuss the “critical points” in Section 4.3.

As shown in Table 1 & 2, compared with other meth-
ods, our method achieves the highest success rate yet low-
est number of processing points for both point perturbation
and point addition, and on both ModelNet40 and ScanOb-
jectNN. Specifically, our method uses only 4% of the total
input points (1,024) to reach > 89% and > 90% of suc-
cess rate on ModelNet40 and ScanObjectNN respectively.
We notice that our method performs consistently (in terms
of both the attack rate and the number of points) on both
synthetic and real-world datasets. The adversarial sink and
adversarial stick in [19] respectively take the second place
w.r.t. the success rate in point perturbation on ModelNet40
and ScanObjectNN. However, both of them require great
numbers of points, especially the adversarial sink. The
method in [39] is ranked third for its success rate but also
incurs heavy point manipulations. In addition, we observe
this method often generated obvious outliers, which could
be detected easily by outlier removal methods. The saliency
map-based attack method [48] and the one in [36] with ran-
dom point selection require roughly 10× larger point sets
than our method while achieving much lower success rates.
The method in [36] with critical point selection shows rel-
atively small number of points (though still more than our
method), but the success rate is well below par. To further
explore the performance trend, we plot the success rate over
different numbers of points selected for point perturbation
in Figure 2. As shown in the graphs, our method signifi-
cantly outperforms existing ones with a small set of points.

Experimental results also show that our method gener-
ates high-imperceptibility adversarial samples, evident by
their Chamfer and Hausdorff distances to input point clouds
(see Table 1 & 2). We empirically observe that Hausdorff
distance results in less outlier points than Chamfer distance.
Figure 3 qualitatively compares adversarial samples gener-
ated by our method and others. As shown, our method less
likely produces outliers. This is due to the use of object
perceptibility and minimal point set in our formula. We
observe that, adversarial examples created from real-world
data (see Figure 3(b)) are neither noticeable in perception
nor distinguishable from common noise.

4.3. Vulnerability Analysis

Qi et al. [26] proposed a notion called “critical points” that
characterise the shape of a point cloud. These points can be
identified from the max pooling layer in PointNet [26]. It

Figure 4: Our selected points vs critical points.

Figure 5: Adversarial example of a sink. Critical points are
highlighted in green. Our selected points are marked in red
(if they are identical to critical points) and in blue (if they
are found within the 5 nearest points of a critical point).

is also indicated in [26] that, critical points play role as an
indicator for object recognition. Therefore, modification of
critical points may lead to wrong classification results.

We found that our adversarial generation algorithm could
somehow reach those critical points. To confirm this, we
measured the coincidence of our selected points and Point-
Net’s critical points. Specifically, we counted the duplicates
in the two point sets, and the number of our selected points
found within the 5 nearest points of a critical point. Recall
that our algorithm randomly initialises the selected points
(i.e., the vector â in Eq. (8)). Figure 4 provides the numeri-
cal data of this experiment. It is shown that about 50% of the
selected points are identical to the critical points and 80%
of the selected points are close to the critical points. Fig-
ure 5 visualises our selected points and critical points. As
shown, our selected points are close to critical points yet oc-
cupy a small portion, proving the capability of our method
of finding compact yet vulnerable point sets.

We also experimented our method with two additional
initialisation schemes for the selected points: critical points-
based initialisation and all point-based initialisation (i.e.,
taking all points in a point cloud to initialise the vector
â). Table 3 reports the performance of various initialisation



Success Rate Chamfer Distance Hausdorff Distance # Points

Xiang et al. [39] 85.9 1.77× 10−4 2.38× 10−2 967
Adversarial sink [19] 88.3 7.65× 10−3 1.92× 10−1 1024
Adversarial stick [19] 83.7 4.93× 10−3 1.49× 10−1 210
Random selection [36] 55.56 7.47× 10−4 2.49× 10−3 413
Critical selection [36] 18.99 1.15× 10−4 9.39× 10−3 50
Saliency map/critical frequency [48] 63.15 5.72× 10−4 2.50× 10−3 303
Saliency map/low-score [48] 55.97 6.47× 10−4 2.50× 10−3 358
Saliency map/high-score [48] 58.39 7.52× 10−4 2.48× 10−3 424

