
DressUp! Outfit Synthesis Through Automatic Optimization

Lap-Fai Yu1 ∗ Sai-Kit Yeung2 Demetri Terzopoulos1 Tony F. Chan3

1University of California, Los Angeles
2Singapore University of Technology and Design 3Hong Kong University of Science and Technology

Figure 1: Outfit optimization with different input dress codes. Left: An input human body with hair color, eye color, and skin color specified,
plus a wardrobe of clothing items. Right: Optimized outfits for dress code Casual and Business.

Abstract

We present an automatic optimization approach to outfit synthe-
sis. Given the hair color, eye color, and skin color of the input
body, plus a wardrobe of clothing items, our outfit synthesis system
suggests a set of outfits subject to a particular dress code. We in-
troduce a probabilistic framework for modeling and applying dress
codes that exploits a Bayesian network trained on example images
of real-world outfits. Suitable outfits are then obtained by optimiz-
ing a cost function that guides the selection of clothing items to
maximize the color compatibility and dress code suitability. We
demonstrate our approach on the four most common dress codes:
Casual, Sportswear, Business-Casual, and Business. A perceptual
study validated on multiple resultant outfits demonstrates the effi-
cacy of our framework.
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1 Introduction

As you awaken each day, there is a simple question that you may
need to answer: How should I dress today? Your wardrobe contains
various kinds of clothes, such as dress shirts, dress pants, jeans,
sweaters, suits, and different types of shoes. What combination of
clothing will have you most appropriately dressed for the day’s ac-
tivities, thereby making you most visually appealing? Perhaps you
would like multiple suggestions that best coordinate with the new
tie that you received from your daughter as a birthday gift. The
outfit selection problem also occurs in computer graphics model-
ing, especially in movie and game production: How should one
appropriately dress a large number of human characters with an eye
to functionality while avoiding visual awkwardness and repetitive-
ness? The manual specification of clothing is obviously tedious and
it may be prohibitive on a large scale.

We demonstrate that the task at hand, of selecting appropriate sub-
sets of clothing items from a wardrobe, can be addressed formally
as a combinatorial optimization problem. A suitable outfit requires
jointly combining a variety of clothing items to satisfy functional
and certain visual criteria. We do not generally wear a pair of san-
dals with dress pants to the office, nor do we wear a red dress
shirt with a green suit for a business meeting. In addition, to put
a wardrobe into full use, we would like to explore as many good
solutions as possible, so that we can exhibit sartorial variety. A
similar, but much larger-scale problem comes up with regard to
online boutique websites, where shoppers can select among many
clothing items. Usually it is not difficult for a shopper to locate
a desired clothing item; the nontrivial question is how this clothing
item should be matched in terms of style and color with other cloth-
ing items from the same or different shops or from one’s wardrobe
at home.

There is no single universal rule that satisfies both the relevant func-
tional and visual criteria. People generally categorize outfits into
dress codes, which represent different functionalities. These can
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range from strictly regulated ones such as White Tie, suitable for
formal events, to relatively unrestricted ones such as Casual, suit-
able for many everyday activities. Without restriction, one can de-
fine a particular clothing requirement for an event and consider it
a dress code. Different religions, societies, and cultural practices
adhere to different dress codes; for example, in some formal oc-
casions, Scottish men wear a kilt, a form of dress not commonly
worn by men elsewhere. The visual criteria involve numerous fac-
tors, from human body attributes such as skin color, eye color, hair
color, and body shape, which are model-specific, to aspects of the
clothing items such as the clothing color, cutting, style, and fabric
texture. The rules vary across national and cultural boundaries and
historic timelines. Even when one has satisfied all the applicable
rules, whether one is dressed in a visually pleasing manner is still a
rather subjective question.

In tackling the clothes matching problem, we enforce functional
and visual criteria through the two most important factors—dress
code and color. While color is an obvious visual factor [Jackson
1987; Zyla 2010; Nicholson 2003], to a certain extent it is also re-
lated to functionality, which in turn depends on culture. For exam-
ple, people in China usually dress in red for festivals and in white
for funerals. On the other hand, the dress code is a broader guide-
line that pertains more to the combination of clothing items. Some
dress codes also have strict requirement for the colors of particular
items, but how different colors coordinate is not their main concern.

Given a specific dress code favoring various combinations of cloth-
ing items and a human body, our outfit synthesis framework opti-
mizes the color compatibility between the human body and the sug-
gested items in order to realize both the functional and visual crite-
ria. We employ four of the most common dress codes Sportswear,
Casual, Business-Casual, and Business, which cover the main func-
tionalities of daily life in much of the world. These dress codes
are encoded in our system within a probabilistic framework, via a
Bayesian network. The Bayesian network is trained on real image
data and it associates any particular clothing item combination with
an observed probability distribution under any specific dress code.
Additional dress codes and other matching criteria can be trained
and included in the same manner. As is common practice in the
fashion industry [Jackson and Lulow 1984; Jackson 1987; Hender-
son and Henshaw 2008], our system classifies the color type of the
human subject as ‘warm’ or ‘cool’ based on his or her skin, hair, and
eye colors. This is automatically accomplished by a classifier that is
pre-trained on a database of images of people. After assigning the
user color type, our system will suggest a preferable color palette
for the subject and this color palette will serve as a soft constraint
during the optimization, which automatically searches for clothing
items guided by the dress code while satisfying color compatibility
criteria subject to the suggested color palette.

In summary, outfit selection is a common everyday problem; how-
ever, the nature of this problem is very broad and it involves a con-
siderable amount of visual and social factors that can be implicit
and abstract. Our main contributions in this paper are as follows:

1. The introduction of a novel topic area to computer graph-
ics and a first attempt to tackle the automatic outfit synthesis
problem through a data-driven approach.

2. The encoding of implicit, probabilistic clothing matching re-
lationships on real-world data through Bayesian Networks
that support conditional queries and incorporate a Support
Vector Machine classifier of body color tone that applies sub-
jective evaluation criteria common in the fashion industry.

3. The formulation of outfit synthesis as an optimization prob-
lem that takes into account the style and color compatibility
of clothing combinations, and that is flexible and easily exten-
sible through the modification of the Bayesian networks and

cost terms of the formulation.

4. The application of our novel approach in different practical
scenarios; e.g., as an outfit advisor, as a suggestion engine in
shopping/boutique websites, or as part of the character mod-
eling engine for games/virtual world applications.

5. The validation of the efficacy of our approach through a
gender-specific perceptual study.

2 Related Work

We will begin by discussing related work on clothing and virtual
character modeling in computer graphics and then review other rel-
evant work on fashion and color.

