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Abstract

Deep learning techniques have become the to-go mod-

els for most vision-related tasks on 2D images. However,

their power has not been fully realised on several tasks in

3D space, e.g., 3D scene understanding. In this work, we

jointly address the problems of semantic and instance seg-

mentation of 3D point clouds. Specifically, we develop a

multi-task pointwise network that simultaneously performs

two tasks: predicting the semantic classes of 3D points and

embedding the points into high-dimensional vectors so that

points of the same object instance are represented by simi-

lar embeddings. We then propose a multi-value conditional

random field model to incorporate the semantic and in-

stance labels and formulate the problem of semantic and in-

stance segmentation as jointly optimising labels in the field

model. The proposed method is thoroughly evaluated and

compared with existing methods on different indoor scene

datasets including S3DIS and SceneNN. Experimental re-

sults showed the robustness of the proposed joint semantic-

instance segmentation scheme over its single components.

Our method also achieved state-of-the-art performance on

semantic segmentation.

1. Introduction

The growing popularity of low-cost 3D sensors (e.g.,

Kinect) and light-field cameras has opened many 3D-based

applications such as autonomous driving, robotics, mobile-

based navigation, virtual reality, and 3D games. This de-

velopment also acquires the capability of automatic under-

standing of 3D data. In 2D domain, common scene un-

derstanding tasks including image classification, semantic

segmentation, or instance segmentation, have achieved no-

table results [13, 3]. However, the problem of 3D scene un-

derstanding poses much greater challenges, e.g., large-scale

and noisy data processing.

Literature has shown that the data of a 3D scene can

be represented by a set of images capturing the scene at

different viewpoints [14, 46, 42], in a regular grid of vol-

umes [47, 26, 28], or simply in a 3D point cloud [33, 16,

45, 17, 24]. Our work is inspired by the point-based repre-

sentation for several reasons. Firstly, compared with multi-

view and volumetric representations, point clouds offer a

more compact and intuitive representation of 3D data. Sec-

ondly, recent neural networks directly built on point clouds

[33, 16, 24, 45, 17, 18, 22, 23, 48] have shown promising

results across multiple tasks such as object recognition and

semantic segmentation.

In this paper, we address two fundamental problems in

3D scene understanding: semantic segmentation and in-

stance segmentation. Semantic segmentation aims to iden-

tify a class label or object category (e.g., chair, table) for

every 3D point in a scene while instance segmentation clus-

ters the scene into object instances. These two problems

have often been tackled separately in which instance seg-

mentation/detection is a post-processing task of semantic

segmentation [31, 30]. However, we have observed that ob-

ject categories and object instances are mutually dependent.

For instance, shape and appearance features extracted on an

instance would help to identify the object category of that

instance. On the other hand, if two 3D points are assigned to

different object categories, they unlikely belong to the same

object instance. Therefore, it is desirable to couple seman-

tic and instance segmentation into a single task. Towards the

above motivations, we make the following contributions in

our work.

• A network architecture namely multi-task pointwise

network (MT-PNet) that simultaneously performs two

tasks: predicting the object categories of 3D points in a

point cloud, and embedding these 3D points into high-

dimensional feature vectors that allow clustering the

points into object instances.

• A multi-value conditional random field (MV-CRF)

model that formulates the joint optimisation of class

labels and object instances into a unified framework,
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Figure 1. Pipeline of our proposed method. Given an input 3D point cloud, we scan the point cloud by overlapping windows. 3D vertices

are then extracted from a window and passed through our multi-task neural network to get the semantic labels and instance embeddings.

We then optimise a multi-value conditional random field model to produce the final results. Scene data is retrieved from [15].

which can be efficiently solved using variational mean

field technique. To the best of our knowledge, we are

the first to explore the joint optimisation of semantics

and instances in a unified framework.

• Extensive experiments on different benchmark

datasets to validate the proposed method as well as

its main components. Experimental results showed

that the joint semantic and instance segmentation

outperformed each individual task, and the proposed

method achieved state-of-the-art performance on

semantic segmentation.