Ours 89.38 1.55× 10−4 1.88× 10−2 36

(a) Point Perturbation

Success Rate Chamfer Distance Hausdorff Distance # Points

Xiang et al. [39] 73.59 7.98× 10−3 5.46× 10−2 200
Random selection [36] 43.90 2.16× 10−4 2.49× 10−3 121
Critical selection [36] 47.64 2.05× 10−4 2.50× 10−3 118
Saliency map/critical frequency [48] 45.13 2.13× 10−4 2.49× 10−3 118
Saliency map/low-score [48] 60.96 1.64× 10−4 2.50× 10−3 89
Saliency map/high-score [48] 41.06 2.27× 10−4 2.49× 10−3 128

Ours 89.01 1.53× 10−4 1.98× 10−2 38
(b) Point Addition

Table 1: Attack performance to PointNet on ModelNet40.

Success Rate Chamfer Distance Hausdorff Distance # Points

Xiang et al. [39] 81.32 1.13× 10−4 1.74× 10−2 959
Adversarial sink [19] 78.7 1.37× 10−3 9.81× 10−2 1023
Adversarial stick [19] 87.5 5.18× 10−3 1.67× 10−1 210
Random selection [36] 63.72 6.10× 10−4 2.50× 10−3 340
Critical selection [36] 47.99 1.99× 10−4 2.69× 10−2 70
Saliency map/critical frequency [48] 66.9 4.69× 10−4 2.50× 10−3 265
Saliency map/low-srop [48] 63.81 5.49× 10−4 2.50× 10−3 306
Saliency map/high-srop [48] 66.82 6.16× 10−4 2.47× 10−3 350

Ours 91.72 1.12× 10−4 1.15× 10−2 34
(a) Point Perturbation

Success Rate Chamfer Distance Hausdorff Distance # Points

Xiang et al [39] 69.26 6.07× 10−3 4.71× 10−2 200
Random selection [36] 60.05 1.77× 10−4 2.50× 10−3 97
Critical selection [36] 33.33 1.31× 10−4 1.84× 10−2 50
Saliency map/critical frequency [48] 59.63 1.79× 10−4 2.49× 10−3 97
Saliency map/low-score [48] 60.96 1.64× 10−4 2.50× 10−3 90
Saliency map/high-score [48] 57.87 1.87× 10−4 2.50× 10−3 103

Ours 90.44 1.08× 10−4 1.10× 10−2 38
(b) Point Addition

Table 2: Attack performance to PointNet on ScanObjectNN.

schemes. As shown in the results, the critical points-based
initialisation results in the least number of points but in-

curs the lowest success rate. Moreover, this scheme deterio-
rates the perceptibility of adversarial examples (as shown in



Success Rate Chamfer Distance Hausdorff Distance # Points

Critical points 88.04 9.53× 10−4 8.28× 10−3 29
Using all points 91.12 1.15× 10−4 8.71× 10−3 60
Ours (random points) 90.16 1.09× 10−4 9.88× 10−3 37

Table 3: Attack performance with different initialisation strategies on ScanObjectNN.

Success Rate Chamfer Distance Hausdorff Distance # Points

Pointnet [26] 89.38 1.55× 10−4 1.88× 10−2 36
Pointnet++ [27] 88.76 5.10× 10−4 3.55× 10−2 59
DGCNN [34] 62.16 7.78× 10−4 3.54× 10−2 107
SpiderCNN [40] 89.92 4.71× 10−4 4.16× 10−2 57
PointASNL [41] 72.16 2.21× 10−4 2.03× 10−2 45

(a) Modelnet40

Success Rate Chamfer Distance Hausdorff Distance # Points

Pointnet [26] 91.72 1.12× 10−4 1.15× 10−2 34
Pointnet++ [27] 94.05 2.81× 10−4 2.06× 10−2 50
DGCNN [34] 66.46 6.80× 10−4 2.94× 10−2 103
SpiderCNN [40] 86.27 3.23× 10−4 2.18× 10−2 57
PointASNL [41] 55.88 2.07× 10−4 1.30× 10−2 47

(b) ScanObjectNN

Table 4: Attack performance to various network architectures on Modelnet40 and ScanObjectNN.

the Chamfer distances). Utilising all points for initialisation
shows the opposite, i.e., more points are selected but high
success rate is achieved. Our initialisation scheme compro-
mises all the criteria, i.e., adversarial examples are created
with low number of points, high attack rate, and acceptable
perceptibility. In addition, random initialisation can be ap-
plied to other networks which do not support critical points.

