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Abstract

The integration of neural rendering and the SLAM sys-
tem recently showed promising results in joint localization
and photorealistic view reconstruction. However, existing
methods, fully relying on implicit representations, are so
resource-hungry that they cannot run on portable devices,
which deviates from the original intention of SLAM. In this
paper, we present Photo-SLAM, a novel SLAM framework
with a hyper primitives map. Specifically, we simultane-
ously exploit explicit geometric features for localization and
learn implicit photometric features to represent the tex-
ture information of the observed environment. In addition
to actively densifying hyper primitives based on geometric
features, we further introduce a Gaussian-Pyramid-based
training method to progressively learn multi-level features,
enhancing photorealistic mapping performance. The ex-
tensive experiments with monocular, stereo, and RGB-D
datasets prove that our proposed system Photo-SLAM sig-
nificantly outperforms current state-of-the-art SLAM sys-
tems for online photorealistic mapping, e.g., PSNR is 30%
higher and rendering speed is hundreds of times faster in
the Replica dataset. Moreover, the Photo-SLAM can run at
real-time speed using an embedded platform such as Jet-
son AGX Orin, showing the potential of robotics applica-
tions. Project Page and code: https://huajianup.
github.io/research/Photo—-SLAM/.

1. Introduction

Simultaneous Localization and Mapping (SLAM) using
cameras is a fundamental problem in both computer vi-
sion and robotics, seeking to enable autonomous systems
to navigate and comprehend their surroundings. Tradi-
tional SLAM systems [7-9, 24] primarily focus on geomet-
ric mapping, providing accurate but visually simplistic rep-
resentations of the environment. However, recent develop-
ments in neural rendering [35, 40] have demonstrated the
potential of integrating photorealistic view reconstruction
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Figure 1. Rendering and trajectory results. Photo-SLAM can re-
construct high-fidelity views of scenes using monocular, stereo,
and RGB-D cameras while render speed is up to 1000 FPS.

into the SLAM pipeline, enhancing the perception capabil-
ities of robotic systems.

Despite the promising results achieved through the in-
tegration of neural rendering and SLAM, existing meth-
ods simply and heavily rely on implicit representations,
making them computationally intensive and unsuitable for
deployment on resource-constrained devices. For exam-
ple, Nice-SLAM [46] leverages a hierarchical grid [42] to
store learnable features representing the environment while
ESLAM [16] utilizes multi-scale compact tensor compo-
nents [3]. They then jointly estimate the camera poses and
optimize features by minimizing the reconstruction loss of
a batch of ray sampling [21]. Such an optimization pro-
cess is time-consuming. Consequently, it is indispensable
for them to incorporate corresponding depth information
obtained from various sources such as RGB-D cameras,
dense optical flow estimators [33], or monocular depth es-
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timators [12] to ensure efficient convergence. Additionally,
since the implicit features are decoded by the multi-layer
perceptrons (MLPs), it is typically necessary to carefully
define a bounding area to normalize ray sampling for opti-
mal performance, as discussed in [14]. It essentially limits
the scalability of the system. These limitations imply that
they cannot provide real-time exploration and mapping ca-
pabilities in the unknown environment using portable plat-
forms, which is one of the main objectives of SLAM.
In this paper, we propose Photo-SLAM, an innovative
framework that addresses the scalability and computational
resource constraints of existing methods, while achieving
precise localization and online photorealistic mapping. We
maintain a hyper primitives map which is composed of
point clouds storing ORB features [26], rotation, scaling,
density, and spherical harmonic (SH) coefficients [10, 38].
The hyper primitives map allows the system to efficiently
optimize tracking using a factor graph solver and learn the
corresponding mapping by backpropagating the loss be-
tween the original images and rendering images. The im-
ages are rendered by 3D Gaussian splatting [ 18] rather than
ray sampling. Although the introduction of a 3D Gaussian
splatting renderer can reduce view reconstruction costs, it
does not enable the generation of high-fidelity rendering for
online incremental mapping, in particular in monocular sce-
narios. To achieve high-quality mapping without reliance
on dense depth information, we further propose a geometry-
based densification strategy and a Gaussian-Pyramid-based
(GP) learning method. Importantly, GP learning facilitates
the progressive acquisition of multi-level features which ef-
fectively enhances the mapping performance of our system.
To evaluate the efficacy of our proposed approach, we
conduct extensive experiments employing diverse datasets
captured by monocular, stereo, and RGB-D cameras. These
experiment results unequivocally demonstrate that Photo-
SLAM attains state-of-the-art performance in terms of lo-
calization efficiency, photorealistic mapping quality, and
rendering speed. Furthermore, the real-time execution of
the Photo-SLAM system on the embedded devices show-
cases its potential for practical robotics applications. The
schematic overview of Photo-SLAM is demonstrated in
Fig. 1 and Fig. 2b.
In summary, the main contributions of this work include:
* We developed the first simultaneous localization and pho-
torealistic mapping system based on hyper primitives
map. The novel framework supports monocular, stereo,
and RGB-D cameras in indoor and outdoor environments.

* We proposed Gaussian-Pyramid-based learning allowing
the model to efficiently and effectively learn multi-level
features realizing high-fidelity mapping.

e The system, fully implemented in C++ and CUDA,
achieves start-of-the-art performance and can run at real-
time speed even on embedded platforms.
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Figure 2. The Photo-SLAM contains four main components, in-
cluding localization, explicit geometry mapping, implicit photore-
alistic mapping, and loop closure components, while maintaining
a map with hyper primitives.

2. Related Work

Visual localization and mapping is a problem that aims to
build a proper representation of an unknown environment
via cameras while estimating their poses within that envi-
ronment. In contrast to SfM techniques, visual SLAM tech-
niques typically pursue a better trade-off between accuracy
and real-time performance. In this section, we focus on vi-
sual SLAM and conduct a brief review.