The remainder of the paper is organised as follows. Sec-

tion 2 briefly reviews related work. The proposed method

is described in Section 3. Experiments and results are pre-

sented and discussed in Section 4. The paper is finally con-

cluded in Section 5.

2. Related Work

This section reviews recent semantic and instance seg-

mentation techniques in 3D space. We especially focus on

deep learning-based techniques applied on 3D point clouds

due to their proven robustness as well as being contempo-

rary seminal in the field. For the sake of brevity, we later

refer to the traditional, category-based semantic segmenta-

tion as semantic segmentation, and instance-based semantic

segmentation as instance segmentation.

2.1. Semantic Segmentation

Recent availability of indoor scene datasets [37, 15, 5, 1]

has sparked research interests in 3D scene understanding,

particularly semantic segmentation. We categorise these re-

cent works into three main categories based on their type of

input data, namely multi-view images, volumetric represen-

tation, and point clouds.

Multi-view approach. This approach often uses pre-

trained models on 2D domain and applies them to 3D space.

Per-vertex labels are obtained by back-projecting and fus-

ing 2D predictions from colour or RGB-D images onto 3D

space. Predictions on 2D can be done via classifiers, e.g.,

random forests [14, 36, 46, 42], or deep neural networks

[27, 49, 30]. Such techniques can be implemented in tan-

dem with 3D scene reconstruction, creating a real-time se-

mantic reconstruction system. However, this approach suf-

fers from inconsistencies between 2D predictions, and its

performance might depend on view placements.

Volumetric approach. The robustness of deep neural net-

works in solving several scene understanding tasks on im-

ages has inspired applying deep neural networks directly in

3D space to solve 3D scene understanding problem. In fact,

convolutions on a regular grid, e.g., image structures, can

be easily extended to 3D, which leads to deep learning with

volumetric representation [47, 26, 28]. To support high-

resolution segmentation and reduce memory footprints, a

hierarchical data structure such as an octree was proposed

to limit convolution operations only on free-space voxels

[35]. It has been shown that the performance of seman-

tic segmentation can be improved by solving the problem

jointly with scene completion [39, 6].

Point cloud approach. In contrast to volume, point cloud

is a compact yet intuitive representation that directly stores

attributes of the geometry of a 3D scene via coordinates and

normals of vertices. Point clouds arise naturally from com-

modity devices such as multi-view stereos, depth, and LI-

DAR sensors. Point clouds can also be converted to other

representations such as volumes [40] or mesh [41]. While

convolutions can be done conveniently on volumes [40],

they are not applicable straightforwardly on point clouds.

This problem was first addressed in the work of Qi et al.

[32], and subsequently explored by several others, e.g.,

[33, 16, 45, 17, 24, 23, 48]. Semantic segmentation can fur-

ther be extended to graph convolution to handle large-scale

point clouds [22], and with the use of kd-tree to address

non-uniform point distributions [18, 12].
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Figure 2. Our proposed MT-PNet architecture, which based on PointNet [32]. The point cloud first go through a feed-forward neural

network to compute a 128-dimension feature vector for each point. Here it splits into to branches: one for instance embedding and the

other for semantic segmentation.

Conditional Random Fields (CRFs) CRFs are often

used in semantic segmentation of 3D scenes, e.g., [41, 14,

20, 46, 42, 27, 34]. In general, CRFs make use of unary and

binary potentials capturing characteristics of individual 3D

points [46] or meshes [41], and their co-occurrence. To en-

hance CRFs with prior knowledge, higher-order potentials

are introduced [21, 11, 50, 2, 49, 10, 30]. Higher-order po-

tentials, e.g., object detections [21, 2, 30], act as additional

cues to help the inference of semantic class labels in CRFs.

2.2. Instance Segmentation

In general, there are two common strategies to tackle in-

stance segmentation. The first strategy is to localise ob-

ject bounding boxes using object detection techniques, and

then find a mask that separates foreground and background

within each box. This approach has been shown to work

robustly with images [7, 13], while deemed challenging in

3D domain. This probably due to existing 3D object de-

tectors are often not trained from scratch but make use of

image features [9, 31, 25]. Extending such approaches with

masks is possible but might lead to a sub-optimal and more

complicated pipeline.

