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Abstract

We introduce a framework for outdoor photometric
stereo utilizing natural environmental illumination. Our
framework extends beyond existing photometric stereo
methods intended for laboratory environments to encom-
pass robust outdoor operation in the real world. In this pa-
per, we motivate our framework, describe the components
of its processing pipeline, and assess its performance in
synthetic experiments as well as in natural experiments in-
cluding objects in outdoor environments with complex real-
world illuminations.

1. Introduction
Photometric stereo is a technique for inferring 3D sur-

face shape from pixel intensities in ordinary 2D images
[23, 11]. In the conventional photometric stereo setting,
multiple images of an object are captured under different il-
lumination conditions. By fitting different reflectance mod-
els to the observed pixel intensities, pixel-dense surface nor-
mals are estimated [7, 22, 20, 3, 4, 21, 14, 29, 6]. The fo-
cus in the majority of prior photometric stereo work was
to tackle technical challenges such as reflectance model
assumptions, self-shadowing, specularities, noise and out-
liers, and so on; accordingly, experiments were normally
conducted in well-controlled laboratory environments, usu-
ally dark rooms with single localized light sources, which
facilitated empirical evaluation while minimizing uncer-
tainties.

The objective of our work is to free photometric stereo
from its laboratory confines and help make it a useful tool
for computational photography. To this end, we develop an
outdoor photometric stereo framework that can deal with
real-world objects subject to natural illumination condi-
tions. Figure 1 illustrates the application of our framework
to a horse statuette in a sunlit outdoor environment. By
analyzing the variation of pixel intensities among a set of
input images (top row) acquired under different environ-
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Figure 1. HORSE (SUNLIGHT). Top row: Captured input im-
ages. Middle row: Environmental illumination captured in a
mirror sphere. Note the variance among the input images un-
der different illumination conditions. Bottom row: The left two
images show the normal maps n displayed as n · l with l =
[−1/

√
3, 1/

√
3, 1/

√
3]T and l = [1/

√
3, 1/

√
3, 1/

√
3]T , respec-

tively. The third image shows the color-coded normal map. The
fourth and the fifth images show two different views of the recon-
structed 3D surface of the horse.

mental illuminations whose associated environment maps
are acquired using a mirror sphere (middle row), our algo-
rithms can estimate the surface normals using our general-
ized reflectance model and reconstruct the 3D shape of the
horse statuette surface (bottom row). To deal with outliers
such as shadows, highlights and/or small misalignment er-
rors across input images, we apply low rank matrix comple-
tion [13] to preprocess the input images. Our shape estima-
tion approach is then formulated as an optimization method
which alternates between normal estimation and estimation
of environmental illumination that contributes to pixel in-
tensities. Finally, total variation regularization [18, 5] is ap-
plied to refine the estimated normals by reducing ambigui-
ties and noise in preparation for 3D surface reconstruction.

After reviewing related prior work (Section 2), we will
present the generalized reflectance model employed in our
outdoor photometric stereo framework along with the key
steps of its processing pipeline, including our acquisition



Method Surface Assumption Calibration Object Capturing Environment #Images
Ours Lambertian; varying albedo mirror sphere natural illumination 6-10 (theoretical: 4)

[12]
Lambertian; uniform albedo

same-material sphere natural illumination 1
(painted to match calibration sphere)

[4] Lambertian; varying albedo none
dark room

32-64 (theoretical:27)
general unknown lighting, fixed intensity

[1]
mixtures of 2-3

none natural illumination
30-50 from more than

fundamental materials 20k over a year
[16] isotropic BRDF mirror sphere natural illumination 1

Table 1. Comparisons between our work and previous works.

system, preprocessing step, main algorithm, and postpro-
cessing step that yields high-quality pixel-dense surface
normal estimation in natural environments (Sections 3–4).
We will also discuss implementation considerations rele-
vant to these steps. Then, we will demonstrate the effec-
tiveness of our framework through a variety of experiments
including synthetic data, different background scenes, in-
door scenes with different combinations of light sources,
and outdoor scenes with varying sunlight (Section 5). Fi-
nally, we will present our conclusions and suggest avenues
for future work (Section 6).

2. Related Work
There is a substantial amount of literature on photomet-

ric stereo, with representative papers including [23, 24, 11,
7, 20, 3, 28, 27, 4, 25, 19, 21, 14, 29, 6].