Graph Solver vs Neural Solver. Classical SLAM meth-
ods widely adopt factor graphs to model complex optimiza-
tion problems between variables (i.e., poses and landmarks)
and measurements (i.e., observations and constraints). To
achieve real-time performance, SLAM methods incremen-
tally propagate their pose estimations while avoiding ex-
pensive operations. For example, ORB-SLAM series meth-
ods [2, 23, 24] rely on extracting and tracking lightweight
geometric features across consecutive frames, which per-
form bundle adjustment locally instead of globally. More-
over, direct SLAMs like LSD-SLAM [7] and DSO [8] op-
erate on raw image intensities, without the cost of geomet-
ric feature extractions. They maintain a sparse or semi-
dense map represented by point clouds online, even on the
resource-constraint system. Benefiting from the success
of deep-learning models, learnable parameters and models
are introduced into SLAM making the pipeline differen-
tiable. Some methods such as DeepTAM [45] predict cam-
era poses by the neural network [17] end-to-end, while the
accuracy is limited. To enhance performance, some meth-
ods, e.g., D3VO [41] and Droid-SLAM [34], introduce
monocular depth estimation [12] or dense optical flow esti-
mation [33] models into the SLAM pipeline as supervision
signals. Therefore, they can generate depth maps that ex-
plicitly represent the scene geometry. With the large-scale
synthetic SLAM dataset, TartanAir [37], available for train-
ing, Droid-SLAM building upon RAFT [33] achieves state-
of-the-art performance. However, the pure neural-based
solver is computationally expensive and their performance
would significantly degrade on the unseen scenes.



Explicit Representation vs Implicit Representation. In
order to obtain dense reconstruction, some methods in-
cluding KinectFusion [15], BundleFusion [6], and Infini-
TAM [25] utilize the implicit representation, Truncated
Signed Distance Function (TSDF) [5], to integrate the in-
coming RGB-D images and reconstruct a continuous sur-
face, which can run in real time on GPU. Although they
can obtain dense reconstruction, view rendering quality is
limited. Recently, neural rendering techniques represented
by neural radiance field (NeRF) [21] have achieved breath-
taking novel view synthesis. Given camera poses, NeRF
implicitly models the scene geometry and color by multi-
layer perceptrons (MLP). The MLP is optimized by min-
imizing the loss of rendering images and training views.
iMAP [30] then adapts NeRF for incremental mapping, op-
timizing not only MLP but also camera poses. The fol-
lowing work Nice-SLAM [46] introduces multi-resolution
grids [42] to store features reducing the cost of deep MLP
query. Co-SLAM [36] and ESLAM [16] explore Instant-
NGP [22] and TensoRF [3] respectively to further acceler-
ate the mapping speed. However, implicitly joint optimiza-
tion of camera poses and geometry representation is still ill-
conditioned. Inevitably, they rely on explicit depth informa-
tion from RGB-D cameras or additional model predictions
for fast convergence of the radiance field.

Our proposed Photo-SLAM seeks to recover a concise
representation of the observed environment for immersive
exploration rather than reconstructing a dense mesh. It
maintains a map with hyper primitives online which capital-
izes on explicit geometric feature points for accurate and ef-
ficient localization while leveraging implicit representations
to capture and model the texture information. Please refer to
Fig. 2a for the taxonomy of existing systems. Since Photo-
SLAM achieves high-quality mapping without reliance on
dense depth information, it can support RGB-D cameras as
well as monocular and stereo cameras.

3. Photo-SLAM

Photo-SLAM contains four main components, including lo-
calization, geometry mapping, photorealistic mapping, and
loop closure, shown in Fig. 2b. Each component runs in a
parallel thread and jointly maintains a hyper primitives map.

3.1. Hyper Primitives Map

In our system, hyper primitives are defined as a set of point
clouds P € R? associated with ORB features [26] O €
R?56 rotation r € SO(3), scaling s € R?, density o € R,
and spherical harmonic coefficients SH € R'6. ORB fea-
tures extracted from image frames take responsibility for es-
tablishing 2D-to-2D and 2D-to-3D correspondences. Once
the system successfully estimates the transformation matrix
based on sufficient 2D-to-2D correspondences between ad-
jacent frames, the hyper primitives map is initialized via tri-

angulation, and pose tracking gets started. During tracking,
the localization component processes the incoming images
and makes use of 2D-to-3D correspondence to calculate
current camera poses. In addition, the geometry mapping
component will incrementally create and initialize sparse
hyper primitives. Finally, the photorealistic component pro-
gressively optimizes and densifies hyper primitives.

3.2. Localization and Geometry Mapping

The localization and geometry mapping components pro-
vide not only efficient 6-DoF camera pose estimations of
the input images, but also sparse 3D points. The optimiza-
tion problem is formulated as a factor graph solved by the
Levenberg—Marquardt (LM) algorithm.

In the localization thread, we use a motion-only bundle
adjustment to optimize the camera orientation R € SO(3)
and position t € R? in order to minimize the reprojec-
tion error between matched 2D geometric keypoint p; of
the frame and 3D point P;. Let ¢ € X be the index of set of
matches /X', what we are trying to optimize with LM is

{R.t} =argmin > p ([Ipi — w(RP; +0)[3, ), (D
’ ieX

where X is the scale-associated covariance matrix of the
keypoint, 7(+) is the 3D-to-2D projection function, and p
denotes the robust Huber cost function.