2.1 Clothing in Computer Graphics

Modeling, animating, and rendering visually realistic clothing has
been an area of interest in computer graphics for decades [Ter-
zopoulos et al. 1987; Terzopoulos and Fleischer 1988; Provot 1995;
Baraff and Witkin 1998] and it has received much attention in recent
years in movies and games especially for dressing large numbers of
human characters. Researchers have been putting significant effort
into the realistic modeling [Kaldor et al. 2008; Volino et al. 2009;
Kavan et al. 2011; Wang et al. 2011; Umetani et al. 2011; Guan
et al. 2012] and/or animation [Kaldor et al. 2010; de Aguiar et al.
2010; Wang et al. 2010; Feng et al. 2010] of clothing, and their ef-
forts have enabled computer animated clothing to blend seamlessly
with the clothing worn by real actors.

Tools are now available to help artists interactively design virtual
garments, which is adequate for highly-detailed, small scale pro-
duction, e.g., for motion pictures. However, manual approaches
become too tedious on a large scale, such as when there is a need to
clothe numerous virtual humans in a virtual city. While our work
does not concern the physically-realistic deformation of clothes
meshes over virtual bodies, we are not aware of any research on
automatic outfit synthesis in computer graphics; i.e., given a set of
clothing items and a human body model, automatically suggest a
clothing combination for a general or particular scenario.

Tsujita et al. [2010] conducted a user survey that pointed out the
difficulty that people have in selecting suitable outfits from their
wardrobe. They proposed the simple heuristic of not repeating out-
fits on consecutive days, and installed a camera system in a user’s
wardrobe that can acquire and upload pictures of clothes to the in-
ternet so that the user can solicit outfit selection advice from friends.
Our data-driven approach captures clothing combination “advice”
implicit in example fashion images, but we automate the suggestion
and synthesis process.

2.2 Human Modeling

Human characters are an important aspect of creating virtual worlds
[McDonnell et al. 2006; Dobbyn et al. 2006; McDonnell et al. 2008;
McDonnell et al. 2009; O’Sullivan 2009]. While realistic human
animation and rendering can be critical [Tecchia et al. 2002], vari-
ety in human appearance is equally important when considering a
large group of people. Ulicny et al. [2004] describe a system that
enables the interactive creation of virtual humans with variety. The
importance of appearance variation in realistic human perception is
nicely summarized with an extensive perceptual study in the work
of O’Sullivan et al. [McDonnell et al. 2008; McDonnell et al. 2009;
O’Sullivan 2009].

For the most part, existing human modeling software requires sub-
stantial manual intervention. However, researchers have proposed



Figure 2: Our optimization framework. Inputs include body color attributes, an input dress code, and a wardrobe of clothing items. The
optimizer generates optimal suggestions according to cost terms defined by the dress code, the suggested color palette, and color compatibility.
In response to a user’s change of style, color preference, or specification of particular clothing items, our system automatically synthesizes
new outfits.

approaches to mass-produce various characters by automatically
modifying the texture, color, and geometry of different body parts
in order to create crowds that exhibit some natural variation [Mc-
Donnell et al. 2006; Dobbyn et al. 2006; Thalmann et al. 2007].
However, the goal of prior approaches is to enhance the realism of
the crowd as a whole, rather than specific concern as to whether any
individual in the crowd is dressed properly or in a visually pleasing
manner. The lack of a fast, highly automated approach to this prob-
lem limits variation in the style of human characters, leading, in
particular, to repetitive sartorial patterns that greatly reduce real-
ism.

2.3 Color in Clothing

Recently, techniques for combining colors in a scene to make it
look, say, “harmonious” or “peaceful” have been gaining interest
[Cohen-Or et al. 2006; O’Donovan et al. 2011]. Color coordination
is a core consideration in clothes matching [Zyla 2010; Gilchrist
2011; Nicholson 2003]. Fashion and make-up professionals usu-
ally regard color coordination as person-specific, mostly dependent
on the person’s intrinsic color tones, in particular, the skin, eye, and
hair colors [Jackson 1987]. A basic approach is to first classify in-
dividuals as suited to a ‘warm’ or ‘cool’ color palette, from which
they should choose the colors for their clothes. As there is no defini-
tive classification rule, subjective evaluation is usually performed,
and a common test is to have observers evaluate whether the indi-
vidual looks best wearing gold or silver accessories, respectively
[Jackson 1987]. There are other variations of classification which
are more subtle and abstract—e.g., in accordance with the season
[Jackson and Lulow 1984], or according to “light/deep/clear/soft”
[Henderson and Henshaw 2008]. However, the basic principle is
still the same—suggesting a color palette for clothing items based
on the classification result.

2.4 Dress Codes

A dress code is a set of rules governing what garments may be worn
together and in what setting. Such rules are commonly agreed upon
among people, usually dependent on events and occasions. Com-
mon dress codes nowadays include Sportswear, Casual, Business-
Casual, Business, and Formal. Figure 3 shows typical example
images. Some of the aforementioned dress codes also constrain

Casual Sportswear Business-Casual Business

Figure 3: Example images of dress codes from Dreamstime Images.

the color of the items; for example, Business clothing tends to be
darker, while there is not much restriction in Casual or Sportswear.
Pattern, fabric weight, and texture are also relevant to the dress code
[Gilchrist 2011].

The dress code is important in governing the functionality of the
clothing [Schoeffler and Gale 1973; Fischer-Mirkin 1995; Flusser
2002; Sondag 2011; Gilchrist 2011]. However, the main objective
of a dress code is to convey a message through the combination of
various clothing items. For example, dressing without a tie for a job
interview will convey a less formal and more relaxed impression,
while donning a suit, dress shirt, and tie to the beach will create an
unusual scene. Without a strict definition, the perception of some
dress codes can be ambiguous and personal; e.g., some Business
Casual outfits may be regarded as Business or Casual.

3 Data-driven Approaches

Figure 2 shows an overview of our optimization approach for auto-
matic outfit suggestion. The inputs comprise a human body model,
a specific dress code, and a predefined wardrobe. The output is one
or more optimized outfit suggestions. Before presenting the tech-
nical details of our optimization framework and developing the ob-
jective function in the next section, let us consider the information
required to define our cost functions.

