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Abstract. Fully-automatic execution is the ultimate goal for many Com-
puter Vision applications. However, this objective is not always realistic
in tasks associated with high failure costs, such as medical applications.
For these tasks, semi-automatic methods allowing minimal effort from
users to guide computer algorithms are often preferred due to desirable
accuracy and performance. Inspired by the practicality and applicability
of the semi-automatic approach, this paper proposes a novel deep neural
network architecture, namely SideInfNet that effectively integrates fea-
tures learnt from images with side information extracted from user an-
notations. To evaluate our method, we applied the proposed network to
three semantic segmentation tasks and conducted extensive experiments
on benchmark datasets. Experimental results and comparison with prior
work have verified the superiority of our model, suggesting the generality
and effectiveness of the model in semi-automatic semantic segmentation.

Keywords: semi-automatic semantic segmentation, side information

1 Introduction

Most studies in Computer Vision tackle fully-automatic inference tasks which,
ideally, perform automatically without human intervention. To achieve this, ma-
chine learning models are often well trained on rich datasets. However, these
models may still fail in reality when dealing with unseen samples. A possible
solution for this challenge is using assistive information provided by users, e.g.,
user-provided brush strokes and bounding boxes [16]. Human input is also critical
for tasks with high costs of failure. Examples include medical applications where
predictions generated by computer algorithms have to be verified by human ex-
perts before they can be used in treatment plans. In such cases, a semi-automatic
approach that allows incorporation of easy-and-fast side information provided
from human annotations may prove more reliable and preferable.
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Semantic segmentation is an important Computer Vision problem aiming to
associate each pixel in an image with a semantic class label. Recent semantic
segmentation methods have been built upon deep neural networks [11,8,4,5].
However, these methods are not flexible to be extended with additional infor-
mation from various sources, such as human annotations or multi-modal data.
In addition, human interactions are not allowed seamlessly and conveniently.

In this paper, we propose SideInfNet, a general model that is capable of in-
tegrating domain knowledge learnt from domain data (e.g., images) with side
information from user annotations or other modalities in an end-to-end fashion.
SideInfNet is built upon a combination of advanced deep learning techniques.
In particular, the backbone of SideInfNet is constructed from state-of-the-art
convolutional neural network (CNN) based semantic segmentation models. To
effectively calibrate the dense domain-dependent information against the spa-
tially sparse side information, fractionally strided convolutions are added to the
model. To speed up the inference process and reduce the computational cost
while maintaining the quality of segmentation, adaptive inference gates are pro-
posed to make the network’s topology flexible and optimal. To the best of our
knowledge, this combination presents a novel architecture for semi-automatic
segmentation.

A key challenge in designing such a model is in making it generalize to differ-
ent sparsity and modalities of side information. Existing work focuses on sparse
pixel-wise side information, such as user-defined keypoints [19,13], and geotagged
photos [22,7]. However, these methods may not perform optimally when the side
information is non-uniformly distributed and/or poorly provided, e.g., brush
strokes which can be drawn dense and intertwined. In [22], street-level panorama
information is used as a source of side information. However, such knowledge is
not available in tasks other than remote sensing, e.g., in tasks where the side
information is provided as brush strokes. Furthermore, expensive nearest neigh-
bor search is used for the kernel regression in [22], which we replace by efficient
trainable fractionally strided convolutions. The Higher-Order Markov Random
Field model proposed in [7] can be adapted to various side information types but
is not end-to-end trainable. Compared with these works, SideInfNet provides su-
perior performance in various tasks and on different datasets. Importantly, our
model provides a principled compromise between fully-automatic and manual
segmentation. The benefit gained by the model is well shown in tasks where
there exists a mismatch between training and test distribution. A few brush
strokes can drastically improve the performance on these tasks. We show the
versatility of our proposed model on three tasks:

– Zone segmentation of low-resolution satellite imagery [7]. Geotagged street-
level photographs from social media are used as side information.

– BreAst Cancer Histology (BACH) segmentation [2]. Whole-slide im-
ages are augmented with expert-created brush strokes to segment the slides
into normal, benign, in situ carcinoma and invasive carcinoma regions.