Much of this prior work is based on the Lambertian sur-
face reflectance model, which requires at least three illu-
mination directions to solve the surface normal estimation
problem [23, 24]. For more than three input images, the
surface normal vector at every pixel may be obtained us-
ing least squares fitting [28, 27], robust low rank minimiza-
tion [25], or subspace clustering [21]. Several authors have
relaxed the Lambertian model assumption; for instance,
Tagare and deFigueiredo [22] employed an m-lobed reflec-
tive map, Solomon and Ikeuchi [20] used the Torrance-
Sparrow reflectance model, Hertzmann and Seitz [10] used
a reference object of the same material and a known shape
to compute surface normals through analogy, Nayar et
al. [15] used a hybrid reflectance model (Torrance-Sparrow
and Beckmann-Spizzichino), Goldman et al. [9] optimized
the shape and the BRDFs alternatively by assuming a set of
basis materials according to the isotropic Ward model, and
Yeung et al. [29] applied orientation consistency to estimate
normals for transparent objects.

To our knowledge, there are only a handful of papers that
consider general/natural illumination conditions. Johnson
and Adelson [12] describe a shape-from-shading algorithm
under natural illumination; however, their requirement of
a calibration sphere of the same material BRDF as the cap-
tured object limits its practicality. Oxholm and Nishino [16]

relax this restriction by using a mirror sphere to calibrate
the illumination, while Yu et al. [30] utilize information ob-
tained from depth cameras to constrain the problem. Since
only a single input image is used, such shape-from-shading
methods share some common limitations, including the fact
that the estimated surface normals can easily be corrupted
by outliers. Basri et al. [4] used low-order spherical har-
monics to model general illumination, akin to the environ-
ment mapping representation [17]. Their model includes 27
variables and thus requires significantly more input images
compared to conventional photometric stereo. The prior
work that is most relevant to ours is by Ackermann et al. [1]
who captured over twenty thousand outdoor webcam im-
ages throughout the year. The robustness of their photomet-
ric stereo method can be attributed to the large amount of
data and a smart data selection process. However, acquiring
this much image data is not an easy task.

We offer an approach to outdoor photometric stereo that
strikes an attractive balance between the amount of image
data required (about 6 to 10 input images) and the type of
calibration object needed (a mirror sphere). Compared to
previous methods, our method is both practical and accu-
rate. Table 1 compares our work to the aforementioned ef-
forts.

3. Environment Light Photometric Stereo
In this section, we describe the basic model of our envi-

ronment light photometric stereo and our image data acqui-
sition process.

3.1. Basic model
In the Lambertian surface model (assuming a linear cam-

era response function), the intensity of a pixel I depends on
the surface albedo ρ, the illumination direction l, and the
surface normal n according to

I(x) = ρ(x)l(x) · n(x), (1)

where x is the image coordinate. The common photometric
stereo setting presumes a distant, directional light source.
Thus, l is spatially invariant and it can easily be estimated



Figure 2. Left: Our simple setup for data acquisition. A mirror
sphere is placed near the object. Middle: From the image of the
mirror sphere, we estimate the illumination environment map us-
ing the method in [8]. Right: For each pixel, we must estimate the
illumination directions that contribute to the pixel intensity, which
depends on the orientation of the associated surface normal.

from the input images [19] or using a calibration object [28].
To solve the surface normal n in (1), we capture multiple
images each taken with a different illumination direction.
Hence, we obtain more observations than unknowns in (1)
and n can be solved effectively using methods presented
in [23, 28, 25, 21].

When we have multiple directional light sources, we can
extend (1) by summing the contribution of each light source
to the pixel’s intensity, as follows:

I(x) = ρ(x)
K∑
i=1

cili · n(x), (2)

where K is the number of light sources in the scene, and
ci is the strength of light source i with direction li. In the
case where the illumination comes from all directions, we
can describe the image intensity using (2) with K tending
to infinity; i.e., an integral. Note that in (2) the number of
unknowns for n remains the same as in (1) and (2) remains
a linear equation when ρ and li are known.

3.2. Data acquisition
In the conventional photometric stereo setting, images

are acquired in a darkroom and the light source directions
can be well calibrated with fixed light sources. By contrast,
we wish to use natural environmental illumination. Hence,
a major component in our environment light photometric
stereo approach is the estimation of the light source direc-
tions li in (2).