There are two preprocessing steps before the optimization
process—encoding the clothing relationship and classifying the
color tone of the subject body. We must quantify the relationships
among different clothing items so that we can define compatible



Example node Example state
Dress Code Casual, Sportswear, Business-Casual, Business

Chest 1 t-shirt, dress shirt, sleeveless
Chest 2 tank, sweater, vest, long t-shirt
Chest 3 suit jacket, jacket, hoodie, open sweater

Hip jeans, shorts, dress pants
Foot slippers, dress shoes, boots
Neck necklace, scarf, tie, bow tie

Figure 4: Representing distributions of clothing items combina-
tions with a Bayesian network. Top: A table showing the major
example nodes with some of their states. Bottom: A part of an ex-
ample Bayesian network for men, trained using labeled fashion im-
ages. Refer to our supplementary materials for the complete graphs
of the Bayesian networks. Note that each node, except for the dress
code node, has a state ‘none’.

costs among them; for example, what should or should not be worn
based on the selected dress code and some already selected cloth-
ing items. As we have discussed, the dress code involves various
factors and can change from time to time. For example, a dress
shirt usually goes with dress shoes if dress pants are worn, but there
could be more flexibility if jeans are worn.

An expedient way to generate outfit variety is to randomly select
among predefined rules to combine clothing items. However, the
question of how to define the rules, which is critical to synthesis
quality, is susceptible to subjective bias. It is difficult to consider all
possible combinations, and the rules quickly become intractable to
maintain as the types of clothing items grow. Restricting to a small
subset of possible outfits may avoid awkward synthesis, but it will
result in limited variety and common artifacts such as “repeated”
characters that are noticeable in virtual scenes. The lack of condi-
tional query support has also prohibited the use of such approaches
in practical scenarios (e.g., shopping websites).

One possibility to encoding various relationships and defining com-
patible costs between clothing items is to adopt a data-driven ap-
proach based on observational data. Data driven approaches have
recently proven to be successful in problems involving abstract se-
mantic relationships; for example, in architectural design, furniture
layout, assembly-based 3D modeling, and color compatibility ap-
plications [Merrell et al. 2010; Yu et al. 2011; Chaudhuri et al.
2011; O’Donovan et al. 2011]. Since our goal is to match different
clothing items in a sensible manner, and with natural variety con-
forming to real world observations, a probabilistic machine learning
framework trained by real world data is appropriate to encode the
matching cost, such that the higher the probability of a particular
clothes combination, the lower is its matching cost.

An important issue in establishing the probabilistic relationships
between different clothing items relates to their conditional depen-
dencies. For example, the frequent occurrence in the data of a jeans-
sandals combination and a dress shirt-jeans combination could lead

to a dress shirt-jeans-sandals combination style being generated,
which should have very low likelihood. Therefore, simply encod-
ing the observed probability of a clothing item and any combination
between it with other items is prone to error.

Probabilistic graphical models, in particular, Bayesian networks,
are an elegant and efficient choice [Pearl 1988; Koller and Fried-
man 2009] for learning the implicit relationships among different
clothing items consistent with their conditional dependencies. Our
trained Bayesian networks effectively encode the probability distri-
butions in the space of clothing combinations. An important feature
of the Bayesian network is its ability to support conditional query,
which is frequently needed in clothes matching. The values of any
subset of a clothing combination can be fixed and the probabilities
of the remaining clothes can be calculated. For example, given the
Business-Casual dress code, one may constrain the upper body to
be clothed in a t-shirt and blazer and query the probability of the
lower body being clothed in jeans according to the trained distri-
bution. This allows better flexibility to recommend clothing items
under different user-specified conditions or scenarios.

3.1 Bayesian Networks for Clothing Relationships

To make the scope of our problem tractable, we train separate
Bayesian networks for men’s and women’s wear and exclude color
from the training process. In our current system, we train these net-
works on four dress codes: Sportswear, Casual, Business-Casual,
and Business. Figure 4 shows part of the Bayesian network for men.
The network for women is similar, with differences in some of the
node states; e.g., having state dress in node Chest 1. The complete
networks can be found in our supplementary materials.

The nodes of the Bayesian networks correspond to different body
regions on which a clothing item can be worn, and each node state
represents the type of clothing item being worn. For example,
the node foot has states dress shoes, slippers, boots, and so on.
Except for the node dress code, each node also has a state none,
which is used when the node does not carry any clothing item; e.g.,
foot = none when no shoe is worn. While state choices can be
easily modified to suit specific domain needs, as a general case, we
follow common classification in boutique websites such as “H&M”
and “eBay”.

To enable us to handle more complicated situations where there
is layering of clothing, we permit a body region to be repre-
sented by multiple nodes that correspond to multiple clothing lay-
ers. For example, the chest has nodes Chest 1, Chest 2, and Chest 3,
with Chest 1 corresponding to the innermost layer (e.g., a t-shirt),
Chest 2 to the middle layer (e.g., a vest), and Chest 3 to the outer
layer (e.g., a jacket).

Usually a reasonable quantity of input training data is required. For
example, 120 architecture programs were used to train the networks
in [Merrell et al. 2010]. In our case, we downloaded around 3000
images for the four dress codes for men and women from Google
Images1. Since some of the downloaded images are not useful, and
determining whether the images belong to the dress code is a sub-
jective process, we hired three fashion school students to manu-
ally label the attributes of each instance in the network, who used
their judgment to disregard inappropriate images. In total, around
2000 labeled data sets for men and women were used to train the
Bayesian networks. Labeling each image took about 15–20 sec, and
the whole labeling process took 4 hours. Example training images
for Business and Sportswear are shown in Figure 5. Variety arises
when multiple item combinations occur under the same dress code.

1Example keywords we used for the image search: ‘Casual wear for
men’, ‘Sportswear for men’, ‘Business-Casual wear for men’, Business
wear for men’, and similarly for women.



Figure 5: The top row shows typical example images from Dream-
stime Images. The bottom row shows the corresponding labeled
data used for Bayesian network training. Note that some images
may have occluded items (e.g., shoes are not visible in the sec-
ond image), but partially labeled data is still usable in training the
Bayesian network.

(a) Conditional probabilities:
P(bracelet | dress code = Business) 0.0691
P(bracelet | dress code = Business Casual) 0.2456
P(bracelet | dress code = Casual) 0.4591
P(bracelet | dress code = Sportswear) 0.1023
(b) Joint conditional probabilities:
P(dress | dress code = Business Casual) 0.1706
P(dress | dress code = Business Casual, Foot = legging) 0.6710
P(sweater | dress code = Business Casual) 0.0504
P(sweater | dress code = Business Casual, Chest 1 = dress shirt) 0.1095
(c) Conditional joint probabilities:
P(sport pants, sport shoes, tank | dress code = Sportswear) 0.1181
P(sport pants, sport shoes, long t-shirt | dress code = Sportswear) 0.0353
P(shorts, sport shoes, sweater | dress code = Sportswear) 0.0007

Table 1: Example probabilistic queries supported by Bayesian Net-
works for women. (a) Simple queries by conditional probabili-
ties. (b) Increased joint conditional probabilities effectively reflect
common matching styles such as “legging, dress”, “dress shirt,
sweater” from the training data. (c) Conditional joint probabili-
ties for more complicated combinations. The major advantage of
Bayesian Networks is that they support instant, arbitrary queries.