– Urban segmentation of very high-resolution (VHR) overhead crops taken
of the city of Zurich [21]. Brush annotations indicate geographic features and
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are augmented with imagery features to identify eight different urban and
peri-urban classes from the Zurich Summer dataset [21].

2 Related Work

2.1 Interactive Segmentation

GrabCut [16] is a seminal work of interactive segmentation that operates in an
unsupervised manner. The method allows users to provide interactions in the
form of brush strokes and bounding boxes demarcating objects. Several meth-
ods have extended the GrabCut framework for both semantic segmentation and
instance segmentation, e.g., [9,23]. However, these methods only support bound-
ing box annotations and thus cannot be used in datasets containing irregular
object shapes, e.g., non-rectangular zones in the Zurich Summer dataset [21].

Users can also provide prior and reliable cues to guide the segmentation
process on-the-fly [14,3,17,10]. For instance, Perazzi et al. [14] proposed a CNN-
based guidance method for segmenting user-defined objects from video data. In
this work, users provide object bounding boxes or regions. It is also shown that
increasing the number of user annotations led to improved segmentation quality.
In a similar manner, Nagaraja et al. [17] tackled the task of object segmentation
from video by combining motion cues and user annotations. In their work, users
make scribbles to delineate the objects of interests. Experimental results verified
the cooperation of sparse user annotations and motion cues, filling the gap be-
tween fully automatic and manual object segmentation. However, in the above
methods, user annotations play a role as auxiliary cues but are not effectively
incorporated (as features) into the segmentation process.

2.2 Semantic Segmentation with Side Information

One form of side information used in several segmentation problems is key-
point annotations. The effectiveness of oracle keypoints in human segmentation
is illustrated in [19]. Similarly, in [13], a method for automatically learning key-
points was proposed. The keypoints are grouped into pose instances and used
for instance segmentation of human subjects. The spatial layout of keypoints
is important to represent meaningful human structures, but such constraint are
not always held for other object types, such as cell masses in histopathology.

Literature has also demonstrated the advantages of using ground-level im-
agery as side information in remote sensing. For instance, in [12], multi-view
imagery data, including aerial and ground images, were fused into a Markov
Random Field (MRF) model to enhance the quality of fine-grained road seg-
mentation. In [7], domain-dependent features from satellite images were learnt
using CNNs while street-level photos were classified and considered as higher-
orders in a Higher-Order MRF model. These methods are flexible to various
CNN architectures but are not trainable in an end-to-end fashion.

Workman et al. [22] proposed a model for fusing multi-view imagery data into
a deep neural network for estimating geospatial functions land cover and land
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Fig. 1. Our proposed network architecture. A feature map of annotations is con-
structed based on the task. Our architecture for semantic segmentation is built on
top of Deeplab-ResNet [5].

use. While this model is end-to-end, it has heavy computational requirements
for its operation, e.g., for calculating and storing k nearest annotations, and thus
may not be tractable for tasks with high density annotations. In addition, the
model requires panorama knowledge to infer street-view photography.

3 SideInfNet

We propose SideInfNet, a novel neural network that fuses domain knowledge
and user-provided side information in an end-to-end trainable architecture. Side-
InfNet allows the incorporation of multi-modal data, and is flexible with differ-
ent annotation types and adaptive to various segmentation models. SideInfNet is
built upon state-of-the-art semantic segmentation [11,5,15] and recent advances
in adaptive neural networks [20,18]. This combination makes our model opti-
mal while maintaining high quality segmentation results. For the sake of ease in
presentation, we describe our method in the view of zone segmentation, a case
study. However, our method is general and can be applied in different scenarios.

Zone segmentation aims to provide a zoning map for an aerial image, i.e.,
to identify the zone type for every pixel on the aerial image. Side information
in this case includes street-level photos. These photos are captured by users
and associated with geocodes that refer to their locations on the aerial image.
Domain-dependent features are extracted from the input aerial image using some
CNN-based semantic segmentation model (see Section 3.1). Side information fea-
tures are then constructed from user-provided street-level photos (see Section 3.2
and Section 3.3). Associated geocodes in the street-level photos help to identify
their locations in the receptive fields in the SideInfNet architecture where both
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domain-dependent and side information features are fused. To reduce the com-
putational cost of the model while not sacrificing the quality of segmentation,
adaptive inference gates are proposed to skip layers conditioned on input (see
Section 3.4). Fig. 1 illustrates the workflow of SideInfNet whose components are
described in detail in the following subsections.