Figure 2 shows our experimental setup for data acquisi-
tion. We use a mirror sphere to capture the strength of the
incoming light from all directions in the form of an envi-
ronment map, a common method in graphics rendering for
representing the effect of distant light sources illuminating
object surfaces [8], and adopt it for surface normal estima-
tion in our environment light photometric stereo. We put the
mirror sphere near the object of interest and capture images
of both.

Once we have acquired the environment map, we sam-
ple a number of directions in the illumination hemisphere

using an icosahedron with sub-division [2], and average the
illumination environment map over these directions; i.e., ac-
cording to (2),

I(x) =
ρ(x)

K

K∑
i=1

cili · n(x), (3)

where K is now the number of directions. In our implemen-
tation, we sample 2562 directions in the environment map to
approximate the illumination. Note that when li ·n(x) ≤ 0,
then li does not contribute to the image intensity I(x) in
(3). Hence, we also need to estimate the lighting directions
(Figure 2 (Right)) that contribute to the pixel intensity, as
described in the next section.

4. Normal Estimation Algorithm
We will now describe our surface normal estimation al-

gorithm. We first present our preprocessing step based on
low-rank matrix completion. Then, we present our method
for normal and light contribution refinement. Finally, we
describe how to include total variation regularization [18, 5]
to postprocess surface normals using spatial support.

4.1. Preprocessing via low­rank matrix completion
Our input data is subject to different sources of error—

e.g., shadows, highlights, and even pixel misalignment
across different image captures—which can affect the per-
formance of our algorithm. To deal with these errors, we
adopt the low-rank matrix completion technique [13, 25].
We assemble our n input images Ij for j = 1, · · · , n into a
data matrix

D = [vec(I1) · · · vec(In)], (4)

where vec(Ij) = [Ij(1), · · · , Ij(m)]T is the vectorized in-
put image and m is the number of pixels in the object mask.
Since our environment light model in (2) is linear and the
dimension of n is 3, the rank of matrix D is in principle at
most 3. However, due to the various errors, we observe in
practice that the rank of D is greater than 3. As observed
in [25], the errors related to photometric stereo are usually
sparse; hence, we can isolate them by formulating the prob-
lem as a matrix rank minimization:

min
A,E

||A||∗ + λ||E||1 such that D = A+E, (5)

where A is a rank 3 matrix, E is the matrix of error residu-
als, || · ||∗ and || · ||1 are the nuclear norm and L1-norm,
respectively, and λ > 0 is a weighting parameter. We
use the Accelerated Proximal Gradient [13] to solve (5).
The clean low-rank matrix A, computed separately for each
color channel, will be used as input data in the subsequent
steps.

The above preprocessing step offers us three major ad-
vantages: First, by isolating the errors, such as specular



highlights and shadows, our normal estimation algorithm
is robust. Second, although we fix our captured object and
camera physically, small misalignment errors during image
data capture are inevitable and the preprocessing step makes
our method robust to small misalignment errors by repairing
the misaligned pixels with proximal values, which ensures
the rank 3 property of matrix A. Third, the low-rank ma-
trix completion allows us to relax the strict requirement of
a Lambertian surface reflectance model in comparing with
the method in [12], as long as the non-Lambertian aspect
can be factorized into the sparse residual matrix E. Fig-
ure 3 compares results without and with low-rank matrix
completion.

4.2. Normal refinement using least squares
We will now present our method for normal refinement.

We will first assume that we know the lighting directions
that contribute to the intensity of a pixel. In the next sub-
section, we will describe how to refine the contribution of
each lighting direction given the surface normal. Hence,
the steps for normal and lighting direction refinement will
be performed in an alternating optimization fashion.

In order to deal with surface albedo, we follow the pro-
cedures in [28] to choose a denominator image Id and to
estimate the surface normals from ratio images

Ij

Id
=

∑K
i cji l

j
i · n∑K

i cdi l
d
i · n

(6)

where Ij , j = 1, · · · , n − 1 are the input after low-rank
matrix completion. From (6), we can re-write (3) as

An = 0 (7)

where A = [Ij
∑K

i cdi l
d
i − Id

∑K
i cji l

j
i ]. The least square

solution of n can be obtained by singular value decomposi-
tion (SVD), which explicitly enforces ||n|| = 1.