The images, labeling program, and labeled data are included in the
supplementary materials.

Two attributes should be assigned to two different nodes if the
corresponding two clothing items can coexist; e.g., shirt and suit
jacket. Otherwise, they should be put under the same node; e.g.,
sandals and lace-up shoes, since it is not possible to wear both at the
same time. The important point here is to capture the relationships
among different clothing items and their conditional dependencies.
Using the labeled data, we learnt the Bayesian network structures
for men and women respectively, by the Tree Augmented Naive
Bayes method [Friedman et al. 1997] which maximizes conditional
mutual information between attributes. The conditional probabil-
ity tables are trained by the Expectation-Maximization algorithm,
which can learn the probabilities even if some training data are only
partially labeled. Notice that other methods such as maximum like-
lihood estimation could also be adopted. We found that the results
generated using the learnt networks faithfully reproduce our human
perceptual requirement for the four dress codes considered. Table 1
shows some example queries based on the probabilities captured.

Figure 6: Top: An example fashion image and its corresponding
5-color palette. (Image courtesy of COLOURLovers.)

Body Attribute Description Classification
(a) teal blue eyes, dirty blonde hair, peach skin Autumn
(b) dark brown eyes, oyster white hair, ivory skin Autumn
(c) black brown eyes, white hair, beige skin Winter

Table 2: Example classification guidelines for four-season body
color tone. To obtain a classification result, the user must first de-
termine his/her body attributes according to the description. The
description and classification can be obscure to interpret: (a) and
(b) have different descriptions, but are classified as the same, while
(b) and (c) have similar descriptions, but are classified as differ-
ent. (Courtesy of AskAndyAboutClothes.com; refer to website for
the full table.)

3.2 Body Color Tone Classifier

After encoding the probabilistic relationships among the clothing
items, the next step is to inform the optimization process of a color
guide. It is a common practice in fashion to first classify a per-
son’s body color tone and then suggest a suitable color palette for
matching clothes for them. There are multiple ways for color tone
classification such as subjective evaluation tests [Jackson 1987] or
by “guidelines” or “rules”2. However, as shown in Table 2, the
classification “guidelines” can be very obscure and cumbersome,
arguably uninterpretable by a general user. There is obviously no
unique one-to-one correspondence between body color attributes
and color tone classification for users to follow.

To this end, we train a classifier to predict the body color tone of a
target person consistent with human preferences. This has two ma-
jor advantages. First, we integrate subjective evaluation tests com-
monly adopted in fashion [Jackson 1987] into a machine learning
framework by capturing the subjective evaluation from a number of
people. Second, after the classifier is trained, it is intuitive at the
user’s end—a user simply inputs his/her body colors (e.g., by a few
clicks on his/her face photo) and automatically obtains a color tone
classification result, instead of interpreting obscure descriptions.

We acquired from Google Images a training dataset comprising
1000 facial images after discarding images with strong illumination
effect, including both males and females. For each image, we man-
ually extracted the RGB values of the eye, skin, and two locations
in the hair (to encode hair color variation). In accordance with com-
mon practice in the fashion industry, we matched each image with
a set of silver accessories and then with a set of gold accessories,
from which a test subject was asked to choose which one they pre-
ferred, thus indicating ‘cool’ and ‘warm’ color tone, respectively.
We recruited 40 volunteer participants, including 20 males and 20

2http://www.askandyaboutclothes.com/Tutorials/CindyBuschColorAnalysis.htm



females whose ages ranged from 20 to 60, to evaluate the 1000 face
images. Evaluation took about 5-10 sec per image.

We trained a Support Vector Machine (SVM) classifier [Cristian-
ini and Shawe-Taylor 2000] and performed cross-validation by ran-
domly choosing 900 data for training and 100 data for testing,
achieving a prediction rate of about 77%. Given a previously un-
seen human body model with specific skin, hair, and eye colors, the
trained classifier predicts the body color tone, thereby recommend-
ing either a ‘cool’ or ‘warm’ color palette to be used in the opti-
mization. Each suggested color palette consists of 40 colors, as in
[Jackson 1987]. While the evaluation is by its nature subjective and
ambiguous, we find that in general people with brownish/reddish
hair and brownish/greenish eyes are usually classified as ‘warm’,
whereas those with light-colored hair and dark/bluish eyes are clas-
sified as ‘cool’. The labeled training data and labeling program are
included in the supplementary materials.

3.3 Color Compatibility Predictor

Figure 6 shows example images from fashion websites such as
“Wear Palettes” and “COLOURLovers”, which are usually accom-
panied by a representative 5-color palette that supports the color
matching idea. Akin to this practice, at each iteration of the op-
timization, our optimizer extracts a representative 5-color palette
from an outfit and evaluates the color compatibility of the palette
based on the regression model from [O’Donovan et al. 2011], which
is trained by a large number of user-rated color palettes. The trained
regression model can take a 5-color palette as input, and predict a
user preference rating (see [O’Donovan et al. 2011] for the details
of the training dataset, prediction result evaluation, and analysis).

4 Outfit Optimization

In performing the optimization phase, our system exploits the
trained Bayesian networks, body color tone classifier and color
compatibility predictor described in the above sections. Given a
human model, a wardrobe of clothing items and a dress code as in-
puts, our system suggests multiple outfits whose colors are adjusted
desirably such that they are compatible to each other guided by the
color palette.

To achieve our goals we must solve a combinatorial optimization
problem. Denoting the wardrobe as W , which is a set contain-
ing all clothing items, the state of our system is a subset of W ,
which we refer to as an outfit, φ = {θi|i = 1, . . . , T}, where each
θi = (ci, ni, si) is a 5-value tuple representing a selected clothing
item. The term ci = (ri, gi, bi) contains the RGB values of the
clothing item, which are quantized from 0 to 255, ni is the node
of the Bayesian network to which this clothing item belongs, and
si is the corresponding node state. For example, ni = foot and
si = dress shoes means that selecting the clothing item θi corre-
sponds to setting the node foot of the Bayesian network to state
dress shoes.