4.4. Attack Performance to other Architectures

We also applied our adversarial example generation algo-
rithm to attack existing point cloud architectures other than
PointNet. Those architectures include PointNet++ [27],
DGCNN [34], SpiderCNN [40], and PointASNL [41].

We report the attack performance of our method to these
network architectures in Table 4. Amongst all the models,
DGCNN [34] is shown to be the most robust one, which
requires the greatest number of points to be fooled while
maintaining low attack success rate. PointNet [26], on the
other hand, appears to be the most fragile model, which can
be fooled easily with less points to achieve high success
rate. The remaining models can be attacked by slightly dif-
ferent numbers of points. Table 4 also shows that the attack
performance of our method to a network architecture is con-
sistent across both synthetic and real-world datasets.

5. Conclusion
In this paper, we propose a unified formulation for mini-
mal adversarial 3D point clouds generation that can gener-
alise two attack strategies including point perturbation and
point addition. We experimented our method on benchmark
datasets, and showed that existing point cloud neural net-
works, e.g., PointNet, are vulnerable to attacks that perturb
only 4% of the points in a point cloud to reach more than
89% and 90% of success rate on synthetic and real-world
data respectively. These results pose a challenge in devel-
oping countermeasures to defend against such attacks.

With increasingly more 3D data used in consumer de-
vices, we envision that adversarial attacks and defenses for
point clouds will become diverse, making this topic wor-
thy for future research. In this paper, we investigate how to
perturb the 3D coordinates of a point cloud. For real-world
data acquired from depth sensors, colour information is use-
ful and could serve as an additional channel for adversarial
attacks. It would be useful to study how such information
influences the vulnerability of 3D deep learning. Besides, it
is important to study how to create adversarial point clouds
in physical world. The results of our work show that such a
task could be practical as only a few percentages of an input
point cloud need to be modified.
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Supplementary Materials

Abstract

In this supplementary material, we report additional quan-
titative and qualitative results along with in-depth analy-
ses and discussions on different aspects of our work. In
particular, we conduct ablation studies to verify the con-
tributions of the main components in our formulation, the
effect of distance metrics, and initialisation of point selec-
tion in Section A. We provide visual results of point addi-
tion by our method and existing methods on ModelNet40
dataset in Section B. Detailed performance of our adversar-
ial attack algorithm on real-world data is presented in Sec-
tion C. We show how adversarial point clouds generated by
our method and existing ones can be defended in Section D.
We investigate the transferability of our adversarial exam-
ples across different point cloud networks in Section E. We
compare our point perturbation and point addition attack
methods with existing point removal methods in Section F.
Finally, we present detailed derivations of the iterative gra-
dient descent method used in our paper in Section G.

A. Ablation Studies

A.1. Sparsity vs Perceptibility

We performed an in-depth analysis of our formulation by
studying its constituting components. In particular, we in-
vestigated the role of the sparsity term, i.e., ‖â‖1, and the
perceptibility term, i.e., D(P, P ′), in Eq. (8) in our paper.
In this experiment, we set λ1 and λ2 to 0, respectively, and
measured the corresponding performances of attacks.

We report the performance of our method in terms of the
success rate (of attack), the Chamfer distances and Haus-
dorff distances of generated samples to original samples,
and the average numbers of points used in point perturba-
tion and point addition in Table 5.