Instead, given the promising results of semantic segmen-

tation on 3D data [32, 1, 16], the second strategy is to extend

a semantic segmentation framework by adding a procedure

that proposes object instances. In an early attempt, Wang

et al. [44] proposed to learn a semantic map and a similar-

ity matrix of point features based on the PointNet in [32].

Authors then proposed an heuristic and non-maximal sup-

pression step to merge similar points into instances.

3. Proposed Method

In this section, we describe our proposed method for

semantic and instance segmentation of 3D point clouds.

Given a 3D point cloud, we first scan the entire point cloud

by overlapping 3D windows. Each window (with its associ-

ated 3D vertices) is passed to a neural network for predict-

ing the semantic class labels of the vertices within the win-

dow and embedding the vertices into high-dimensional vec-

tors. To enable such tasks, we develop a multi-task point-

wise network (MT-PNet) that aims to predict an object class

for every 3D point in the scene and at the same time to em-

bed the 3D point with its class label information into a vec-

tor. The network encourages 3D points belonging to the

same object instance be pulled to each other while pushing

those of different object instances as far away from each

other as possible. Those class labels and embeddings are

then fused into a multi-value conditional random field (MV-

CRF) model. The semantic and instance segmentation are

finally performed jointly using variational inference. We il-

lustrate the pipeline of our method in Figure 1 and describe

its main components in the following sub-sections.

3.1. MultiTask Pointwise Network (MTPNet)

Our MT-PNet is based on the feed forward architecture

of PointNet proposed by Qi et al. in [32] (see Figure 2).

Specifically, for an input point cloud of size N , a feature

map of size N × D, where D is the dimension of features

for each point, is first computed. The MT-PNet then di-

verges into two different branches performing two tasks:

predicting the semantic labels for 3D points and creating

their pointwise instance embeddings. The loss of our MT-

PNet is the sum of the losses of its two branches,

L = Lprediction + Lembedding (1)

The prediction loss Lprediction is defined by the cross-

entropy as usual. Inspired by the work in [8], we em-

ploy a discriminative function to present the embedding

loss Lembedding . In particular, suppose that there are K

instances and Nk, k ∈ {1, ...,K} is the number of elements

in the k-th instance, ej ∈ R
d is the embedding of point vj ,

and µk is the mean of embeddings in the k-th instance. The



embedding loss can be defined as follows,

Lembedding = α · Lpull + β · Lpush + γ · Lreg (2)

where

Lpull =
1

K

K
∑

k=1

1

Nk

Nk
∑

j=1

[

‖µk − ej‖2 − δv
]2

+
(3)

Lpush =
1

K(K − 1)

K
∑

k=1

K
∑

m=1,m 6=k

[2δd − ‖µk − µm‖2]
2
+

(4)

Lreg =
1

K

K
∑

k=1

‖µk‖2 (5)

where [x]+ = max(0, x), δv and δd are respectively the

margins for the pull loss Lpull and push loss Lpush. We set

α = β = 1 and γ = 0.001 in our implementation.

A simple intuition for this embedding loss is that the pull

loss Lpull attracts embeddings towards the centroids, i.e.,

µk, while the push loss Lpush keeps these centroids away

from each other. The regularisation loss Lreg acts as a small

force that draws all centroids towards the origin. As shown

in [8], if we set the margin δd > 2δv , then each embedding

will be closer to its own centroid than other centroids.

3.2. MultiValue Conditional Random Fields (MV
CRF)

Let V = {v1, .., vN} be the point cloud of a 3D scene

obtained after 3D reconstruction. Each 3D vertex vj in

the point cloud is represented by its 3D location lj =
[xj , yj , zj ], normal nj = [nj,x, nj,y, nj,z], and colour cj =
[cj,R, cj,G, cj,B ]. By using the proposed MT-PNet, we also

obtain an embedding ej ∈ R
d for each point vj . Let

LS = {lS1 , ..., l
S
N} be the set of semantic labels that need

to be assigned to the point cloud V , where lSj represent the

semantic class, e.g., chair, table, etc., of vj . Similarly, let

LI = {lI1, ..., l
I
N} be the set of instance labels of V , i.e.,

all vertices of the same object instance will have the same

instance label lIj . The labels lSj and lIj are random variables

taking values in S and I which are the set of semantic labels

and instance labels respectively. Note that S is predefined

while I is unknown and needs to be determined through in-

stance segmentation.