Note that the total number T of selected clothing items is a vari-
able that can be changed. Thus, the dimension of the input space
is a variable. Our goal is to obtain an outfit φ that minimizes an
objective function described in the next section.

4.1 Objective Function

We now describe the cost terms constituting our overall objective
function.

Style Cost: In order to obtain the matching cost between differ-
ent clothing items, at each iteration, we must determine every node
state of the Bayesian network. Suppose the network has N nodes

(a) 3.44 (b) 3.35 (c) 3.35 (d) 3.57 (e) 3.48 (f) 3.50

Figure 7: Results with specific clothing items being fixed. (a)–(c)
fixed black sweater. (d)–(e) fixed orange shoes. Color ratings are
shown at the bottom.

(excluding the root node dress code) denoted by x1, . . . , xN . Given
an outfit φ, every node xk is instantiated to state S(xk) by:

S(xk) =
{

si xk = ni
none xk 6= ni,∀i (1)

The style cost term has two components C indv
style and C joint

style . Given
dress code = d ∈ {Casual, Sportswear,Business-Casual,Business},
then C indv

style encodes the conditional probability of each clothing
item. It guides the optimizer by penalizing the selection of clothing
items that do not fit dress code d. On the other hand, C joint

style defines
the conditional joint probability of the clothing item combination:

C indv
style(φ) = 1− 1

N

∑
k

P (S(xk)|dress code =d). (2)

C joint
style(φ) = 1− P (S(x1), . . . , S(xN )|dress code =d). (3)

To evaluate these costs, our framework makes queries over the
Bayesian network to provide the conditional and conditional joint
probabilities in (2) and (3).3 In case the user fixes one or multiple
node states, the fixed node states will become the given conditions.
Figure 7 shows two examples with specific items being fixed.

Color Rating Cost: Similar to the convention in fashion images,
we use a 5-color palette to represent a clothing combination φ
which comprises T selected clothing items, based on a heuristic:

1. Each clothing item is represented by the color of its largest
surface area.

2. Select 5 colors:

If T = 5, select colors from all clothing items.

If T > 5, sort clothing items by their surface areas.
Select colors from the 5 clothing items with the largest
surface areas.

If T < 5, sort clothing items by their surface areas.
Duplicate colors of the 5 − T clothing items with the
largest surface areas. Select the 5−T duplicated colors
and the colors of the T clothing items.

3To illustrate the effectiveness of C indv
style, suppose the dress code is Busi-

ness, the initialized outfit is “shirt, jeans, slippers” and another outfit “shirt,
dress pants, slippers” is sampled. Although C joint

style will evaluate both outfits
as unlikely,C indv

style will favor the latter, hence effectively guiding the synthesis
towards a Business outfit.



Figure 8: Effects of omitting individual cost terms. Top left: No
dress code and no color optimization. Top right: Fixed dress code,
no color optimization. Bottom left: No dress code but with color
optimization. Bottom right: Fixed dress code with color optimiza-
tion. The color ratings are shown at the bottom.

3. Sort the 5 selected colors according to their physical position
on the body, from top to bottom.

In practice, we assume the outfit comprises at least 2 clothing items,
i.e., T >= 2. Denoting these ordered 5 colors as λ1, . . . , λ5, this
is the 5-color palette representing outfit φ. The color compatibility
cost is

Ccomp
color (φ) = 1− [R(λ1, . . . , λ5)− 1]/4. (4)

In (4), R ∈ [1, 5] is the regression model from [O’Donovan et al.
2011], which predicts the user rating of a 5-color palette, with a
higher rating implying higher user preference. The cost in (4) is
normalized accordingly.

Color Palette Cost: To keep the clothing item colors close to the
suggested color palette, the system calculates the distance of each
clothing item’s color ci to each color cj in the suggested color
palette, and penalizes it if the nearest distance is larger than a
threshold h. The color palette cost term is defined as

Cpalette
color (φ) =

1

T
√
3Z2

∑
i

max(min
j
‖ci − cj‖ − h, 0) (5)

,where Z = 255 is the maximum quantized RGB value.

The total cost function is the weighted sum of the above cost terms:

C(φ) = windv
styleC

indv
style(φ) + wjoint

styleC
joint
style(φ) +

wcomp
colorC

comp
color (φ) + wpalette

color C
palette
color (φ) (6)

The w coefficients determine the relative weighting between the
cost terms; in practice, we set windv

style = 1.0, wjoint
style = [5.0, 10.0],

Figure 9: Results with two different color palettes.

wcomp
color = 1.0, andwpalette

color = 1.0. Figure 8 shows the effect of omitting
the style and color cost terms. Figure 9 illustrates the effect of using
different color palettes.

4.2 Reversible Jump Markov Chain Monte Carlo

Since our optimization problem is combinatorial and the number
of combination items can vary (e.g., a jacket can be added or re-
moved), it is difficult to define a closed-form solution. In fact, as in
the real world, we wish to obtain multiple optimal solutions (out-
fits) from the same wardrobe instead of a single global optimum.
This motivates the generation of candidate solutions by sampling
a density function defined over the space of possible outfits. The
density function is defined using idealized analytical formulations.
Sampling is performed using a Markov chain Monte Carlo sampler.
Figure 10 shows multiple optimal outfits generated.

One of the difficulties for our optimization problem is that its di-
mensionality may change; i.e., the number of clothing items may be
altered during the optimization process. To deal with this compli-
cation, we adopt the Reversible Jump MCMC (RJMCMC) frame-
work [Green 1995] which can be considered a generalization of
the original Metropolis-Hastings (MH) algorithm [Metropolis et al.
1953; Hastings 1970]. RJMCMC works by supplementing the
parameter-changing diffusion moves of MH with an additional set
of dimension-altering jump moves, which allow the chain to move
between subspaces of different dimension. RJMCMC has been suc-
cessfully applied to other graphics and vision problems such as pro-
cedural modeling [Talton et al. 2011] and image segmentation [Tu
and Zhu 2002].

4.3 Annealing

To efficiently explore the solution space, we apply the simulated
annealing technique [Schneider and Kirkpatrick 2006] in the opti-
mization process. We define a Boltzmann-like objective function:

f(φ) = exp(−βC(φ)), (7)

where β is a constant inversely proportional to the temperature of
the annealing process. At the beginning of optimization, β is set to
a low value, equivalent to setting a high temperature, which allows
the sampler to more aggressively explore the solution space. Then
β is gradually increased throughout the optimization. Near the end,
β attains a large value, equivalent to setting the temperature near
zero, thereby allowing the sampler to refine the solution. Figure 11
shows the iterative optimization process.