In the geometry mapping thread, we perform a local
bundle adjustment on a set of covisible points P and
keyframes ;. The keyframes are selected frames from
the input camera sequence and provide good visual infor-
mation. We construct a factor graph where each keyframe
is a node, and the edges represent constraints between
keyframes and matched 3D points. We iteratively minimize
the reprojection residual by refining the keyframe poses and
3D points using the first-order derivatives of the error func-
tion. We fix the poses of keyframes K which are also ob-
serving Pr, but not in K. Let £ = Ky U Lp, and X}, be
the set of matches between 2D keypoints in a keyframe k
and 3D points in Pr,. The optimization process aims to re-
duce the geometric inconsistency between K and Py, and
is defined as

{Pi, Ry, tifi € Pr,l € Kp} = argmin Y~ Y p(E(k, ),
PRt ek jex,
2

with reprojection residual
E(k,j) = |lp; — 7(RxP; + t4)[[3, .

3.3. Photorealisitc Mapping

The photorealistic mapping thread is responsible for opti-
mizing hyper primitives that are incrementally created by
the geometry mapping thread. The hyper primitives can be
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Figure 3. Comparison of different progressive training methods. The encoder £, here represents a structure to regress features J,, which
can be an MLP, voxel grid, hash table, positional encoding, etc. The decoder D,, here represents a structure converting J,, into density,
color, or other information. We proposed a new method based on the Gaussian pyramid to efficiently learn multi-level features.

rasterized by a tile-based renderer to synthesize correspond-
ing images with keyframe poses. The rendering process is
formulated as

1—1
C(R,t) = Zciai]:[(l — ), (3)
iEN j=1

where N is the number of hyper primitives, c; denotes
the color converted from SH € R!6, and a; is equal to
o; - G(R,t,P;,r;,s;), G denotes 3D Gaussian splatting al-
gorithm [18]. The optimization in terms of position P, ro-
tation r, scaling s, density o, and spherical harmonic coeffi-
cients SH is performed by minimizing the photometric loss
L between rendering image I; and ground truth image I,
denoted as

L= (1-X) I — Ig|, + M1 —=SSIM(I, Iy)), (4

where SSIM(I,, Iy) denotes structural similarity between
two images and A is a weight factor for balance.

3.3.1 Geometry-based Densification

If we consider photorealistic mapping as a regression model
of the scene, denser hyper primitives, i.e., more parame-
ters, generally can better model the complexity of the scene
for higher rendering quality. To meet the demand for real-
time mapping, the geometry mapping component only es-
tablishes sparse hyper primitives. Therefore, the coarse hy-
per primitives created by the geometry mapping need to be
densified during the optimization of photorealistic mapping.
Apart from splitting or cloning hyper primitives with large
loss gradients similar to [18], we introduce an additional
geometry-based densification strategy.

Experimentally, less than 30% of 2D geometric feature
points of frames are active and have corresponding 3D
points, especially for non-RGB-D scenarios, as shown in
Fig. 4. We argue that 2D geometric feature points spatially
distributed in the frames essentially represent the region
with a complex texture that requires more hyper primitives.
Therefore, we actively create additional temporary hyper
primitives based on the inactive 2D feature points once the
keyframe is created for photorealistic mapping. When we

active 2D feature points
(w/ matched hyper primitives)

inactive 2D feature points
(w/o matched hyper primitives)

Figure 4. We make use of initial geometric information to densify
hyper primitives.

use RGB-D cameras, we can directly project the inactive 2D
feature points with depth to create temporary hyper primi-
tives. As for monocular scenarios, we estimate the depth of
inactive 2D feature points by interpreting the depth of their
nearest neighborhood’s active 2D feature points. In stereo
scenarios, we rely on a stereo-matching algorithm to esti-
mate the depth of inactive 2D feature points.

3.4. Gaussian-Pyramid-Based Learning

Progressive training is a widely used technology in neu-
ral rendering to accelerate the optimization process. Some
methods have been proposed to reduce training time while
achieving better rendering quality. A basic method is to
progressively increase the structure resolution and the num-
ber of model parameters. For example, NSVF [20] and
DVGO [31] progressively increase the feature grid reso-
lution during training which significantly improves train-
ing efficiency compared to previous work. The lower-
resolution model is used to initialize the higher-resolution
model but is not retained for final inference, as shown in
Fig. 3a. To enhance performance with multi-resolution
features, NGLoD [32] progressively trains multiple MLPs
as encoders and decoders, while only retaining the final
decoder to decode integrated multi-resolution features, as
shown in Fig. 3b. Furthermore, Neuralangelo [19] only
maintains a single MLP during training, as shown in Fig. 3c.
It progressively activates different levels of hash tables [22]
achieving better performance in large-scale scene recon-
struction. Similarly, 3D Gaussian Splatting [18] progres-
sively densifies 3D Gaussian achieving top performance
on radiance field rendering. Training different level mod-
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els in these methods is supervised by the same training
images. Conversely, the fourth method (Fig. 3d) used in
BungeeNeRF [39] is to apply different models to tackle
different-resolution images. BungeeNeRF demonstrates the
efficiency of explicitly grouping multi-resolution training
images for models to learn multi-level features. However,
such a method is not universal since multi-resolution images
are not available for most scenarios.

To make full use of various merits, we propose Gaussian-
Pyramid-based (GP) learning (Fig. 3e), a new progressive
training method. As illustrated in Fig. 5, a Gaussian pyra-
mid is a multi-scale representation of an image containing
different levels of detail. It is constructed by repeatedly ap-
plying Gaussian smoothing and downsampling operations
to the original image. At the beginning training step, the
hyper primitives are supervised by the highest level of the
pyramid, i.e. level n. As training iteration increases, we not
only densify hyper primitives as described in Sec. 3.3.1 but
also reduce the pyramid level and obtain a new ground truth
until reaching the bottom of the Gaussian pyramid. The
optimization process using a Gaussian pyramid with n+1
levels can be denoted as

to : argmin £ (I, GP" (Iy)) ,

t; : argmin £ (Irnfl,GPnfl(Igt)) ) )

t, : argmin L (IP7GPO(Igl)) ,

where L£(I;,GP(Iy)) is Eq. 4, while GP™(I) denotes the
ground image in the level n of the Gaussian pyramid. In
the experiment, we prove that GP learning significantly im-
proves the performance of photorealistic mapping particu-
larly for monocular cameras.