3.1 CNN-based Semantic Segmentation

To extract domain-dependent features, we adopt the Deeplab-ResNet [5], a state-
of-the-art CNN-based semantic segmentation. Deeplab-ResNet makes use of a
series of dilated convolutional layers, with increasing rates to aggregate multi-
scale features. To adapt Deeplab-ResNet into our framework, we retain the same
architecture but extend the conv2 3 layer with side information (see Section 3.2).

Specifically, the side information feature map is concatenated to the output
of the conv2 3 layer (see Fig. 1). As the original conv2 3 layer outputs a feature
map with 256 channels, concatenating the side information feature map results
in a H

4 ×
W
4 × (256 + d) dimensional feature map where H and W are the

height and width of the input image, and d is the number of channels of the
side information feature map. This extended feature map is the input to the
next convolutional layer, conv3 1. We provide an ablation study on varying the
dimension d in our supplementary material.

3.2 Side Information Feature Map Construction

Depending on applications, domain specific preprocessing may need to be applied
to the side information. For instance, in the zone segmentation problem, we
use the Places365-CNN in [24] to create vector representations for street-level
photos (see details in Section 4.1). These vectors are then passed through a fully-
connected layer returning d-dimensional vectors. Suppose that the input aerial
image is of size H×W . A side information feature map xl of size H×W ×d can
be created by initializing the d-dimensional vector at every location in H ×W
with the feature vector of the corresponding street-level photo, if one exists there.
The feature vectors at locations that are not associated to any street-level photos
are padded with zeros. Mapping image locations to street-level photos can be
done using the associated geocodes of the street-level photos. Nearest neighbor
interpolation is applied on the side information feature map to create multi-scale
features. Features that fall in the same image locations (on the aerial image) due
to downscaling are averaged. To make feature vectors consistent across scales and
data samples, all feature vectors are normalized to the unit length.

There may exist misalignment in associating the side information features
with their corresponding locations on the side information feature map. For in-
stance, a brush stroke provided by a user may not well align with a true region.
In the application of zoning, a street-level photo may not record the scene at
the exact location where the photo is captured. Therefore, a direct reference of
a street-level photo to a location on the feature map via the photo’s geocode
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may not be a perfect association. However, one could expect that the side in-
formation could be propagated from nearby locations. To address this issue, we
apply a series of fractionally-strided convolutions to the normalized feature map
xl to distribute the side information spatially. In our implementation, we use
3 × 3 kernels of ones, with stride length of 1 and padding of 1. After a single
fractionally-strided convolution, side information features are distributed onto
neighbouring 3×3 regions. We repeat this operation (denoted as fc) n times and
sum up all the feature maps to create the features for the next layer as follows,

xl+1 = F (xl) =

n∑
i=1

wif
i
c(xl) (1)

where wi are learnable parameters and f i
c is the i-th functional power of fc, i.e.,

f i
c(xl) =

{
fc(x

l), i = 1

fc(f
i−1
c (xl)), otherwise

(2)

The parameters wi in (1) allow our model to learn the importance of spatial
extent. We observe a decreasing pattern in wi (i.e., w1 > w2 > · · · ) after training.
This matches our intuition that information is likely to become less relevant with
increased distances. The resulting feature map xl+1 represents a weighted sum
of nearby feature vectors. We also normalize the feature vector at each location
in the feature map by the number of the fractionally-strided convolutions used
at that location. This has the effect of averaging overlapping features.

Lastly, we perform maxpooling to further downsample the side information
feature map to fit with the counterpart domain-dependent feature map for fea-
ture fusion. We choose to perform feature fusion before the second convolutional
block of Deeplab-ResNet, with the output of the conv2 3 layer. We empirically
found that this provided a good balance between computational complexity and
segmentation quality. The output of the maxpooling layer is concatenated in the
channels dimension to the output of the original layer (see Fig. 1). It is important
to note that our proposed side information feature map construction method is
general and can be applied alongside any CNN-based semantic segmentation
architectures.