Figure 10: Multiple outfit recommendations. The dressed models
and the corresponding items. Top: Sportswear. Bottom: Business-
Casual. The recommendations from left to right are arranged in
descending matching cost value.

4.4 Proposed Move

We adopt the dimension matching strategy to allow reversible jumps
across subspaces of different dimension or within the same sub-
space. At each iteration of our optimization, a move m′ ∈
{ma,mr,ms,mm} is chosen with probability pm′ . Associated
with the move is a move-specific proposal distribution qm′(.),
which is a function of an auxiliary variable U ′. As movem′ is cho-
sen, a sample of the auxiliary variable U ′ is drawn from qm′(U ′),
which modifies the current outfit φ to a proposed new outfit φ′ by a
deterministic function φ′ = h(φ,U ′). We also need to compute the
reverse move m, which reverts φ′ back to φ, by sampling U from
qm(U) such that φ = h∗(φ′, U). The proposed outfit φ′ is then
accepted with probability

α(φ′|φ) = min(1,
pm
pm′

qm(U)

qm′(U ′)

∣∣∣∣∂(φ′, U)

∂(φ,U ′)

∣∣∣∣ f(φ′)f(φ)
), (8)

where |∂(φ′, U)/∂(φ,U ′)| is the Jacobian of the diffeomorphism
from (φ,U ′) to (φ′, U). Defining φ′ = h(φ,U ′) = U ′ and φ =
h∗(φ′, U) = U , the Jacobian is unity [Godsill 2001]. For further
detail on RJMCMC, refer to [Green 2003; Andrieu et al. 2003].

Based on the RJMCMC formulation, we follow the natural strat-
egy to define the jump moves as adding/removing a clothing item
to/from the outfit, which induce a dimension change, and diffusion
moves as swapping items or modifying an item’s color, which in-
volve no dimension change, as follows:4

4The acceptance probabilities of the proposed RJMCMC moves are:
Adding an Item (ma):

α(φ′|φ) = min(1,
pr

pa

1
|φ′|
1

|W\φ|

f(φ′)

f(φ)
) (9)

Initialization Iteration 20 Iteration 50 Iteration 100 Iteration 180 Iteration 250

Figure 11: Outfit optimization from a random initial configuration
(left) for dress code Business. As the optimization process proceeds,
the clothing items are iteratively updated until the outfit converges
to the desired clothing item combination with coordinated color.

Adding an Item (ma): Randomly pick an available clothing item
θj from wardrobe W and add it to outfit φ, so that φ′ = φ

⋃
{θj}.

Removing an Item (mr): Randomly remove a selected clothing
item θi from outfit φ, so that φ′ = φ \ {θi}.

Swapping Items (ms): Randomly pick a selected clothing item θi
from outfit φ, and swap it with an available clothing item θj from
wardrobe W , so that φ′ = φ \ {θi}

⋃
{θj}.

Modifying an Item Color (mm): Randomly pick a se-
lected clothing item θi from outfit φ and change its color ci.
Hence, θi is updated as: θ′i = (ci + δci, ni, si), where
δci ∼ [N (0, σ2

c ) N (0, σ2
c ) N (0, σ2

c )]
T and, with N (µ, σ2) =

(2πσ2)−1/2e−(x−µ)2/2σ2

, a Gaussian distribution of mean µ and
variance σ2. The variance σ2

c , which determines the average mag-
nitude of the change, is proportional to the temperature.

= min(1,
pr

pa

|W \ φ|
|φ′|

f(φ′)

f(φ)
). (10)

Removing an Item (mr):

α(φ′|φ) = min(1,
pa

pr

1
|W\φ′|

1
|φ|

f(φ′)

f(φ)
) (11)

= min(1,
pa

pr

|φ|
|W \ φ′|

f(φ′)

f(φ)
). (12)

Swapping Items (ms):

α(φ′|φ) = min(1,
ps

ps

1
|φ′|

1
|W |

1
|φ|

1
|W |

f(φ′)

f(φ)
) (13)

= min(1,
f(φ′)

f(φ)
). (14)

Modifying an Item Color (mm):

α(φ′|φ) = min(1,
pm

pm

p(θi|θ′i)
p(θ′i|θi)

f(φ′)

f(φ)
) (15)

= min(1,
f(φ′)

f(φ)
). (16)

In our implementation, we simply set the prior distribution uniformly over
the moves as pa = pr = ps = pm = 0.25.



Figure 12: Outfit synthesis results for the models, associated items, and the 5-color palette. From top to bottom: “Mag” (Female, Cool),
“Eddie” (Male, Cool), “Ce” (Female, Warm), “Jacen” (Male, Warm). From left to right: Casual, Sportswear, Business-Casual and Business.



(a) (b) (c) (d)

Figure 13: Close-up views of populated virtual scenes with and without outfit consideration. (a) Outfits synthesized randomly; (b)–(c) Outfits
synthesized under dress code Business; (d) Outfits re-synthesized after changing dress code to Sportswear. An unnatural appearance clearly
results in the absence of a proper dress code.

5 Results and Discussion

To demonstrate the efficacy of our optimization approach, we tested
it on six different virtual human models, three males and three fe-
males. Figure 12 depicts two males and two females. The remain-
ing characters were used in our perceptual study and can be found
in the supplementary material. For the males, “Thor” has white skin
and dark brown hair, “Eddie” has yellow skin and black hair, and
“Jacen” has black skin and black hair. For the females, “Fiona” has
white skin and blonde hair, “Mag” has yellow skin and black hair,
and “Ce” has dark brown skin and black hair.

We synthesized all four test dress codes Sportswear, Casual,
Business-Casual and Business for all the models. We optimized
the male and female model outfits using the Bayesian networks
learned for males and females, respectively. The clothing items are
also segregated into male and female wardrobes. Each wardrobe
contains about 10 clothing items for each of the 40 states in the
Bayesian network, so there are about 400 clothing items in total.
We simply used a budget of 250 optimization iterations for each
outfit synthesis, which takes about 1-2 second per synthesis on a
3.33GHz Intel Xeon PC.

The final optimized outfits with the corresponding selected items
are shown in Figure 12. We also show the corresponding 5-color
palette alongside with the items. Mag and Eddie are classified as
‘cool’ and a ‘cool’ color palette was assigned to them prior to the
optimization. Meanwhile Ce and Jacen are classified as ’warm’.
The ‘cool’ and ‘warm’ color palettes are shown in Figure 2. For all
the generated results, the color ratings are greater than 3.3.