As shown in our experimental results, when the sparsity
is not considered, i.e., λ1 = 0, the adversarial generation
method achieves higher attack rates but requires consider-
ably high numbers of points. In contrast, when the percepti-
bility is not used, i.e., λ2 = 0, relatively lower success rates
are incurred (compared with λ1 = 0), much lesser numbers
of points are used but adversarial examples much deform
from original point clouds (as shown in the Hausdorff dis-
tances). This phenomenon can be explained by the follow-
ing imaginary experiment: take a few (even one) points on
an input point cloud and move those points much away from
the original point cloud. It is obvious to see that this pertur-
bation will significantly change the shape of the point cloud
and thus will affect any point cloud classification methods.
However, such extreme samples can also be detected easily

by using outlier or noise removal methods, e.g., [18].
In the current implementation of our adversarial attack,

we set λ1 = 0.15 and λ2 = 50. We notice on the difference
in the values of λ1 and λ2, which is caused by the differ-
ence in the range of values of their associated terms. In
particular, ‖â‖1 captures the number of manipulated points,
which varies in [0, 1024] while D(P, P ′) ∈ [0, 1] since
point clouds are normalised into [0, 1] before being pro-
cessed. We empirically observed minor changes in the at-
tack performance of our method for λ1 ∈ [0.1, 0, 2] and
λ2 ∈ [30, 50] while the current settings gave the best bal-
ance for many contradictory criteria including minimal at-
tack, high success rate, and reasonable perceptibility. We
show several results illustrating the effects of the sparsity
and perceptibility of adversarial examples in Figure 6.

A.2. Chamfer Distance vs Hausdorff Distance

We experimented our method with Chamfer and Hausdorff
distance, i.e., replacing D(P, P ′) by DChamfer(P, P

′) and
DHausdorff (P, P

′), respectively in Eq. (4) and Eq. (5) in
our paper. Table 6 shows attack results of these two dis-
tance metrics in point perturbation and point addition attack.
Note that the two columns labelled as “Chamfer Distance”
and “Hausdorff Distance” in Table 6 report the Chamfer and
Hausdorff distances from generated adversarial examples to
original point clouds. As shown in the results, there is lit-
tle difference in the numbers of manipulated points between
Chamfer and Hausdorff distance in both point perturbation
and point addition attack. On one hand, Chamfer distance
shows higher success rate. On the other hand, Hausdorff
distance better preserves the perceptibility of point clouds
during point manipulation.

We visually show adversarial examples generated by us-
ing Chamfer distance and Hausdorff distance in Figure 7.
We qualitatively observed that attacks using Chamfer dis-
tance often place a few points far away from original point
clouds, making high success rate but low perceptibility. In
addition, we empirically found that adversarial examples,
whose Hausdorff distance to their original point clouds is
over 0.01, often include obvious outliers and thus are de-
tectable easily. However, a comprehensive user-study on
human perception of adversarial examples would better re-
flect the perceptibility of these distance metrics, and thus is
worthwhile for future research.

A.3. Initialisation of Point Selection

Similarly to point perturbation attacks presented in our pa-
per, we experimented point addition attacks with different
initialisation schemes for point selection including: crit-
ical points-based initialisation (i.e., using critical points
from [26] to initialise added points), all points-based initial-
isation (i.e., considering all points in a point cloud as added
points), and random points-based initialisation.



Success Rate Chamfer Distance Hausdorff Distance # Points

Perturbation λ1=0 99.67 2.06× 10−3 4.58× 10−2 536
Perturbation λ2=0 98.53 9.03× 10−4 3.61× 10−1 6
Addition λ1=0 98.62 8.46× 10−4 4.75× 10−2 986
Addition λ2=0 99.03 1.19× 10−3 4.22× 10−1 6

(a) ModelNet40

Success Rate Chamfer Distance Hausdorff Distance # Points

Perturbation λ1=0 99.29 1.72× 10−3 3.55× 10−2 542
Perturbation λ2=0 97.16 6.59× 10−4 3.22× 10−1 7
Addition λ1=0 98.81 6.73× 10−4 3.44× 10−2 983
Addition λ2=0 98.81 7.32× 10−4 3.45× 10−1 6

(b) ScanObjectNN

Table 5: Comparison of point sparsity and object perceptibility in generating adversarial examples in point perturbation and
point addition on both synthetic and real-world data.