4.3. Illumination contribution refinement
Given the estimated normal direction, we now wish to

refine the contribution of illumination direction that af-
fects the pixel intensity. Without self-occlusion, this can
be achieved by fitting a hemisphere of directions such that
l · n > 0 (Figure 2 (Right)). We propose a simple heuristic
method to evaluate self-occlusion: If the normal direction
between neighboring pixels forms a concave shape and the
current normal direction is closer to [0, 0, 1]T , it is likely
that the incoming light from the neighboring directions is
being occluded. Hence, we give a smaller weight to the
light from that projected lighting direction. We evaluate
self-occlusion for all directions within the local neighbor-
hood and finally obtain a weighted mask for the contribu-
tion of illumination directions, which represents the relative
contributions of the light from different directions.

Figure 3. Self-comparisons of our results without (left) and with
(right) low-rank matrix completion.

Figure 4. Self-comparisons of our results without (left) and with
(right) TV regularization.

We initialize the normal direction and the correspond-
ing hemisphere of environment illumination using exhaus-
tive search, which minimizes the errors from the input im-
ages. The exhaustive search algorithm generally provides a
good initialization, but it is slow if the search space is large.
Therefore, we sample only 42 different normal directions
for the exhaustive search initialization; i.e., an icosahedron
subdivided once. This yields a good balance between ac-
curacy and efficiency for our alternating optimization (AO)
approach.

4.4. Spatial refinement using TV regularization
Thus far, our normal estimation method processes each

pixel individually. As demonstrated in several previous
works [28, 9, 19], spatial regularization is useful in error
correction as well as in improving the overall accuracy of
the estimated surface normals. In our postprocessing step,
we employ L1-norm vectorial total variation (TV) regular-
ization to refine the estimated surface normals n∗ obtained
from the previous section, as follows:

n⋆ = argmin
n

||n∗ − n||2 + λ|∇Ωn|, (8)

where ∇Ωn is the vectorial first derivative of n defined over
a local neighborhood in Ω and λ = 0.1 is the regularization
weight (see [5] for the details).

Figure 7 shows intermediate results during the AO iter-
ations and Figure 4 compares the result without and with



Figure 5. Input environments and images for the synthetic examples SPHERE and BUNNY.

spatial refinement with TV regularization. The TV regular-
ization postprocessing step produces our final normal esti-
mation results n⋆, and we use the technique from [26] to
reconstruct the 3D surface from n⋆.

5. Experimental Results
We will now validate the efficacy of our proposed

method in experiments using both synthetic and real ob-
jects.

5.1. Quantitative evaluation with synthetic images
Our first experiment evaluates uses synthetic input im-

ages for which ground truth normal maps are available, and
we analyze the effect of the number of input images and the
convergence of our AO.

Two synthetic examples SPHERE and (Stanford) BUNNY
were used for quantitative evaluation. We use the environ-
ment maps from [8] to render the synthetic input images as
shown in Figure 5. We show the color coded ground truth
normal maps and estimated normal maps in Figure 6 for
qualitative comparison. Our approach faithfully estimates
the surface normals, which closely approximate the ground
truth normals with RMS error of 0.0099 and 0.1051 for the
SPHERE and BUNNY, respectively.

To evaluate the robustness of our method, we plot the
RMS error of the estimated normals with different numbers
of input images in Figure 7. As expected, the RMS error
decreases as the number of images increases, with less sig-
nificant decreases forthcoming after more than 5 input im-
ages. Figure 7 plots the RMS error against the number of
iterations, which shows that our approach converges in 4 to
5 iterations for both examples.

5.2. Qualitative evaluation with real images
Next, we evaluate our framework on various real world

examples under different illumination conditions, including

(a) Ground truth (b) Result (c) Ground truth (d) Result

Figure 6. Comparison between ground truth and normal maps ob-
tained using nine environments. The results are obtained after four
iterations of the AO process.

Iteration 0 Iteration 1 Iteration 2 Iteration 3

Figure 7. Convergence analysis of our alternating optimization
framework. Top: RMS error of the estimated normals versus
the number of iterations, using different numbers of input im-
ages. Bottom: qualitative illustration of our intermediate results
for BUNNY. Iteration 0 is the result after the exhaustive search
initialization.

different background scenes, an indoor scene with different
indirect light sources, and an outdoor scene with sunlight
direction varying throughout a day. The running times are
indicated in Table 2.