We now consider each vertex vj ∈ V as a node in a

graph, two arbitrary nodes vj , vk are connected by an undi-

rected edge, and each vertex vj is associated with its seman-

tic and instance labels represented by the random variables

lSj and lIj . Our graph defined over V , LS , and LI is named

multi-value conditional random fields (MV-CRF); this is be-

cause each node vj is associated to two labels (lSj , l
I
j ) taking

values in S × I . The joint semantic-instance segmentation

of the point cloud V thus can be formulated via minimising

the following energy function,

E(LS , LI |V ) =
∑

j

ϕ(lSj ) +
∑

(j,k),j<k

ϕ(lSj , l
S
k )

+
∑

j

ψ(lIj ) +
∑

(j,k),j<k

ψ(lIj , l
I
k)

+
∑

s∈S

∑

i∈I

φ(s, i) (6)

We note that our MV-CRF substantially differs from ex-

isting higher-order CRFs, e.g., [21, 11, 2, 30]. Specifically,

in existing higher-order CRFs, higher-orders, e.g. object de-

tections, are used as prior knowledge that helps to improve

segmentation. In contrast, our MV-CRF treats instance la-

bels and semantic labels equally as unknown and optimises

them simultaneously.

The energy function E(LS , LI |V ) in (6) involves in a

number of potentials that incorporate physical constraints

(e.g., surface smoothness, geometric proximity) and se-

mantic constraints (e.g., shape consistency between object

class and instances) in both semantic and instance labeling.

Specifically, the unary potential ϕ(lSj ) is defined over the

semantic labels lSj and computed directly from the classifi-

cation score of MT-PNet as,

ϕ(lSj = s) ∝ − log p(vj |l
S
j = s) (7)

where s is a possible class label in S and p(vj |l
S
j = s) is the

probability (e.g., softmax value) that our network classifies

vj to the semantic class s.

We have found that vertices of the same object class of-

ten share the same distribution of classification scores, i.e.,

p(vj |l
S
j ). We thus model the pairwise potential ϕ(lSj , l

S
k )

via the classification scores of both vj and vk. Specifically,

we define,

ϕ(lSj , l
S
k ) = ωj,k exp

{

−
[p(vj |l

S
j )− p(vk|l

S
k )]

2

2θ2

}

(8)

where ωj,k is obtained from the Pott compatibility as,

ωj,k =

{

−1, if l
S/I
j = l

S/I
k

1, otherwise.
(9)

The unary potential ψ(lIj ) enforces embeddings be-

longed to the same instance to get as close to their mean em-

beddings as possible. Intuitively, embeddings of the same

instance are expected to convert to their modes in the em-

bedding space. Meanwhile, embeddings of different in-

stances are encouraged to diverge from each other. Specifi-

cally, suppose that the instance label set I = {i1, ..., iK} in-

cludes K instances. Suppose that the current configuration



of LI assigns all the vertices in V into these K instances.

For each instance label i ∈ I , we define,

ψ(lIj = i) = −

exp

[

− 1
2 (ej − µi)

⊤
Σ

−1
i (ej − µi)

]

√

(2π)d|Σi|

− log

[

∑

k

1(lIk = i)

]

(10)

where µi and Σi respectively denote the mean and covari-

ance matrix of embeddings assigned to the label i, and 1(·)
is an indicator.

The term
∑

k 1(l
I
k = i) in (10) represents the area of in-

stance i and is used to favour large instances. We have found

that this term could help to remove tiny instances caused by

noise in the point cloud.