Success Rate Chamfer Distance Hausdorff Distance # Points

Chamfer 98.35 2.94× 10−4 9.03× 10−2 42
Hausdorff 89.38 1.55× 10−4 1.88× 10−2 36

(a) Perturbation attack on ModelNet40

Success Rate Chamfer Distance Hausdorff Distance # Points

Chamfer 97.71 3.36× 10−4 1.09× 10−1 34
Hausdorff 89.01 1.53× 10−4 1.98× 10−2 38

(b) Addition attack on ModelNet40

Success Rate Chamfer Distance Hausdorff Distance # Points

Chamfer 96.69 1.89× 10−4 6.51× 10−2 42
Hausdorff 91.72 1.12× 10−4 1.15× 10−2 34

(c) Perturbation attack on ScanObjectNN

Success Rate Chamfer Distance Hausdorff Distance # Points

Chamfer 97.87 1.99× 10−4 7.27× 10−2 37
Hausdorff 90.44 1.08× 10−4 1.10× 10−2 38

(d) Addition attack on ScanObjectNN

Table 6: Attack performance of distance method on ModelNet40 and ScanObjectNN.

We report the performance of these initialisation
schemes in Table 7. Our results show that, like point per-
turbation, compared with critical points-based initialisation
and all points-based initialisation, random points-based ini-
tialisation balance the success rate and number of points
while ensuring the perceptability of adversarial examples.

B. Visual Results of Point Addition

In our paper, we present visual results of our proposed point
perturbation attack method and existing methods on Mod-

elNet40 dataset. In this section, we qualitatively compare
adversarial point clouds generated by our point addition at-
tack algorithm and existing ones on ModelNet40 dataset.
Figure 8 show several results of adversarial point clouds us-
ing point addition.

C. Attack Performance on Real-World Data

We also evaluated our method on the entire real-world
dataset, ScanObjectNN. Recall that ScanObjectNN has five
variants corresponding to five challenges. Specifically,



Figure 6: Adversarial examples generated using different settings.

Figure 7: Chamfer Distance vs Hausdorff Distance.

“OBJ BG” includes objects with background, “PB T25” in-
cludes objects translated by 25%, post-fixes “R” and “S”
denote rotated and scaled objects, respectively. Readers are
referred to [33] for more details of ScanObjectNN dataset.

We report the attack performance of our method to Point-
Net on the entire ScanObjectNN dataset in Table 8. As
shown in results, our method maintains a success rate of
more than 90% by using only 4% of total points. Our
method also performs consistently across all the variants
of ScanObjectNN. Furthermore, we observe that, amongst
all the variants, OBJ BG appears to be the most challeng-
ing one (i.e., low success rate and high level of deforma-
tion, as shown in Hausdorff distances). This observation is
also consistent with conclusion from [33], indicating that
OBJ BG is the most difficult variant for object recognition.

We show several adversarial results of our method on the
OBJ BG variant and entire ScannObjectNN dataset in Fig-
ure 9 and Figure 10 respectively. In general, compared with
adversarial samples generated by existing attack methods,

our adversarial samples look more natural; our perturbed
and added points visually look like common noise and thus
are hard to be noticed. This suggests the necessity to val-
idate attack techniques in extreme situations, e.g., attacks
with minimal manipulation.

D. Defense
We experimented adversarial defense techniques to our ad-
versarial point clouds. In this experiment, we implemented
two defense algorithms in [18]: outlier removal and salient
point removal, and DUP-NET in [50]. The outlier removal
technique first estimates statistical outliers from an input
point set and then removes points that have large standard
deviations. The salient point removal operates by first es-
timating point saliency and then removing points in the or-
der from high to low saliency. DUP-NET makes use of a
similar strategy with removal outlier. However, it applies
upsampling after removal outlier.

We show defense results in Table 9. In general, it is



Success Rate Chamfer Distance Hausdorff Distance # Points

Critical points 90.07 1.06× 10−4 1.03× 10−2 30
Using all points 92.67 1.22× 10−4 1.16× 10−2 65
Ours (random points) 90.44 1.08× 10−4 1.10× 10−2 38

Table 7: Point addition attack performance with different point initialisation strategies on ScanObjectNN.