3.5. Loop Closure

Loop Closure [11] is crucial in SLAM because it helps ad-
dress the problem of accumulated errors and drift that can
occur during the localization and geometry mapping pro-
cess. After detecting a closing loop, we can correct local
keyframes and hyper primitives by similarity transforma-
tion. With corrected camera poses, the photorealistic map-
ping component can further get rid of the ghosting caused
by odometry drifts and improve the mapping quality.

4. Experiment

In this section, we compare Photo-SLAM to other state-of-
the-art (SOTA) SLAM and real-time 3D reconstruction sys-
tems in various scenarios encapsulating monocular, stereo,
RGB-D cameras, and indoor and outdoor environments. In
addition, we evaluate Photo-SLAM performance on vari-
ous hardware configurations to demonstrate its efficiency.
Finally, we conduct an ablation study to verify the effec-
tiveness of the proposed algorithms.

4.1. Implementation and Experiment Setup

We implemented Photo-SLAM fully in C++ and CUDA,
making use of ORB-SLAM3 [2], 3D Gaussian splat-
ting [18], and the LibTorch framework. The optimization
of photorealistic mapping is performed with the Stochas-
tic Gradient Descent algorithm while we use a fixed learn-
ing rate and A = 0.2. Considering image resolution of the
testing dataset, the level of the Gaussian pyramid is set to
three, i.e. n = 2 by default. The compared baseline in-
cludes a SOTA classical SLAM system ORB-SLAM3 [2],
a real-time RGB-D dense reconstruction system BundleFu-
sion [6], a deep-learning based system DROID-SLAM [34],
and recent SLAM systems supporting view synthesis, i.e.
Nice-SLAM [46], Orbeez-SLAM [4], ESLAM [16], Co-
SLAM [36], and Point-SLAM [27] and Go-SLAM [44].

Hardware. We ran Photo-SLAM and all compared meth-
ods using their official code in a desktop with an NVIDIA
RTX 4090 24 GB GPU, an Intel Core i9-13900K CPU,
and 64 GB RAM. We further tested Photo-SLAM on a lap-
top and a Jetson AGX Orin Developer Kit. The laptop is
equipped with an NVIDIA RTX 3080ti 16 GB Laptop GPU,
an Intel Core i9-12900HX, and 32 GB RAM.

Datasets and Metrics. We performed tests for monocu-
lar and RGB-D sensor types on the well-known RGB-D
datasets: the Replica dataset [28, 30] and the TUM RGB-
D dataset [29]. As for stereo tests, we used the EuRoC
MAYV dataset [1]. Besides indoor scenes, we utilize a ZED 2
stereo camera to collect outdoor scenes for extra evaluation.

Following the convention, we used the Absolute Trajec-
tory Error (ATE) metric [13] to estimate the accuracy of lo-
calization, while the RMSE and STD of ATE are reported.
Quantitative measurements in terms of PSNR, SSIM, and
LPIPS [43] are adopted to analyze the performance of pho-
torealistic mapping. We also report the requirement of com-
puting resources by showing the tracking FPS, rendering
FPS, and GPU memory usage. The evaluation regarding
mesh reconstruction is out of the range of this work. More-
over, to lower the effect of the nondeterministic nature of
multi-threading and machine-learning systems, we ran each
sequence five times and reported the average results for each
metric. Please refer to the supplementary for details.



On Replica Dataset Localization (cm) Mapping

Resources

Cam Method

RMSE| STD] PSNR1 SSIM1 LPIPS| Operation Time | Tracking FPS 1 Rendering FPS1 GPU Memory Usage |

ORB-SLAM3[2] | 3942  3.115 - - <1 mins 58.749 - 0

DROID-SLAM [34] | 0725  0.308 B - . <2 mins 35473 B 11GB

Nice-SLAM* [46] | 99.9415 35336 16311 0720  0.439 >10 mins 2.384 0.944 12GB

£ Orbeez-SLAM [4] - - 23246 0790 0336 <5 mins 49200 1.030 6GB

= Go-SLAM [44] | 71.054 24593 21172 0703  0.421 <5 mins 25.366 0.821 22GB

Ours (Jetson) 1235 0756 29284  0.883  0.139 <5 mins 18315 95.057 4GB

Ours (Laptop) 0713 0524 33049 0926  0.086 <5 mins 19.974 353.504 4GB

Ours 1091 0892 33302 0926  0.078 <2 mins 41.646 911.262 6GB
ORB-SLAM3[2] | 1.833 1478 - - <1 mins 52209 - 0

DROID-SLAM [34] | 0.634  0.248 - - - <2 mins 36.452 - 11 GB

BundleFusion [6] | 1.606 0969 23.839  0.822  0.197 <5 mins 8.630 B 5GB

Nice-SLAM [46] | 2350 1590 26.158  0.832 0232 >10 mins 2331 0.611 12GB

©  Orbeez-SLAM[4] | 0888 0562 32516 0916  0.112 <5 mins 41333 1.401 6GB

8 ESLAM [16] 0.568 0274 30594 0866  0.162 <5 mins 6.687 2.626 21GB

& Co-SLAM [36] 1158 0.602 30246 0864  0.175 <5 mins 14.575 3.745 4GB

Go-SLAM [44] 0571 0218 24158 0766 0352 <5 mins 19.437 0.444 24 GB

Point-SLAM [27] | 0596 0249 34632 0927  0.083 >2 hrs 0.345 0.510 24 GB

Ours (Jetson) 0581 0289 31.978 0916  0.101 <5 mins 17.926 116.395 4GB

Ours (Laptop) 0590 0289 34853  0.944  0.062 <5 mins 20.597 396.082 4GB

Ours 0.604 0298 34958 0942  0.059 <2 mins 42.485 1084.017 5GB

Table 1. Quantitative results on the Replica dataset. We mark the best two results with first and second . Nice-SLAM* means the depth
supervision is disabled. “-” denotes the system does not support view rendering or fails to track camera poses. The results of Photo-SLAM
running on the laptop and Jetson platform are denoted as “Ours (Laptop)” and “Ours (Jetson)” respectively.