#images size time (sec)
SPHERE 9 200 × 200 40.3
BUNNY 9 200 × 200 27.9
COUPLE 10 300 × 420 450.0
MOTHER&BABY 10 230 × 500 334.0
HORSEHEAD (INDOOR) 7 600 × 600 575.7
CHEF (INDOOR) 7 371 × 514 468.7
SHOE (INDOOR) 7 496 × 234 309.2
HORSE (SUNLIGHT) 8 260 × 347 140.8
CHEF (SUNLIGHT) 8 371 × 503 466.9

Table 2. The running times of our Matlab R2009b implementation
were measured on a 3.33GHz Intel Xeon PC.

Figure 8. Input environments and images for the real examples
COUPLE and MOTHER&BABY

Different background scenes. Our first real-world exper-
iment closely mimics the synthetic experiments, by cap-
turing the object in different illumination environments.
We used 10 input images for the examples COUPLE and
MOTHER&BABY. The input images are shown in Figure 8
and Figure 11 depicts the results. The reconstructed normal
maps and surfaces appear faithful. We show the l ·n images
under two different lighting conditions to reveal the shad-
ing, and we show the images of the real objects alongside
the reconstructed surfaces captured from a similar view-
point. The corresponding closeup view illustrates the de-
tails preserved in the reconstructed surfaces. For example,
the arms and legs of the COUPLE are clearly estimated and
we can clearly see that the mother is holding her baby in
MOTHER&BABY.

Indoor scene with different illumination conditions.
Next, we consider in an indoor scene with different illumi-
nation conditions, by turning on/off different light sources
in a room. Note the presence of ambient light and the use
of indirect light sources (e.g., table lamp, floor lamp). We
captured illumination environments and images for SHOE
(INDOOR), HORSEHEAD (INDOOR) and CHEF (INDOOR),
some of which are shown in Figure 9. Figure 11 shows the
results. As can be seen from the closeup image, our results
are very good under these conditions and subtle details such

Figure 9. Input environments and images for the real examples
SHOE (INDOOR), HORSEHEAD (INDOOR) and CHEF (INDOOR)

Figure 10. Input environments and images for the real examples
CHEF (SUNLIGHT).

as the textures of the shoe are faithfully reconstructed.

Outdoor scene with moving sunlight. Our final exper-
iments were conducted in an outdoor environment using
sunlight for reconstruction, which is the main goal of this
project. We captured images of the HORSE (SUNLIGHT)
and CHEF (SUNLIGHT) objects every hour from 10am to
5pm, obtaining eight input images per object. The input im-
ages and results are shown in Figure 1, Figure 10, and Fig-
ure 11. The results of CHEF (INDOOR) are shown alongside
to facilitate comparisons. We find that although the results
for the outdoor environment are reasonably good, they are
not as good as those for the indoor environment. Part of
the reason is the relatively modest variation in sunlight as
the sun moves along its trajectory, whereas the light sources
in the indoor environment are well distributed in different
directions.

6. Conclusion and Future Work
We have presented a photometric stereo framework

which employs natural environmental illumination, demon-
strating the feasibility of practical outdoor photometric
stereo. Featuring a simple setup for data capture with an
optimization framework for dense object surface normal es-
timation, our system achieves high quality normal estima-
tion even for complex indoor and outdoor scenes with natu-
ral illumination. By exploiting low-rank matrix completion



C
O

U
P

L
E

M
O

T
H

E
R

&
B

A
B

Y
S

H
O

E
(I

N
D

O
O

R
)

H
O

R
S

E
H

E
A

D
(I

N
D

O
O

R
)

C
H

E
F

(I
N

D
O

O
R

)
C

H
E

F
(S

U
N

L
IG

H
T

)

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 11. Real-world results. (a) Color-coded normal map. (b–c) Normal map shaded by l · n with l = [−1/
√
3, 1/

√
3, 1/

√
3]T and
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√
3, 1/

√
3, 1/

√
3]T , respectively. (d) Novel view of the reconstructed surface. (e-h) Closeup view comparing the reconstructed

surface with the real object from a similar viewpoint.



and total variation regularization techniques, our framework
is robust to small object misalignment, shadows, and high-
lights. We believe that our framework has effectively miti-
gated the limitations of conventional photometric stereo al-
gorithms, among them the need for a controlled environ-
ment for image data capture. In the future, we plan to ex-
tend our framework to incorporate non-Lambertian surface
reflectance models. We also aim to integrate our framework
with multi-view structure-from-motion algorithms in order
to reconstruct high quality models of 3D objects in their en-
tirety.
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