Variant Success Rate Chamfer Distance Hausdorff Distance # Points

OBJ BG 91.72 1.12× 10−4 1.15× 10−2 34
PB T25 94.04 9.74× 10−4 1.12× 10−2 33
PB T25 R 91.09 9.53× 10−5 1.02× 10−2 31
PB T50 R 90.58 8.59× 10−5 9.61× 10−3 30
PB T50 RS 91.92 7.68× 10−5 8.77× 10−3 27

(a) Point Perturbation

Variant Success Rate Chamfer Distance Hausdorff Distance # Points

OBJ BG 90.44 1.08× 10−4 1.10× 10−2 38
PB T25 93.62 1.13× 10−4 1.26× 10−2 36
PB T25 R 92.13 9.06× 10−5 9.76× 10−3 34
PB T50 R 92.29 8.18× 10−5 9.24× 10−3 32
PB T50 RS 92.43 7.51× 10−5 8.73× 10−3 30

(b) Point Addition

Table 8: Attack performance to PointNet on entire ScanObjectNN.

Figure 8: Adversarial examples of point addition attack on ModelNet40. Added points are highlighted in red.

moderately easy to defend adversarial point clouds using
the above methods, with a success rate up to 94% for ad-
versarial examples in ModelNet40. Despite that, we found
defense on real-world data is less effective, e.g., the suc-
cess rate decreases on the hardest variant of ScanObjectNN.
In addition, the defenses are also not effective to struc-
tured manipulation such as adding particular shapes like

stick/sink in [19].

We further experimented the defense algorithms in [18]
to PointNet on all variants of ScanObjectNN dataset (see
Table 10). Experimental results show that the salient point
removal method works pretty well in cases of severe object
deformations, e.g., the variants PB 50 R and PB 50 RS.
This is because points added by the point addition attack



Figure 9: Adversarial examples of point addition attack on OBJ BG. Added points are highlighted in red.

Figure 10: Adversarial examples of point perturbation attack on ScanObjectNN. Perturbed points are highlighted in red.

could be close to salient points and thus noticed by the
salient point removal method. It would also be useful to
study how to make adversarial examples with minimal at-
tacks on salient points.

E. Transferability
In this experiment, we investigated the transferability of ad-
versarial examples across different point cloud networks.
Specifically, we fed adversarial point clouds generated with
PointNet [26] as the target network to PointNet++ [27] for

attacks. In the opposite way, we transferred adversarial ex-
amples generated using PointNet++ to PointNet.

We report the success rates of cross-network adversar-
ial example transfers for both point perturbation and point
addition on ModelNet40 and OBJ BG of ScanObjectNN in
Table 11. We found that both point perturbation and point
addition attack are challenging to cross-network transfers.
For instance, the attack success rates in both ways: Point-
Net to PointNet++ and PointNet++ to PointNet, are about
20% on both ModelNet40 and OBJ BG. This observation



Attack method Outlier removal [18] Salient point removal [18] DUP-Net [50]

Pe
rt

ur
ba

tio
n

[39] Xiang et al 85.32 80.77 78.92
[19] stick 23.00 15.40 39.81
[19] sink 18.60 12.30 36.85
[36] random 84.58 78.41 69.82
[36] critical 72.71 64.49 53.25
[48] critical 88.65 88.00 73.08
[48] low-score 88.66 85.86 71.7
[48] high-score 77.16 72.06 64.17
Ours 95.55 95.4 82.21

A
dd

iti
on

[39] Xiang et al 93.21 96.05 87.31
[36] random 77.67 87.25 68.87
[36] critical 80.52 87.95 70.31
[48] critical 80.10 88.83 69.5
[48] low-score 82.95 87.48 68.76
[48] high-score 70.65 84.52 66.74
Ours 94.21 96.31 82.28

(a) ModelNet40

Attack method Outlier removal [18] Salient point removal [18] DUP-Net [50]

Pe
rt

ur
ba

tio
n

[39] Xiang et al 86.29 81.14 80.48
[19] stick 26.50 13.70 49.72
[19] sink 50.40 25.80 31.83
[36] random 86.59 86.21 74.61
[36] critical 74.47 68.79 65.95
[48] critical 89.75 91.52 78.44
[48] low-score 88.68 92.83 75.84
[48] high-score 84.81 80.74 76.66
Ours 94.32 96.64 83.64

A
dd

iti
on

[39] Xiang et al 92.28 89.82 84.79
[36] random 82.17 91.47 75.39
[36] critical 87.24 90.53 77.36
[48] critical 84.50 92.64 76.74
[48] low-score 87.55 92.08 75.09
[48] high-score 82.33 88.35 76.30
Ours 93.12 96.56 83.54

(b) OBJ BG

Table 9: Attack to defense of different attack methods.

is also consistent to that by Xiang et al. [39].
An interesting observation from experimental results is

that real-world adversarial examples in ScanObjectNN are
easier to transfer than synthetic examples in ModelNet40,
which makes real-world data more vulnerable to black box
attacks. This also suggests the need to further enhance the
robustness of 3D point cloud networks.