(b) Nice-SLAM [46]

(c) ESLAM [16] (d) Co-SLAM [36] (e) Ours

Figure 6. Qualitative comparison of diverse systems using RGB-D images from dataset Replica. Photo-SLAM can reconstruct high-fidelity
scenes while others are over-smooth and have obvious artifacts. Zoom in for better views.

4.2. Results and Evaluation

On Replica. As quantitative comparison demonstrated in
Table 1, Photo-SLAM achieves top performance in terms
of mapping quality. With competitive localization accu-
racy, Photo-SLAM can track the camera poses in real time.
Moreover, Photo-SLAM renders hundreds of photorealis-
tic views in a resolution of 1200x 680 per second with less
GPU memory usage. Even on the embedded platform, the
rendering speed of Photo-SLAM is about 100 FPS.

In monocular scenarios, Photo-SLAM significantly sup-
presses other methods. When we disabled the depth su-
pervision of Nice-SLAM [46], its accuracy of localization
dramatically decreased while the mapping was of 16.311
PSNR. We conduct a qualitative comparison in Fig. 7. The
mapping results of Photo-SLAM are photorealistic.

In RGB-D scenarios, we ran BundleFusion [6] with

RGB-D sequences and then extracted textured mesh. And
then we used a mesh render to render corresponding images
for comparison. As shown in Fig. 6, the mesh reconstructed
by the classical method is likely to be aliasing and hollow.
ESLAM [16] and Go-SLAM [44] have the best localization
accuracy, but the mapping lacks high-frequency details. By
contrast, Photo-SLAM can render high-fidelity images and
the rendering speed is about three hundred times faster.

On TUM. We provide quantitative analyses on the three
sequences of the TUM dataset in Table 2. Compared to
learning-based methods, e.g., DROID-SLAM [34] and Go-
SLAM [44], ORB-SLAM3 runs faster without the require-
ment of GPU and has higher accuracy regarding localiza-
tion. It is shown that the classical method still has advan-
tages in terms of robustness and generalization. Fig. 8 is a
gallery of Photo-SLAM mapping.

On Stereo. Stereo cameras can provide more robust track-



On TUM Dataset frl-desk fr2-xyz fr3-office
Cam Method |RMSE (cm) |. PSNR 1 SSIM1 LPIPS | RMSE (cm) | PSNRT SSIM 1 LPIPS | RMSE (cm) ) PSNR{ SSIM1 LPIPS |
ORB-SLAM3 [2] 1.534 - - - 0.720 - - - 1.400 - - -
DROID-SLAM [34]|  78.245 - - - 36.050 - - - 154.383 - - -
2 Go-SLAM[44] 33122 11705 0406 0.614 28584 14807 0443 0572 105755 13.572 0480 0.643
S Ours (Jetson) 1757 18811 0.681 0.329 0.558  21.347 0.727 0.187 1.687  18.884 0.672 0.289
Ours (Laptop) 1,549 20.515 0.733 0.241 0.852  21.575 0739 0.157 1542 19.138 0.680 0.259
Ours 1539 20972 0743 0228 0984  21.072 0.726 0.166 1257  19.591 0.692 0.239
ORB-SLAM3 [2] 1.724 - - - 0.385 - - - 1.698 - - -
DROID-SLAM [34]|  91.985 - - - 41.833 - - - 160.141 - - -
Nice-SLAM [46] 19317 12,003 0417 0510  36.103 18200 0.603 0313 25309 16.341 0.548 0.386
[ ESLAM [16] 3359 17497 0561 0484 31448 22225 0.727 0233 25808  19.113 0.616 0.359
2 Co-SLAM [36] 3.094 16419 0482 0591 31347  19.176 0.595 0374 25374  17.863 0.547 0452
&  Go-SLAM [44] 2.119 15794 0531 0538 31788  16.118 0.534 0419 26802 16499 0.566 0.569
Ours (Jetson) 4571 18273 0.663 0.338 0360  23.127 0.780 0.149 1.874 19781 0.701 0.235
Ours (Laptop) 1.891 20403 0.728 0.251 0361 22570 0.777 0.158 1315 21569 0.749 0.184
Ours 2.603  20.870 0.743 0239 0346  22.094 0.765 0.169 1.001 22744 0.780 0.154
Table 2. Quantitative results on the TUM RGB-D dataset. We mark the best two results with first and second .

(a) Go-SLAM [44]

(b) Orbeez-SLAM [4]

(c) Ours

Figure 7. Mapping comparison with other monocular camera sys-
tems on Replica office3 scene.

ing but have hardly been supported by former real-time
dense SLAM systems. However, Photo-SLAM has been
designed to be compatible with stereo cameras. We pro-
vide quantitative results on the EuRoC dataset in Table 3
and qualitative results in supplementary. The results show
that our system could still perform decently in stereo scenes.
Further, we used a hand-held stereo camera to collect some
outdoor scenes, and the mapping results of Photo-SLAM
are illustrated in Fig. 9.

4.3. Ablation Study

We proposed geometry-based densification (Geo) and
Gaussian-Pyramid-based (GP) learning to boost the system
performance of real-time photorealistic mapping. In this

(a) Ground Truth (b) Ours (Mono)

(c) Ours (RGB-D)
Figure 8. Qualitative results of Photo-SLAM on dataset TUM.