The pairwise potential of instance labels ψ(lIj , l
I
k) cap-

tures geometric properties of surfaces in object instances

and is defined as a mixture of Gaussians of the locations,

normals, and colour of vertices vj and vk. In particular,

ψ(lIj , l
I
k) =

ωj,k exp

(

−
‖lj − lk‖

2
2

2λ21
−
‖nj − nk‖

2
2

2λ22
−
‖cj − ck‖

2
2

2λ23

)

(11)

where ωj,k is presented in (9).

The term φ(s, i) in (6) associates the semantic-based po-

tentials with instance-based potentials and encourages the

consistency between semantic and instance labels. For in-

stance, if two vertices are assigned to the same object in-

stance, they should be assigned to the same object class.

Technically, if we compute a histogram hi of frequencies

of semantic labels s for all vertices of object instance i, we

can define φ(s, i) based on the mutual information between

s and i as,

φ(s, i) = −hi(s) log hi(s) (12)

where hi(s) is the frequency that semantic label s occurs in

vertices whose instance label is i.

As shown in (12), given an instance label i, the sum of

φ(s, i) over all semantic labels s ∈ S is the information

entropy of the labels s w.r.t. the object instance i, i.e.,
∑

s∈S φ(s, i) = −
∑

s∈S hi(s) log hi(s). A good label-

ing, therefore, should minimise such entropy, leading to low

variation of semantic labels within the same object instance.

Since the energyE(LS , LI |V ) in (6) sums over all semantic

labels s and instance labels i, it would favour highly consis-

tent labelings.

3.3. Variational Inference

The minimisation of E(LS , LI |V ) in (6) is equivalent to

the maximisation of the posterior conditional p(LS , LI |V )

which is intractable to be solved using a naive implemen-

tation. In this paper, we adopt mean field variational ap-

proach to solve this optimisation problem [43]. In general,

the idea of mean field variational inference is to approxi-

mate the probability distribution p(LS , LI |V ) by a varia-

tional distribution Q(LS , LI) that can be fully factorised

over all random variables in (LS , LI), i.e., Q(LS , LI) =
∏

j Qj(l
S
j , l

I
j ).

However, the factorisation ofQ(LS , LI) over all pairs in

(LS , LI) induces a computational complexity of |S| × |I|
per vertex. In addition, since our proposed MV-CRF model

is fully connected, message passing steps used in conven-

tional implementation of mean field approximation require

quadratic complexity in the number of random variables

(i.e., 2N ). Fortunately, since our pairwise potentials, de-

fined in (8) and (11), are expressed in Gaussians, message

passing steps can be performed efficiently via applying con-

volution operations with Gaussian filters on downsampled

versions of Q, followed by upsampling [19]. Truncated

Gaussians can be also be used to approximate these Gaus-

sian filters to further speed up the message passing process

[29].

We first assume that LS and LI are independent in

the joint variational distribution Q(LS , LI), and hence

Q(LS , LI) can be decomposed as,

Q(LS , LI) =

[ N
∏

j=1

QS
j (l

S
j )

][ N
∏

j=1

QI
j (l

I
j )

]

(13)

The assumption in (13) allows us to derive mean field

update equations for semantic and instance variational dis-

tributions QS and QL.

Since the term
∑

s∈S

∑

i∈I φ(s, i) in (6) is not expressed

in relative to the index j, for convenience to the computation

of mean field updates, for each vertex vj , we define a new

term mj as,

mj =

∑

s∈S hlIj
(s) log hlI

j
(s)

∑

vk∈V 1(lIk = lIj )
(14)

By using mj , the term
∑

s∈S

∑

i∈I φ(s, i) in (6) can be

rewritten as,

∑

s∈S

∑

i∈I

φ(s, i) =
∑

vj∈V

mj (15)

We then obtain mean field updates,

QS
j (l

S
j = s)←

1

Zj
exp

[

− ϕ(lSj = s)

−
∑

s′∈S

∑

k 6=j

QS
k (l

S
k = s′)ϕ(lSj , l

S
k )−mj

]

,

(16)



and

QI
j (l

I
j = i)←

1

Zj
exp

[

− ψ(lIj = i)

−
∑

i′∈I

∑

k 6=j

QI
k(l

I
k = i′)ψ(lIj , l

I
k)−mj

]

(17)

where Zj is the partition function that makes Q(LS , LI) a

probability mass function during the optimisation.