F. Comparison with Point Removal
In our paper, we applied the point selection strategies in [36]
and [48] but replaced the point removal procedure in those
methods by point perturbation and point addition operation

for fair comparison with other adversarial attacks where
only point perturbation and point addition are used.

In this section, we provide the performance of [36]
and [48] with point removal1 and compare these methods
with our point perturbation and point addition attacks. We
report the results of this experiment in Table 12.

G. Detailed Derivations

Recall that our adversarial examples are generated by min-
imising the objective function f(P, â, E) defined in Eq. (8)

1We re-implemented these methods.



Success rate Outlier removal [18] Salient point removal [18] DUP-Net [50]

ModelNet40 89.38 95.55 95.40 82.21
OBJ BG 91.72 94.32 96.64 83.64
PB T25 94.04 91.83 93.72 81.73

PB T25 R 91.09 91.00 93.81 81.98
PB T50 R 90.58 90.35 93.49 79.47

PB T50 RS 91.92 89.13 93.35 81.27
(a) Perturbation

Success rate Outlier removal [18] Salient point removal [18] DUP-Net [50]

ModelNet40 89.01 94.21 96.31 82.28
OBJ BG 90.44 93.12 96.56 83.54
PB T25 93.62 90.34 94.24 82.59

PB T25 R 92.13 89.31 94.34 81.64
PB T50 R 92.29 88.68 93.50 80.0

PB T50 RS 92.43 87.79 93.50 81.52
(b) Addition

Table 10: Attack to defense of our method to PointNet.

Point Perturbation Point Addition

ModelNet40 7.68 6.49
OBJ BG 25.75 25.11

(a) PointNet to PointNet++

Point Perturbation Point Addition

ModelNet40 25.66 22.34
OBJ BG 19.55 20.94

(b) PointNet++ to PointNet

Table 11: Cross-network adversarial example transfer.
While the success rates are low, the results suggest that real-
world data is more vulnerable to black box attacks.

in the paper. To solve this problem, we applied the itera-
tive gradient descent methods in [11], which incrementally
updates âi and ei as follows:

â
(n+1)
i = â

(n)
i − γ ∂f

∂âi

e
(n+1)
i = e

(n)
i − γ ∂f

∂ei

where (â
(n)
i , e

(n)
i ) is the solution at the n-th step and γ is

set to 0.01 in our implementation.

We derive the partial derivatives ∂f
∂âi

and ∂f
∂ei

as follows:

∂f

∂âi
= λ1 + λ2

∂D(P, P ′)

∂âi
+
∂h(P ′)

∂âi
∂f

∂ei
= λ2

∂D(P, P ′)

∂ei
+
∂h(P ′)

∂ei

It can be seen that the calculations of ∂f
∂âi

and ∂f
∂ei

require
∂D(P,P ′)

∂âi
, ∂D(P,P ′)

∂ei
, ∂h(P ′)

∂âi
, and ∂h(P ′)

∂ei
.

First, we present the calculations of ∂D(P,P ′)
∂âi

and
∂D(P,P ′)

∂ei
. As shown in our paper, we propose two ways

to realise D(P, P ′): using Chamfer distance and Haus-
dorff distance. For convenience in calculations, we rewrite
D(P, P ′) as follows,

D(P, P ′) = max

{
D(P → P ′), D(P ′ → P )

}
where, depending on the distance metric used, D(P → P ′)
and D(P ′ → P ) can be defined as,