ORB- DROID- Ours Ours

On Euroc Stereo ¢/ 4\ 13 SLAM (Jetson) (Laptop) O™
RMSE (cm) || 4379 39.514 4207  4.049  4.109

ol PSNRT § - 13979 13962 13.952
SSIM 1 . - 0426 0421 0420

LPIPS | - - 0428 0378 0366

RMSE (cm) || 4.525 39.265 4193 4731 4441

PSNR : - 14210 14254 14201

MH-02 - geiv 4 ] . 0436 0436 0430
LPIPS | - - 0447 0373 0356

RMSE (cm) || 8.940 21.646 8.830 8836 8.821

viol  PSNRT . - 16933 17.025 17.069
SSIM 1 . - 0626 0622 0618

LPIPS | - - 0320 0284  0.266

RMSE (cm) | | 26.904 15344 26.643 26.736 26.609

vaor  PSNRT § - 16038 16052 15.677
SSIM 1 . - 0643 0635 0622

LPIPS | - - 0347 0314 0323

Table 3. Quantitative results on the EuRoC MAV dataset, using
stereo inputs. Our Photo-SLAM is the first system to support on-
line photorealistic mapping with stereo cameras.

section, we constructed an ablation study to measure the ef-
ficacy of each algorithm, which can be quantified by PSNR,
rendering speed (FPS), and final model size in megabytes
(MB). The quantitative results are demonstrated in Table 4.



Figure 9. Mapping results of Photo-SLAM using a hand-held
stereo camera in an outdoor unbounding scene.

On Replica Mono RGB-D
# Geo GP |PSNRT FPST MB PSNRT FPST MB

(1) w/o n=2{31.274 994.2 10.742 33.296 923.0 18.199
(2)  w/ wlo [20.002 353.2 44.100 33.696 860.0 31.856
(3) wlo wlo 22913 645.0 5.782 32.551 1010.8 13.901
4  w/ n=1|30903 803.8 21.819 34.634 953.7 31.552
(5) w/ n=3|31.563 877.6 22.510 33.305 946.2 31.039

default w/ n=2]33.302 911.3 31.419 34.958 1084.0 35.211

Table 4. Ablation study on the effect of geometry-based densifica-
tion (Geo) and Gaussian-Pyramid-based (GP) learning.

(b) w/o GP

(a) w/o Geo

Figure 10. Mapping results of different ablated systems on the
monocular Replica scene.

The relationship is tangled between rendering quality or
speed, and the number of hyper primitives represented by
the model size. The models are typically small without ac-
tively densifying hyper primitives based on the inactive 2D
geometric features (Geo). However, without Geo, PSNR
suffers degradation by 2.028 and 1.662 on monocular and
RGB-D scenarios respectively, as indicated in Table 4(1).
Compared to Fig. 7c, the rendering image without Geo
(Fig. 10a) exhibits artifacts, such as on the ceiling. In RGB-
D scenarios, more hyper primitives can get higher PSNR.
However, without Gaussian-Pyramid-based learning, more
hyper primitives are densified by Geo, and thus lead to a
decrease in mapping quality and rendering speed especially
in monocular scenarios, as visualized in Fig. 10b and re-
ported in Table 4(2) and (3). This is because densified hy-
per primitives without precise depth information have inac-
curate positions. Without thorough optimization, inaccurate

hyper primitives become encumbrances. It is noticeable that
the systems with GP learning can generally perform better,
highlighting the effectiveness of GP learning. Additionally,
increasing the Gaussian pyramid levels improves mapping
quality, and our Photo-SLAM with default 3-level GP learn-
ing achieves the best results. However, we found that the
results of using a Gaussian pyramid with 4 levels deterio-
rated, as shown in Table 4(5), possibly due to overfitting
low-level features during incremental mapping. Since the
image is rendered by splatting hyper primitives, the render-
ing speed theoretically is correlated to the number of visible
hyper primitives in the current view rather than the model
size of the whole scene. Although a smaller model does not
necessarily imply a higher average rendering speed, a pre-
cise reconstructed model should accurately capture its es-
sential details while using concise parameters, which is the
premise for high-speed rendering. Moreover, reducing the
time required for rendering enables the optimization of hy-
per primitives with more iterations during online mapping,
ultimately leading to improved accuracy and quality.

In conclusion, the ablation study verifies that the
geometry-based densification strategy allows the system
to obtain sufficient hyper primitives while the Gaussian-
Pyramid-based learning guarantees hyper primitives opti-
mized thoroughly, enhancing online photorealistic mapping
performance. There is no doubt that the default Photo-
SLAM can reconstruct a map with more appropriate hy-
per primitives, and achieve better rendering quality and high
rendering speed than ablated systems.

5. Conclusion

In this paper, we have proposed a novel SLAM framework
called Photo-SLAM for simultaneous localization and pho-
torealistic mapping. Instead of highly relying on resource-
intensive implicit representations and neural solvers, we in-
troduced a hyper primitives map. It enables our system
to leverage explicit geometric features for localization and
implicitly capture the texture information of the scenes.
In addition to geometry-based densification, we proposed
Gaussian-Pyramid-based learning, a new progressive train-
ing method, to further enhance mapping performance. Ex-
tensive experiments have demonstrated that Photo-SLAM
significantly outperforms existing SOTA SLAM:s for online
photorealistic mapping. Furthermore, our system verifies
its practicality by achieving real-time performance on an
embedded platform, highlighting its potential for advanced
robotics applications in real-world scenarios.
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Figure 11. The proposed system has real-time performance on
embedded platforms, such as Jetson AGX Orin Developer Kit.
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Figure 12. Tracking speed comparisons on scene office0 using an
RGB-D camera. The vertical axis denotes the processing time of
each frame while the horizontal axis denotes the frame number.
[Ave/Min/Max/Std] represent the average, minimum, and maxi-
mum tracking time and its standard deviation respectively.