3.3 Fusion Weight Learning

As defined in (1), the output for each pixel (p, q) in the feature map f i+1
c (xl)

(after applying 3× 3 fractionally-strided convolution of 1s) can be described as:

f i+1
c (xl)p,q =

3∑
j=1

3∑
k=1

wix
l
p−2+j,q−2+k. (3)

Gradient of the fusion weight wi for each layer can be computed as,

∂L

∂wi
=

∂L

∂f i+1
c (xl)

∂f i+1
c (xl)

∂wi
=

∑
p

∑
q

∂L

∂f i+1
c (xl)p,q

3∑
j=1

3∑
k=1

xl
p−2+n,q−2+n (4)
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where ∂L
∂fi+1

c (xl)
is back-propagated from the conv2 3 layer.

For the fully-connected layers used for domain-specific processing (see Fig. 1),
the layers are shared for each side-information instance. The shared weights wfc

can be learnt through standard back-propagation of a fully-connected layer:

∂L

∂wfc
=

∂L

∂f1
c

∂f1
c

∂wfc
(5)

where ∂L
∂f1

c
is back-propagated from the first fusion layer (see (4)).

3.4 Adaptive Architecture

Inspired by advances in adaptive neural networks [20,18], we adopt adaptive in-
ference graphs in SideInfNet. Adaptive inference graphs decide skip-connections
in the network architecture using adaptive gates zl. Specifically, we define,

xl+1 = xl + zl(h(xl)) · F (xl) (6)

where zl(h(xl)) ∈ {0, 1} and h is some function that maps xl ∈ H ×W × d into
a lower-dimensional space of 1 × 1 × d. The gate zl is conditioned on xl and
takes a binary decision (1 for “on” and 0 for “off”).

Like [20], we set the early layers and the final classification layer of our model
to always be executed, as these layers are critical for maintaining the accuracy.
The gates are included in every other layer. We define the function h as,

h(xl) =
1

H ×W

H∑
i=1

W∑
j=1

xl
i,j (7)

The feature map h(xl) is passed into a multi-layer perceptron (MLP), which
computes a relevance score to determine whether the layer l is executed. We
also use a gate target rate t, that determines what fraction of layers should be
activated. This is implemented as a mean squared error (MSE) loss and jointly
optimized with the cross entropy loss. Each separate MLP determines whether
its corresponding layer should be executed (contributing 1 to the total count), or
not (contributing 0). Thus, the MSE loss encourages the overall learnt execution
rate to be close to t. This is dynamic, i.e., more important layers would be
executed more frequently and vice versa. For instance, a target rate t = 0.8
imposes a penalty on the loss function when the proportion of layers executed is
greater or less than 80%. Our experimental results on this adaptive model are
presented in Section 4, where we find that allowing a proportion of layers to be
skipped helps improve segmentation quality.

4 Experiments and Results

In this section, we extensively evaluate our proposed SideInfNet in three different
case studies. In each case study, we compare our method with its baseline and
other existing works. We also evaluate our method under various levels of side
information usage and with another CNN backbone.
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Table 2. Segmentation performance on zoning. Best performances are highlighted.

Approach
Accuracy mIOU

BOS NYC SFO Mean BOS NYC SFO Mean

Deeplab-ResNet [5] 60.79% 59.58% 72.21% 64.19% 28.85% 23.77% 38.40% 30.34%
HO-MRF∗ [7] 59.52% 72.25% 73.93% 68.57% 31.92% 34.99% 46.53% 37.81%
Unified∗ [22] 67.91% 70.92% 75.92% 71.58% 40.51% 39.27% 55.36% 45.05%
SideInfNet 71.33% 71.08% 79.59% 74.00% 41.96% 39.59% 60.31% 47.29%

∗ Our implementation.

4.1 Zone Segmentation

Experimental Setup Like [7], we conducted experiments on three US cities:
Boston (BOS), New York City (NYC), and San Francisco (SFO). Freely avail-
able satellite images hosted on Microsoft Bing Maps [6] were used. Ground-truth
maps were retrieved at a service level of 12, which corresponds to a resolution of
38.2185 meters per pixel. An example of the satellite imagery is shown in Fig. 2.
We retrieved street-level photos from Mapillary [1], a service for sharing crowd-
sourced geotagged photos. There were four zone types: Residential, Commercial,
Industrial and Others. Table 1 summarizes the dataset used in this case study.