4. Experiments

4.1. Experimental Setup

Our MT-PNet was implemented in PyTorch. We trained

our network using the SGD optimiser. The learning rate

was set to 0.01 and decay rate was set to 0.5 after every 50

epochs. The training took 10 hours on a single NVIDIA

TITAN X graphics card.

For the joint optimisation of semantic and instance la-

beling, we initialised the semantic and instance labels for

3D vertices as follows. Semantic labels with associated

classification scores were obtained directly from MT-PNet.

Embeddings for all 3D vertices were also extracted. Ini-

tial instance labels were then determined by applying the

mean shift algorithm [4] on the embeddings. The band-

width of mean shift was set to the margin of the push force

δd in (4). We set δd = 1.5 and found this setting achieved

the best performance. In addition, when setting the band-

width to lower values, our performance will drop due to

over-segmentation. We note that the number of clusters

generated by the mean shift algorithm may be much larger

than the true number of instances since we allow over-

segmentation. After the joint optimisation step, we only

maintain instances that pertain at least one vertex.

Input of our MT-PNet is a point cloud of 4,096 points. To

handle large-scale scenes, an input point cloud was divided

into overlapping windows, each of which roughly contains

4,096 points. Each window was fed to our MT-PNet to ex-

tract instance embeddings. The embeddings from all the

windows were merged using the BlockMerging proce-

dure in SGPN [44]. Joint optimisation was then applied on

the entire scene. Finally, we employ non-maximal suppres-

sion to yield the final semantic-instance predictions.

4.2. Datasets

We conducted all experiments on two datasets: S3DIS

[1] and SceneNN [15]. S3DIS is a 3D scene dataset that

includes large-scale scans of indoor spaces at building level.

On this dataset, we performed experiments at the provided

disjoint spaces, which were typically parsed to about 10–

80 object instances. The objects were annotated with 13

categories. We followed the original train/test split in [1].

Since S3DIS does not include normals of 3D vertices, we

simplified (11) with only location and colour.

SceneNN [15] is a scene meshes dataset of indoor scenes

with cluttered objects at room scale. Their semantic seg-

mentation follows NYU-D v2 [37] category set, which has

40 semantic classes. On this dataset, we followed the

train/test split by Hua et al. [16]. Similar to S3DIS, the

semantic and instance segmentation were done on overlap-

ping windows.

4.3. Evaluation and Comparison

In this section, we provide a comprehensive evaluation of

our method and its variants, and comparisons with existing

methods in both semantic and instance segmentation tasks.

Several results of our method are shown in Figure 3.

Ablation study. We study the effectiveness of joint

semantic-instance segmentation compared with its individ-

ual tasks. This study is done by investigating the role of po-

tentials of the energy of our MV-CRF defined in (6). Specif-

ically, for semantic segmentation, we investigate the use of

unary potentials in (7) only and traditional CRFs combining

(7) and (8). Similarly, for instance segmentation, we com-

pare the use of (10) only and the combination of (10) and

(11). We also measure the performance of the joint task, i.e.,

the whole energy of MV-CRF. Table 1 compares MV-CRF

and its variants in both semantic and instance segmentation

on S3DIS. Metrics include micro-mean accuracy (mAcc)1

[38] for semantic segmentation and mAP@0.5 for instance

segmentation.

Semantic segmentation

Method mAcc

(7) 86.7

(7) + (8) 86.9

MV-CRF 87.4

Instance segmentation

Method mAP@0.5

(10) 24.9

(10) + (11) 27.4

MV-CRF 36.3

Table 1. Comparison of our MV-CRF and its variants.

Semantic segmentation. Table 2 and Table 4 show the

performance of our proposed method in semantic segmen-

tation on S3DIS and SceneNN dataset, respectively.

In this task, we evaluate the stand-alone performance

of MT-PNet, marked as “Ours (MT-PNet)”, and when run-

ning the full pipeline with MV-CRF, marked as “Ours (MV-

CRF)”. We also compare our method with other state-of-

the-art deep neural networks including PointNet [32], Point-

wiseCNN [16], and SEGCloud [40]. The evaluation metric

is per-class accuracy and micro-mean accuracy.