Photo-SLAM is a novel system for simultaneous local-
ization and photorealistic mapping, which can even run on
embedded platforms at real-time speed, as demonstrated in
Fig. 11. In this supplementary, we provide additional results
regarding localization and mapping performance.

6. Localication

Stability. As online systems, SLAMs are required to pro-
cess the incoming frames and estimate current camera poses
in time. Therefore, tracking stability regarding latency and
the average processing time is an important factor in eval-
uating system performance in addition to pose estimation
accuracy. As reported in Table 1 of the main paper, Photo-
SLAM is capable of processing more than 40 frames per
second with accurate pose estimation. The average track-
ing speed is about six times faster than ESLAM [16] and
three times faster than Co-SLAM [36]. Here, we provide
additional analysis on tracking stability while an example
plotted in Fig. 12.

Although the average tracking time of Go-SLAM [44]
is less than Co-SLAM and ESLAM, the processing latency
is high due to frequently conducting expensive global opti-
mization. As shown in Fig. 12, Go-SLAM often takes about
1 second to process the frame and estimate the pose. More-
over, both Nice-SLAM [46] and Co-SLAM need a longer
time to accurately initialize the tracking. Obviously, our
system can rapidly and stably process the incoming frames,
having minimum average tracking time and standard devia-
tion. The peak processing time of our system occurs when
loop closure is detected for correcting pose estimation drift.
Accuracy. Some qualitative tracking results of Photo-
SLAM are demonstrated in Fig. 13.

7. Discussion

Online Mapping vs Offline Mapping. For online map-
ping, the mapping process occurs simultaneously with the
localization process. Therefore it requires continuous and
prompt updates with each new observation as the robot
or camera moves and observes its surroundings. In gen-
eral, online photorealistic mapping is more challenging than
offline photorealistic mapping, since it is crucial to bal-
ance the trade-off between computational efficiency and
rendering quality. As mentioned in the main paper, we
proposed a geometry-based densification strategy and a
Gaussian-Pyramid-based (GP) learning method to achieve
high-quality online mapping. To further support this state-
ment, we compared the photorealistic mapping perfor-
mance between our Photo-SLAM and 3D Gaussian splat-
ting (3DG) [18]. 3DG is the SOTA offline method which
takes a set of images with known poses and a sparse point
cloud as input to learn a radiance field for view synthesis.
During the experiments, 3DG used the keyframe poses esti-



(c) TUM fr3-office

Figure 13. Trajectory in the reconstructed map. Green points de-
note ground truth trajectory while red denotes the estimated tra-
jectory of Photo-SLAM.

mated by Photo-SLAM and performed training for the same
duration as Photo-SLAM. The required point cloud input is
initialized in three different ways: 1) randomly initializing
100 points; 2) randomly initializing 10,000 points; and 3)
initializing from the hyper primitives map of Photo-SLAM.
The results are reported in Table 5. Without inputting fine-
grained point clouds, 3DG needs more time for optimiza-
tion such that the rendering quality decreases. In addition,
to enhance rendering quality, 3DG tends to densify point
clouds leading to larger model size and slower rendering
speed. Whether using monocular cameras or RGB-D cam-
eras, Photo-SLAM consistently delivers compelling render-
ing quality and faster rendering speeds, owing to the effec-
tiveness of the proposed algorithms.

Rendering , Model Size

method PSNR T SSIM 1 LPIPS | Lo ¢ 000
1) 3DG 27.844 0861 0213 745480  36.141
2) 3DG 34555 0942 0.065 483.904  144.196
3) 3DG 37.055 0962 0.032  448.109  219.470

911.262 31.419
1084.017 35.211

Ours using Mono | 33.302 0.926  0.078
Ours using RGB-D| 34.958 0.942  0.059

Table 5. Comparison of mapping performance between 3D Gaus-
sian splatting (3DG) and our system Photo-SLAM with different
settings on the Replica dataset.

On TUM Dataset Resources

Scene  Cam Method Tr;i:(;(;ng T Re‘;ifsn ne T Mo(iilBs)lze

Ours (Jetson) 28.267 340.507 4.610

v Mono Ours (Laptop) | 28.330 1105.062 7.421
.§ Ours 57.781 2016.690 10.027
7'_ Ours (Jetson) 27.970 380.622 5.743
“  RGB-D Ours (Laptop) | 28.930 1061.040 8.432
Ours 58.378 2083.896 9.963
Ours (Jetson) 24.005 169.321 14.286
< Mono Ours (Laptop) | 24.922 619.554 16.102
= Ours 58.241 1405.797 20.380
Q Ours (Jetson) | 21.032 274718 6319
RGB-D Ours (Laptop) | 22.665 701.590 13.850
Ours 52.904 1790.120 21.399
Ours (Jetson) 36.700 291.398 10.669
3 Mono Ours (Laptop) | 38.929 824.658 16.249
% Ours 81.575 1522.120 19.211
s Ours (Jetson) 18.039 291.907 12.726
&  RGB-D Ours (Laptop) 19.636 764.342 15.349
Ours 43.650 1540.757 17.009

Table 6. Additional results of Photo-SLAM with different plat-
forms on the TUM dataset.

On EuRoC Dataset Resources
Tracking , Rendering , Model Size
Scene Method FPS 1T EPS 1T (MB)

Ours (Jetson) | 21.359 93.762 43.385
MH-01 Ours (Laptop) | 25.019 316.403 89.700
Ours 44.977 613.958 123.528

Ours (Jetson) | 22.355 101.021 36.263
MH-02 Ours (Laptop) | 26.189 332.174 81.569
Ours 46.556 675.508 113.116

Ours (Jetson) 21.332 106.008 28.444
V1-01 Ours (Laptop) | 25.403 367.903 55.263
Ours 44.763 835.119 74.457

Ours (Jetson) | 23.872 99.988 27.840
V2-01 Ours (Laptop) | 27.556 307.025 62.588
Ours 48.911 595.234 82.600

Table 7. Additional results of Photo-SLAM with different plat-
forms on the EuRoC MAV stereo dataset.