Fig. 2. Satellite image of San Francisco.

Table 1. Proportion of street-level
photos (#photos).

Zone Type
City

BOS NYC SFO

Residential 25,607 16,395 50,116

Commercial 13,412 5,556 19,641

Industrial 2,876 9,327 15,219

Others 25,402 15,281 50,214

To extract side information features, we utilized the pre-trained model of
Places365-CNN [24], which was designed for scene recognition. We fine-tuned
the model on our data. During training the model, we froze the weights of the
Places365-CNN and used this fine-tuned model to generate side information
feature maps. We also applied a series of n = 5 fractionally-strided convolutions
on feature maps generated from Places365-CNN. This acts as to distribute the
side information from each geotagged photo 5 pixels in each cardinal direction.

Results We evaluate our method and compare it with two recent works: Higher-
Order Markov Random Field (HO-MRF) [7] and Unified model [22] using 3-fold



SideInfNet: Semi-Automatic Semantic Segmentation with Side Information 9

HO-MRF [7] Unified [22] SideInfNet Groundtruth
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Fig. 3. Comparison of our method and previous works. Best viewed in color.

cross validation, i.e., two cities are used for training and the other one is used
for testing. To have a fair comparison, the same Places365-CNN model is used
to extract side information in all methods. We also compare our method against
the baseline Deeplab-ResNet, which directly performs semantic segmentation of
satellite imagery without the use of geotagged photos.

Our results on both pixel accuracy and mean intersection over union (mIOU)
are reported in Table 2. As shown in the table, our method significantly improves
over its baseline, Deeplab-ResNet, proving the importance of side information.
SideInfNet also outperforms prior work, with a relative improvement in pixel
accuracy from the Unified model by 3.38% and from the HO-MRF by 7.92%.
Improvement on mIOU scores is also significant, e.g., by 4.97% relative to the
Unified model, and 25.07% relative to the HO-MRF model.

In addition to improved accuracy, our method offers several advantages over
the previous works. First, compared with the HO-MRF [7], our method is trained
end-to-end, allowing it to jointly learn optimal parameters for both semantic
segmentation and side information feature extraction. Second, our method is
efficient in computation. It simply performs a single forward pass through the
network to produce segmentation results, opposed to iterative inference in the
HO-MRF. Third, by using fractionally-strided convolutions, the complexity of
our method is invariant to the side information density. This allows optimal
performance on regions with high density of side information. In contrast, the
Unified model [22] requires exhaustive searches to determine nearest street-level
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Fig. 4. Left: Whole-slide image. Middle: True labels from the ground-truth. Right:
Simulated brush strokes. Best viewed in color.

Deeplab-ResNet [5] Unified [22] SideInfNet Groundtruth

Fig. 5. Comparison of our method and other works on image A05 in the BACH dataset
[2]. Best viewed in color.

photos for every pixel on satellite image and thus depend on the density of the
street-level photos and the size of the satellite image.

We qualitatively show the segmentation results of our method and other
works in Fig. 3. A clear drawback of the HO-MRF is that the results tend to be
grainy, likely due to the sparsity of street-level imagery. In contrast, our method
generally provides smoother results that form contiguous regions. Moreover, our
method better captures fine grained details from street-level imagery.

4.2 BreAst Cancer Histology Segmentation

Experimental Setup BACH (BreAst Cancer Histology) [2] is a dataset for
breast cancer histology microscopy segmentation4. This dataset consists of high
resolution whole-slide images that contain an entire sampled tissue. The whole-
slide images were annotated by two medical experts, and images with disagree-
ments were discarded. There are four classes: normal, benign, in situ carcinoma
and invasive carcinoma. An example of a whole-slide image and its labels is
shown in Fig. 4. As the normal class is considered background, it is not eval-
uated. Side information for BACH consists of expert brush stroke annotations,

4 Data can be found at https://iciar2018-challenge.grand-challenge.org/. Due
to the unavailability of the actual test set, we used slides A05 and A10 for testing,
slide A02 for validation, and all other slides for training. This provides a fair class
distribution, as not all slides contained all semantic classes.

https://iciar2018-challenge.grand-challenge.org/
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indicating the potential presence of each class. In this case study, we use four
different brush stroke colors to annotate the four classes.