1Micro-mean takes into account the size of classes in calculating the

average accuracy and thus is often used for unbalanced data. In our context,

micro-mean accuracy is equivalent to the overall accuracy that is often used

in semantic segmentation.



Method mAcc ceiling floor wall window door table chair sofa bookcase board clutter

PointNet [32] 78.6 88.8 97.3 69.8 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2

Pointwise [16] 81.5 97.9 99.3 92.7 49.6 50.6 74.1 58.2 0 39.3 0 61.1

SEGCloud [40] 80.8 90.1 96.1 69.9 38.4 23.1 75.9 70.4 58.4 40.9 13 41.6

Ours (MT-PNet) 86.7 97.4 99.6 92.7 60.1 26.4 80.8 83.7 23.7 61.1 55.2 70.6

Ours (MV-CRF) 87.4 98.4 99.6 94.4 59.7 24.9 80.6 84.9 30 63.0 52.5 70.5

Table 2. Semantic segmentation results on S3DIS. Here we also show the stand-alone performance of MT-PNet, and when running the full

pipeline with MV-CRF.

Method mAP ceiling floor wall window door table chair sofa bookcase board clutter

Armeni et al. [1] - 71.6 88.7 72.9 25.9 54.1 46 16.2 6.8 54.7 3.9 -

SGPN [44] 54.4 79.4 66.3 88.8 66.6 56.8 46.9 40.8 6.4 47.6 11.1 -

Ours (MT-PNet) 24.9 71.5 78.4 28.3 24.4 3.5 12.1 36.2 10 12.6 34.5 12.8

Ours (MV-CRF) 36.3 76.9 83.6 32.2 51.4 7.2 16.3 23.6 16.7 21.8 52.1 13.4

Table 3. Instance segmentation results on S3DIS. Here we also show the stand-alone performance of MT-PNet, and when running the full

pipeline with MV-CRF. Note that results from Armeni et al. are on 3D bounding boxes instead of point clouds.

S3DIS

SceneNN

Figure 3. Semantic and instance segmentation results. From left to right: input point cloud, ground truth of semantic segmentation, our

semantic segmentation result, ground truth of instance segmentation, our instance segmentation result. For semantic segmentation, different

colours represent different categories. For instance segmentation, different colours represent different instances.

Experimental results show that our proposed MT-PNet

significantly outperforms its original architecture (i.e.,

PointNet [32]), and the improvement comes from the multi-

task architecture. To confirm this, we performed an experi-

ment where we trained our MT-PNet with the instance em-

bedding branch disabled. The disabled-embedding branch

network obtained the same performance with the vanilla

PointNet on semantic segmentation task.

As shown in Table 2 and Table 4, our MV-CRF also well

improves the base results from MT-PNet and achieves state-

of-the-art performance on semantic segmentation. This

proves that multi-task learning and joint optimisation can be

beneficial. Figure 4 shows a close-up example to illustrate

the potential of our MV-CRF in semantic segmentation.



Method wall floor cabinet bed chair sofa table desk tv prop

Pointwise [16] 93.8 88.6 1.5 11.6 58.6 5.5 23.5 29.5 7.7 5.8

Ours (MT-PNet) 94.2 91.5 9.2 58.4 81.4 10.9 37.3 54.0 33.3 13.2

Ours (MV-CRF) 96.0 92.4 10.0 74.6 83.0 11.0 44.5 61.7 24.4 11.1

Table 4. Semantic segmentation results on SceneNN. Here we only show a subset of representative classes of NYUv2, as some of the

classes are not presented in SceneNN.

Method wall floor cabinet bed chair sofa table desk tv prop

Ours (MT-PNet) 13.1 27.3 0.0 15.0 21.2 0.0 0.7 0.0 6.0 2.0

Ours (MV-CRF) 13.9 44.5 0.0 32.9 12.9 0.0 5.7 10.8 0.0 0.8

Table 5. Instance segmentation results on SceneNN. Here we only show a subset of representative classes of NYUv2, as some of the classes

are not presented in SceneNN.