The dress code as the root node determines the style of synthesis;
i.e. what clothing items should be chosen and how they should
combine. For example, in the 3rd row showing the synthesis for Ce,
the same sweater is chosen for Casual and Business. However, the
sweater is worn alone in Casual, but with a suit jacket in Business.

When we designed our Bayesian networks, we defined more than
one node for the chest to permit the coexistence of different items.
Several generated results reflect this property, which is important
for creating variation. It happens more often for the dress code
Business; for example, Eddie in the 2nd row wears a dress shirt,
a vest, and a suit jacket for his upper body outfit, a combination
which is occasionally observed in the Business training data.

Our outfit optimization can lead to two potential applications:

Outfit Suggestion Engine: The outfit suggestions can readily as-
sist shoppers in boutique websites or fitting rooms, in which case
the clothing items are those available in the store; or it can be used
as a personal outfit advisor, in which case the clothing items are
those available in the user’s wardrobe. The support of efficient,

Figure 14: Populating virtual scenes. Our approach can auto-
matically suggest appropriate outfits to a large number of virtual
characters. Dress codes Sportswear and Casual were used in ac-
cordance with the virtual beach scene.

arbitrary probabilistic queries can handle scenarios commonly en-
countered in the clothes matching process. For example, condi-
tional queries allow one to fix one or multiple clothing items and ask
for multiple matching suggestions. Refer to Figure 7 for two exam-
ples. One can also change the preferred color palette, after which
the optimizer will update the suggestion accordingly, as shown in
Figure 9. As a personal outfit advisor, given a dress code, it can au-
tomatically suggest many decent outfits out of the user’s wardrobe,
thereby making full use of it. Refer to Figure 10 for two examples.

Virtual Character Modeling: Our approach is also useful for
dressing human-like characters in large-scale virtual worlds, in
which case the artist can specify dress codes and allow the computer
to synthesize coordinated clothing combinations for each character
in a fully automated manner. This can be readily incorporated on
top of character modeling engines in gaming applications, which
commonly support automatic clothes meshing on virtual charac-
ters5, but lack support for reasoning about the many possible outfits
out of the massive amount of clothing items available.

Figure 13 shows virtual scenes with and without outfit consider-
ation. One can easily see that the scene appears unnatural if the
characters are not properly dressed; e.g., donning a suit jacket, or
wearing a dress in a gym, or dressing in sportswear in the office.
Figure 14 shows a beach scene populated by approximately 100 vir-
tual characters automatically dressed up in Sportswear and Casual
dress codes. With our optimization, the characters are appropriately

5Examples include Playstation Home, XBox 360 Avatars
(http://marketplace.xbox.com/en-US/AvatarMarketplace), Second Life, etc.



Business No Dress Code

Sportswear No Dress Code

Figure 15: Example images in Experiment 2 of the perceptual
study. Left: Outfits synthesized with the corresponding dress codes.
Right: Outfits synthesized without dress code consideration. Note
that all syntheses considered the color cost terms.

dressed in multiple ways to create variety suitable to the scene.

While we demonstrated our approach based on the four dress codes
that are common nowadays, our framework offers the flexibility to
cope with specific clothing styles matching a theme. An interesting
example is for a massively-multiplayer online game featuring the
Medieval Fantasy, in which case the node states can be replaced
by medieval clothes and specific nodes such as “weapon” may be
added. In this case, training examples may be collected directly
from the player-created game characters, and our trained framework
can be used to provide outfit suggestions in the character modeling
engine used by new players, or for the automatic, realistic synthesis
and dressing of non-player characters.

6 Perceptual Study

We performed a perceptual study to evaluate the functional and vi-
sual appearance of our outfit synthesis framework. Since compar-
isons of outfits are inherently subjective, one possible way is to
evaluate our synthesis results against comparable results produced
by human fashion designers. However, assessing metrics and per-
forming pairwise comparisons is very difficult when there are sig-
nificant differences, and they may not lead to meaningful conclu-
sions. For example, a particular subject may be fond of some par-
ticular skirt and be biased in favor of women wearing this skirt.

The goal of our system is to synthesize visually reasonable or pleas-
ing outfits under certain dress codes. To evaluate the efficacy of
our approach, we must demonstrate that the clothing items enforce
the selected dress code and that their colors are nicely coordinated.
Since color coordination was extensively evaluated in [O’Donovan
et al. 2011] and crowd perception as such was studied comprehen-
sively in [O’Sullivan 2009], our perceptual study was focused on
whether the matched clothes are functionally sound individually.
We attempted to verify the following two conditions, by two exper-
iments: First, a classification experiment to testify the outfit recom-
mendations that our system produces successfully reflect the dress
code and, hence, validate our Bayesian network training. Second, a
discrimination experiment to verify that the incorporated dress code
yields a benefit over outfit synthesis results obtained in its absence.

Similar to those of other authors [Jagnow et al. 2008; Jimenez et al.

2009; Yeung et al. 2011; Yu et al. 2011], our experiments were con-
ducted using a subjective, five-alternative/two-alternative, forced-
choice preference approach. In Experiment 1, our null hypothesis
H0 was that users cannot recognize the dress code of the syntheses
for each category; i.e., recognition rate is at chance level. In Exper-
iment 2, our null hypothesis H0 was that users show no preference
among the syntheses with and without dress code consideration.

Participants: 32 volunteer participants were recruited who were
unaware of the purpose of the perceptual study. This number of
participants was comparable with similar studies in which 16 users
were recruited [Jagnow et al. 2008; Jimenez et al. 2009]. The par-
ticipants included 16 males and 16 females whose ages ranged from
20 to 60. All the subjects reported normal or corrected-to-normal
vision with no color-blindness and reported that they are familiar
with the dress codes to be tested in the study. 29 subjects reported
that they did not have any expertise in fashion design.

Data: We picked 4 virtual models to cover both genders: Thor and
Jacen are male, Fiona and Mag are female. For each virtual model,
we synthesized 20 outfits (5 per dress code) with the complete ob-
jective function, and 20 outfits with an objective function lacking
the style cost term. Figure 12 depicts example matching results
with their associated items used in the user study. For the pairwise
comparison, examples are shown in Figure 15. With multiple out-
fits per dress code we can create variety in the comparisons. The
images used in perceptual study are listed for visual inspection in
the supplementary materials.

Procedure: The study was conducted in two experiments. Partici-
pants were encouraged to ask any question prior to the study. After
completing a consent form and questionnaire, they were given a
sheet detailing the task descriptions.

Experiment 1 (Classification): The main goal was to test whether
our generated results reflect the corresponding dress code faithfully
and, hence, verify our Bayesian network encoding. To achieve this,
we asked the subject whether the synthesized clothing combina-
tions fall into any of our encoded dress codes:

“This experiment involves selecting a dress code from
an image of a dressed model. There are 80 images.