BACH dataset does not include actual expert-annotated brush strokes. There-
fore, to evaluate our method, we simulated expert annotations by using ground-
truth labels in the dataset. Since the ground-truth was created by two experts,
our brush strokes can be viewed as simulated rough expert input. To simulate sit-
uations where users have limited annotation time, we skipped annotating small
regions that are likely to be omitted under time constraints. Fig. 4 shows an
example of our simulated brush strokes. In our experiments, we used slides A05
and A10 for testing, slide A02 for validation, and all other slides for training.

Table 3. Segmentation performance
(mIOU) on BACH dataset. Best perfor-
mances are highlighted.

Approach A05 A10 Mean

Deeplab-ResNet [5] 34.08% 21.64% 27.86%
GrabCut [16] 30.20% 25.21% 27.70%
Unified∗ [22] 41.50% 17.23% 29.37%
SideInfNet 59.03% 35.45% 47.24%

∗ Our implementation.

Table 4. Segmentation performance
on Zurich Summer dataset. Best per-
formances are highlighted.

Approach Accuracy mIOU

Deeplab-ResNet [5] 73.20% 42.95%
GrabCut [16] 60.53% 26.89%
Unified∗ [22] 68.20% 42.09%
SideInfNet 78.97% 58.31%

∗ Our implementation.

Results We evaluate three different methods: our proposed SideInfNet, Unified
model [22], and GrabCut [16]. We were unable to run the HO-MRF model [7] on
the BACH dataset due to the large size of the whole-slide images (note that the
HO-MRF makes use of fully-connected MRF and thus is not computationally
feasible under this context). In addition, since GrabCut is a binary segmenta-
tion method, to adapt this work to our case study, we ran the GrabCut model
independently for each class. We report the performance of all the methods in
Table 3. We also provide some qualitative results in Fig. 5.

Experimental results show that our method greatly outperforms previous
works on BACH dataset. Furthermore, the Unified model [22] even performs
worse than the baseline Deeplab-ResNet that used only whole-slide imagery.
This suggests the limitation of the Unified model [22] in learning from dense
annotations. Table 3 also confirms the role played by the side information (i.e.,
the Deeplab-ResNet vs SideInfNet). This aligns with our intuition, as we would
expect that brush strokes provide stronger cues to guide the segmentation.

4.3 Urban Segmentation

Experimental Setup The Zurich Summer v1.0 dataset [21] includes 20 very
high resolution (VHR) overview crops taken from the city of Zurich, pansharp-
ened to a PAN resolution of about 0.62 centimeters ground sampling distance
(GSD). This is a much higher resolution compared to the low-resolution satellite
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Fig. 6. Example satellite image, brush annotations, and ground-truth map from the
Zurich Summer dataset [21]. Best viewed in color.

Deeplab-ResNet [5] Unified [22] SideInfNet Groundtruth

Fig. 7. Qualitative comparison of our method and other works on the Zurich Summer
dataset [21]. Best viewed in color.

imagery used in the zoning dataset. The Zurich Summer dataset contains eight
different urban and periurban classes: Roads, Buildings, Trees, Grass, Bare Soil,
Water, Railways and Swimming pools. Examples of satellite imagery, ground-
truth labels, and brush annotations are shown in Fig. 6. Preprocessing steps and
feature map construction are performed similarly to that of BACH. We also used
rough brush strokes demarcating potential urban classes as side information.

Results Our experimental results on the Zurich Summer dataset are summa-
rized in Table 4. In general, similar trends with the BACH dataset are found,
and our proposed method outperforms all prior works. Specifically, by using
brush strokes, we are able to gain a relative improvement of 7.88% on accuracy
and 35.76% on mIOU over the baseline Deeplab-ResNet. The Zurich dataset
contains high-resolution satellite imagery, which suggests the usefulness of in-
cluding brush annotations even with high fidelity image data. SideInfNet also
outperforms the Unified model [22] with a relative improvement of 15.79% on
accuracy and 38.53% on mIOU. This result proves the robustness of our method
in dealing with dense annotations, which challenge the Unified model. GrabCut
also under-performs due to its limitations as an unsupervised binary segmenta-
tion method. A qualitative comparison of our method with other works is also
shown in Fig. 7.
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Table 5. Performance of SideInfNet with varying side information.