Figure 4. A close-up example of our method. Left: input, middle:

semantic segmentation, right: instance segmentation.

Instance segmentation. We consider instance segmenta-

tion as object detection and thus evaluate this task using av-

erage precision (AP) with IoU threshold at 0.5. To generate

object hypotheses, each instance j is granted a confidence

score fj calculated as,

fj =
1

|Vj |
log

{

∏

vk∈Vj

[

QS
k (l

S
k = sj)Q

I
k(l

I
k = j)

]}

(18)

where Vj is the set of points that have instance label j, and

QS
j and QL

j are defined in (16) and (17) respectively.

Table 3 and Table 5 report the instance segmentation per-

formance of our method on S3DIS and SceneNN dataset,

respectively. We refer to the results obtained by apply-

ing the mean shift algorithm directly on embeddings from

MT-PNet as “Ours (MT-PNet)” and the results of the full

pipeline with MV-CRF as “Ours (MV-CRF)”. Similarly to

semantic segmentation, experimental results show that our

MV-CRF significantly boosts up the segmentation perfor-

mance in comparison to MT-PNet. Figure 4 shows a qual-

itative comparison of our MV-CRF and other methods in

instance segmentation.

We also compare our method with other existing meth-

ods including SGPN [44], a recent method for instance seg-

mentation of point clouds, and additional results from Ar-

meni et al. [1]. Compared with the state-of-the-art, our

method shows clear improvement on some categories, e.g.,

floor, sofa, board, and clutter. However, it produces low pre-

cision segmentation results on other categories such as door.

We have found that this is mainly due to the low semantic

segmentation accuracy in these categories.

5. Conclusion

Semantic and instance segmentation of point clouds are

crucial and fundamental steps in 3D scene understand-

ing. This paper proposes a semantic-instance segmentation

method that jointly performs both of the tasks via a novel

multi-task pointwise network and a multi-value conditional

random field model. The multi-task pointwise network

simultaneously learns both the class labels of 3D points

and their embedded representations which enable cluster-

ing 3D points into object instances. The multi-value con-

ditional random field model integrates both 3D and high-

dimensional embedded features to jointly perform both se-

mantic and instance segmentation. We evaluated the pro-

posed method and compared it with existing methods on

different challenging indoor datasets. Experimental results

favourably showed the advance of our method in com-

parison to state-of-the-art, and the joint semantic-instance

segmentation approach outperformed its individual compo-

nents.
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mental dense semantic stereo fusion for large-scale seman-

tic scene reconstruction. In 2015 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 75–82,

2015. 1, 2, 3

[43] Martin J Wainwright, Michael I Jordan, et al. Graphical mod-

els, exponential families, and variational inference. Founda-

tions and Trends in Machine Learning, 1(1–2):1–305, 2008.

5

[44] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neu-

mann. Sgpn: Similarity group proposal network for 3D

point cloud instance segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 2569–2578, 2018. 3, 6, 7, 8

[45] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. arXiv preprint

arXiv:1801.07829, 2018. 1, 2

[46] Daniel Wolf, Johann Prankl, and Markus Vincze. Fast se-

mantic segmentation of 3D point clouds using a dense CRF

with learned parameters. In 2015 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 4867–4873,

2015. 1, 2, 3

[47] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D

shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1912–1920, 2015.

1, 2

[48] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

Spidercnn: Deep learning on point sets with parameterized

convolutional filters. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 87–102, 2018.

1, 2

[49] Shichao Yang, Yulan Huang, and Sebastian Scherer. Seman-

tic 3D occupancy mapping through efficient high order crfs.

In 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 590–597, 2017. 2, 3

[50] Hongyuan Zhu, Jiangbo Lu, Jianfei Cai, Jianming Zheng,

and Nadia M Thalmann. Multiple foreground recognition

and cosegmentation: An object-oriented CRF model with ro-

bust higher-order potentials. In IEEE Winter Conference on

Applications of Computer Vision (WACV), pages 485–492,

2014. 3