Your task in each evaluation is to select one of the
following dress codes which you feel best describes
the outfit shown in the image: Sportswear, Casual,
Business-Casual, Business, and Other if the image does
not match any of the previous four. You can view the test
image for an unlimited amount of time, but we suggest
that you spend around 15 seconds on each image before
making your selection.”

Experiment 2 (Discrimination): The main goal was to evaluate if
incorporating the style cost term really shows a significant prefer-
ence on the functionality of the outfit compared to outfits synthe-
sized without consideration of a dress code:

“This experiment involves selecting a dressed model
from a pair of images, and there are 160 pairs in total.
You will be shown the images side-by-side with a grey
image displayed between each evaluation.

Your task in each evaluation is to select the model based
on their outfit in which you would prefer to dress for a
particular occasion which is depicted in the top of the
image pairs: Casual, Sportswear, Business-Casual, or
Business. You can view the test pair for an unlimited
amount of time, but we suggest that you spend around
15 seconds on each pair before making your selection.”

Each participant viewed a total of 160 trials (4 models × 4 dress



Figure 16: Recognition rates of Experiment 1: Perceived dress
code versus tested dress code. “A/A”: All participants perceiving
all syntheses. “M/F”: Male participants perceiving female synthe-
ses. Similar for “M/F”, “F/M” and “F/F”. All recognition rates
are significantly above chance level.

Figure 17: User’s preference of Experiment 2: Our syntheses ver-
sus random syntheses. The rates of picking our syntheses are sig-
nificantly above chance level.

codes × 5 pairs × 2 trials). Each pair comprises a full objective
result and a result randomly chosen among those synthesized with-
out considering the style cost term. The pairs were presented to
each participant in a different random order. Counterbalancing was
used to avoid any order bias—each paired comparison was assessed
twice by each participant: In half of the trials the full objective re-
sult was displayed on the left side and in the other half on the right.

Results and Analysis: Figure 16 shows the correct recognition
rates of Experiment 1. We display the results by gender of the par-
ticipants versus the gender of the syntheses. Overall, the correct
recognition rates are: Casual (83.125%), Sportswear (66.875%),
Business-Casual (67.969%), Business (76.25%). The detailed
recognition rates tabulated by gender can be found in the supple-
mentary materials.

Figure 16 also shows some interesting observations. While all cor-
rect recognition rates were significantly above chance, Sportswear
and Business-Casual have lower recognition rates. A certain por-
tion of Sportswear was perceived as Casual, while a certain portion
of Business-Casual was perceived as Business and Casual, respec-
tively. This is probably because in reality, the perception of dif-
ferent dress codes can be ambiguous and may overlap; e.g., some
people may regard a subset of Sportswear and a subset of Business-
Casual also as belonging to Casual, which tends to be more fre-
quently chosen as a result and received higher recognition rates.
This also accounts for the recognition rates of Business that have
minor portions perceived as Business Casual, which if added up
together should give rates over 90% for both genders.

Figure 18: Results of t-tests against chance for Experiment 1 (left)
and Experiment 2 (right) shown as log(p-value). Notations are the
same as in Figure 16. Test for A/A has d.f. = 31. Other tests have
d.f. = 15. All tests have log(p-value) < −5 which is equivalent to
p-value < 0.00001.

With respect to gender difference, we note that men’s Business
tend to be more definitive than women’s Business, with slightly
higher correct recognition rates on men’s Business syntheses and
less men’s Business-Casual syntheses being perceived as Business.
On the contrary, men’s Casual tend to have more overlap with
Sportswear perceptually. The Casual plot shows a certain portion
of men’s Casual being perceived as Sportswear, while this is rarely
the case for women’s Casual. Finally, we note that male and female
participants tend to give similar response trends in classification.

Figure 17 depicts the results of Experiment 2 by comparing the rates
of choosing our synthesized outfit and random syntheses. In all the
cases our syntheses are much more preferable than random synthe-
ses. Notice that the relatively lower recognition rates on dress code
Casual, which is not surprising due to its less restrictive nature.
To ascertain that our results are significant, we performed t-tests
against chance in both experiments. Figure 18 summarizes the p-
values. In all cases, we have p-values less than 0.00001, which are
very small. Therefore, we reject the null hypothesis H0 in both
experiments. For Experiment 1, this concludes that subjects can
correctly recognize the dress code of the syntheses as one of the 4
encoded dress codes. For Experiment 2, this concludes that subjects
also prefer the syntheses that include dress code consideration.

7 Conclusion and Future Work

We have introduced an automated framework for outfit synthesis,
which is a highly practical topic both in daily life and computer
graphics. Our approach optimizes outfits in a way similar to real-
world situations. The body color tone classifier automates the clas-
sification pre-process in fashion practices, avoiding cumbersome,
obscure, manual classification. From the user’s perspective, our
framework is highly intuitive in practical use. On the one hand, if
one fixes item colors and permits only addition, removal, or swap-
ping moves during optimization, one is mimicking the scenario of a
fixed wardrobe, and the optimizer jointly considers style and color
when synthesizing outfits out of the available clothing items. On
the other hand, if one permits the changing of certain clothing item
colors, this is similar to buying new clothes, and it is particularly
useful for populating virtual worlds with characters that exhibit re-
alistic sartorial variety.

Currently, we have incorporated four different dress codes into our
outfit synthesis system, but our learning and synthesis framework
is flexible enough to accommodate additional criteria such as sea-
son, texture pattern, clothing shape, age, body proportion, or even
associating outfits with multiple dress codes during training. For
simplicity, we assumed each clothing item is represented by its
dominant color. More sophisticated representations, such as repre-
senting each clothing item with an arbitrary number of colors (e.g.,
one color for a plain shirt and two colors for a checkered shirt),



can be readily handled by our RJMCMC formulation, which flex-
ibly allows varying the number of dimensions. On the other hand,
the color palette suggestion is motivated from the fashion literature,
and it is easy for users to change according to their own preference;
e.g., using a more colorful palette for a festive occasion; or replac-
ing the color palette with one tailor-made by a fashion professional
for a specific client; or trained by large-scale commercial datasets.
Our framework is novel in formulating the seemingly abstract fash-
ion matching problem as a combinatorial optimization problem in
which style and color are jointly considered. Speeding up the au-
tomated outfit synthesis process for crowds through parallel com-
putation, and a comprehensive human perceptual study on different
outfits are additional interesting avenues for future work.
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