DChamfer(P → P ′) =
1

|P |
∑
pi∈P

min
p′j∈P ′

‖pi − p′j‖2

DChamfer(P
′ → P ) =

1

|P ′|
∑

p′j∈P ′
min
pi∈P

‖p′j − pi‖2

DHausdorff (P → P ′) = max
pi∈P

min
p′j∈P ′

‖pi − p′j‖2

DHausdorff (P
′ → P ) = max

p′j∈P
min
pi∈P

‖p′j − pi‖2



Method Success Rate Chamfer Distance Hausdorff Distance # Points
[36] random 7.05 9.89× 10−4 3.99× 10−2 85
[36] critical 95.05 152× 10−4 8.82× 10−2 107
[48] critical 59.82 113× 10−4 18.70× 10−2 400
[48] low-score 4.16 62.90× 10−4 11.40× 10−2 400
[48] high-score 82.11 91.30× 10−4 15.70× 10−2 400

Ours (point perturbation) 89.38 1.55× 10−4 1.88× 10−2 36
Ours (point addition) 89.01 1.53× 10−4 1.98× 10−2 38

(a) ModelNet40

Method Success Rate Chamfer Distance Hausdorff Distance # Points
[36] random 4.96 9.05× 10−4 2.02× 10−2 23
[36] critical 71.87 119× 10−4 11.40× 10−2 320
[48] critical 43.50 118× 10−4 21× 10−2 400
[48] low-score 2.60 74× 10−4 13.90× 10−2 400
[48] high-score 77.78 101× 10−4 18.40× 10−2 400

Ours (point perturbation) 91.72 1.12× 10−4 1.15× 10−2 34
Ours (point addition) 90.44 1.08× 10−4 1.10× 10−2 38

(b) OBJ BG

Table 12: Comparison of our adversarial attack methods with existing point removal attack methods.

Next, we obtain,

∂D(P, P ′)

∂âi
=

{
∂D(P→P ′)

∂âi
if D(P → P ′) ≥ D(P ′ → P )

∂D(P ′→P )
∂âi

otherwise

∂D(P, P ′)

∂ei
=

{
∂D(P→P ′)

∂ei
if D(P → P ′) ≥ D(P ′ → P )

∂D(P ′→P )
∂ei

otherwise

For Chamfer distance, we have,

∂DChamfer(P → P ′)

∂âi
=

1

|P |
∑
pk∈P

∂

∂âi
( min
p′j∈P ′

‖pk − p′j‖2)

∂DChamfer(P → P ′)

∂ei
=

1

|P |
∑
pk∈P

∂

∂ei
( min
p′j∈P ′

‖pk − p′j‖2)

where

∂

∂âi
( min
p′j∈P ′

‖pk − p′j‖2)

=


e>i (p′i−pk)
‖p′i−pk‖2 if p′i = argmin

p′j∈P ′
‖pk − p′j‖2

0 otherwise

∂

∂ei
( min
p′j∈P ′

‖pk − p′j‖2)

=


âi(p

′
i−pk)

‖p′i−pk‖2 if p′i = argmin
p′j∈P ′

‖pk − p′j‖2

0 otherwise

For Hausdorff distance, we have,

∂DHausdorff (P → P ′)

∂âi

=


e>i (p′i−pk)
‖p′i−pk‖2 if ‖pk − p′i‖2 = max

pl∈P
min
p′j∈P ′

‖pl − p′j‖2

0 otherwise

∂DHausdorff (P → P ′)

∂ei

=


âi(p

′
i−pk)

‖p′i−pk‖2 if ‖pk − p′i‖2 = max
pl∈P

min
p′j∈P ′

‖pl − p′j‖2

0 otherwise

We note that ∂DChamfer(P
′→P )

∂âi
, ∂DChamfer(P

′→P )
∂ei

,
∂DHausdorff (P

′→P )
∂âi

, ∂DHausdorff (P
′→P )

∂ei
can be calculated

similarly.
Finally, we compute ∂h(P ′)

∂âi
and ∂h(P ′)

∂ei
as follows,

∂h(P ′)

∂âi
=
∂h(P ′)

∂p′i

∂p′i
∂âi

= e>i
∂h(P ′)

∂p′i
∂h(P ′)

∂ei
=
∂h(P ′)

∂p′i

∂p′i
∂ei

= âi
∂h(P ′)

∂p′i

where ∂h(P ′)
∂p′i

is achievable from a target point cloud net-
work. For instance, PointNet applies multi-layer percep-
trons on points individually, which support the calculations
of ∂h(P ′)

∂p′i
, for every point p′i ∈ P ′.