8. More Results

The results of each scene of the replica dataset are detailed
in Table 8 Additional qualitative results on the TUM dataset
are demonstrated on Fig. 14 and Fig. 15, while Fig. 16 illus-
trates qualitative results of Photo-SLAM on EuReC Stereo



On Replica Dataset Localization Mapping Resources

Scene  Cam Method (TRT/ECETZH ﬁfﬁggﬂ PSNR 1 SSIM 4 LPIPS | Tr;cplfsmgT Re%‘ifsr‘“gT MO(?\ZIBS)IZ"’
Ours (Jetson) | 0.467 000334 34415 0940 0949 18328 123551  17.703
Mono Ours (Laptop) | 0.587 000343 36227 0954 0071 20422  413.645  21.703
sfficc Ours 0.575 000369 36989 0955 0061 42487 930598  24.975
Ours (Jetson) | 0.499 000356 35447 0949 0086 19076 154087  18.281
RGB-D Ours (Laptop)|  0.519 000317 38219 0965 0053 22446 497917  18.826
Ours 0522 000307 38477 0964 0050 48588  1447.887  19.740
Ours (Jetson) | 5586 031140 32382 0904 0.13 18312  80.048  22.904
Mono Ours (Laptop) | 0.379 000463 37970 0954 0060 19968  322.160  21.224
sffcel Ours 0315 000383 37592 0950 0062 42296 857324 26982
Ours (Jetson) | 0402 000517 37510 0953 0065  19.194 118584  20.656
RGB-D Ours(Laptop)| 0440 000543 39.109 0962 0049 22349 496644  19.548
Ours 0436 000477 39.089 0961 0047 47333 1263343  21.193
Ours (Jetson) | 1402 001452 28083 0900 0.31 17502  90.181 19.704
Mono Ours (Laptop) | 2.087 002154 31202 0927 0098 18975  343.662  27.332
sffice Ours 5.031 0.04696 31794 0929 0091  39.604 930777  31.558
Ours (Jetson) | 1.209 000964 29755 0919 0110  17.860 124420  27.560
RGB-D Ours (Laptop) |  1.188 000972 32720 0940 0080  21.507 425452 31711
Ours 1276 001094 33.034 0938 0077 44062 904249  34.065
Ours (Jetson) | 0.429 000232 28058 088 0132  17.881 96872 15.505
Mono Ours (Laptop) | 0.409 000239 32012 0924 0090 19518 368530  20.475
sffice3 Ours 0472 000227 31622 0920 0086 40870  1131.957  26.653
Ours (Jetson) | 0.718 000222 30954 0917 0103  17.889  120.118  20.270
RGB-D Ours (Laptop)|  0.747 000233 33594 0939 0072 20051  388.624  23.617
Ours 0782 000233 33789 0938 0066 40603 1125175 25226
Ours (Jetson) | 0.579 000305 30399 0921 0109 18755 102949  15.201
Mono Ours (Laptop)|  0.616 000279 33.656 0940 0078 20311 375033  21.444
sfficed Ours 0.583 000272 34168 0941 0072 42262 849305  26.154
Ours (Jetson) | 0.661 000367 32219 0931 0091  17.107 92237  32.405
RGB-D Ours (Laptop)|  0.629 000446 35534 0951 0059 19361  333.874 32270
Ours 0582 000423 36020 0952 0054 39.870 1061749  35.421
Ours (Jetson) | 0.369 000321 26423 0787 0221 17987  87.246 17.121
Mono Ours (Laptop) | 0.349 000294 29.899 0868 0125 19521  332.127  33.15
oo Ours 0.345 000299 29772 0871 0106  41.020 754729  44.333
Ours (Jetson) | 0.514 000265 27.867 0833 0.165 17424 104248  31.196
RGB-D Ours (Laptop)|  0.521 000257 31288 0914 0075 19119 322585  52.266
Ours 0.541 000270 30716 0899 0075  39.825  897.870  55.397
Ours (Jetson) | 0.803 000670 27.076 0841 0177  19.83%4  99.038 19.699
Mono Ours (Laptop)|  1.046 000868 30450 0902 0092 21580 333430  32.959
ool Ours 1.183 000772 31302 0910 0083 44316 782326  43.865
Ours (Jetson) | 0.381 000299 30.191 0895 0108  18.881 121986  29.503
RGB-D Ours (Laptop) | 0399 000277 33071 0931 0062 21782 367455  43.568
Ours 0394 000320 33.511 0934 0057 43352 1018111  49.617
Ours (Jetson) | 0.241 000280 27432 0889 0138 17918  80.568 16.303
Mono Ours (Laptop) | 0.235 000263 32970 0935 0075 19499 339442  22.790
oo Ours 0.225 000258 33.181 0934 0067 40313  1053.078  26.834
Ours (Jetson) | 0.260  0.00257 31.883 0928 0078 15982 95480  33.592
RGB-D Ours (Laptop)|  0.275 000250 35295 0954 0045  18.158 336103 38307
Ours 0.305 000257 35028 0951 0043 36244 953755  41.032

Table 8. Detailed results of Photo-SLAM with different platforms on the Replica dataset.

Dataset.



(c) fr3-office (Mono)

Figure 14. Qualitative results of Photo-SLAM on TUM using monocular cameras.

(c) fr3-office (RGB-D)

Figure 15. Qualitative results of Photo-SLAM on TUM using RGB-D cameras.



(d) EuRoC V2-01

Figure 16. Qualitative results of Photo-SLAM on stereo EuRoC.
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