Side Information
Used

mIOU Mean Accuracy

Zoning [7] BACH [2] Zurich [21] Zoning [7] BACH [2] Zurich [21]

100% 47.29% 47.24% 58.31% 74.00% 71.99% 78.97%
80% 40.27% 40.53% 52.32% 72.46% 68.60% 77.58%
60% 39.56% 34.16% 52.14% 72.39% 68.56% 76.33%
40% 37.70% 29.56% 49.49% 71.01% 64.87% 75.83%
20% 34.04% 26.15% 47.72% 68.11% 56.86% 74.29%
0% 28.11% 23.86% 45.98% 58.63% 60.48% 73.36%

4.4 Varying Levels of Side Information

In this experiment, we investigate the performance of our method when vary-
ing the availability of side information. To simulate various densities of brush
strokes for an input image, we sample the original brush strokes (e.g., from 0%
to 100% of the total number) and evaluate the segmentation performance of our
method accordingly. The brush strokes could be randomly sampled. However,
this approach may bias the spatial distribution of the brush strokes. To maintain
the spatial distribution of the brush strokes for every sampling case, we perform
k-means clustering on the original set of the brush strokes. For instance, if we
wish to utilize a percentage p of the total brush strokes, and n brush strokes are
present in total, we apply k-means algorithm with k = ceil(np) on the centers of
the brush strokes to spatially cluster the brush strokes into k groups. For each
group, we select the brush stroke whose center is closest to the group’s centroid.
This step results in k brush strokes. We note that a similar procedure can be
applied to sample street-level photos for zone segmentation.

We report the quantitative results of our method w.r.t varying side informa-
tion in Table 5. In general, we observe a decreasing trend over the accuracy and
mIOU as the proportion of side information decreases. This supports our hypoth-
esis that side information is a key signal for improving segmentation accuracy.
We also observe a trade off between human effort and segmentation accuracy. For
instance, on the zone segmentation dataset [7], improvement over the baseline
Deeplab-ResNet is achieved with as little as 20% of the original number of geo-
tagged photos. This suggests that our proposed method can provide significant
performance gains even with minimal human effort.

4.5 SideInfNet with another CNN Backbone

To show the adaptability of SideInfNet, we experimented SideInfNet built with
another CNN backbone. In particular, we adopted the VGG-19 as the backbone
in our architecture. Note that VGG was also used in the Unified model [22].
To provide a fair comparison, we re-implemented both SideInfNet and Unified
model with the same VGG architecture and evaluated both models using the
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Table 6. Performance (mIOU) of SideInfNet with VGG.

Model Zoning [7] BACH [2] Zurich [21]

SideInfNet-VGG 46.12% 49.53% 49.73%
Unified [22] 45.05% 29.37% 42.09%

same training/test split. We also utilized the original hyperparameters proposed
in [22] in our implementation. We report the results of this experiment in Table 6.

Experimental results show that SideInfNet outperforms the Unified model [22]
on all segmentation tasks when the same VGG backbone is used. These results
confirm again the advantages of our method in feature construction and fusion.

5 Conclusion

This paper proposes SideInfNet, a novel end-to-end neural network for semi-
automatic semantic segmentation with additional side information. Through
extensive experiments on various datasets and modalities, we have shown the
advantages of our method across a wide range of applications, including but not
limited to remote sensing and medical image segmentation. In addition to being
general, our method boasts improved accuracy and computational advantages
over prior models. Lastly, our architecture is easily adapted to various semantic
segmentation models and side information feature extractors.

The method proposed in this paper acts as a compromise between fully-
automatic and manual segmentation. This is essential for many applications
with high cost of failure, in which fully-automatic methods may not be widely
accepted as of yet. Our model works well with dense brush stroke information,
providing a quick and intuitive way for human experts to refine the model’s
outputs. In addition, our model also outperforms prior work on sparse pixel-
wise annotations. By including side information to shape predictions, we are
able to achieve an effective ensemble of human expertise and machine efficiency,
producing both fast and accurate segmentation results.
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