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Abstract. Direct linear programming (LP) solution to binary sub-modular MRF
energy has recently been promoted because i) the solution is identical to the so-
lution by graph cuts, ii) LP is naturally parallelizable and iii) it is flexible in in-
corporation of constraints. Nevertheless, the conventional LP relaxation for MRF
incurs a large number of auxiliary variables and constraints, resulting in expensive
consumption in memory and computation. In this work, we propose to approxi-
mate the solution of the conventional LP at a significantly smaller complexity by
solving a novel compact LP model. We further establish a tightenable approxima-
tion bound between our LP model and the conventional LP model. Our LP model
is obtained by linearizing a novel l1-norm energy derived from the Cholesky fac-
torization of the quadratic form of the MRF energy, and it contains significantly
fewer variables and constraints compared to the conventional LP relaxation. We
also show that our model is closely related to the total-variation minimization
problem, and it can therefore preserve the discontinuities in the labels. The latter
property is very desirable in most of the imaging and vision applications. In the
experiments, our method achieves similarly satisfactory results compared to the
conventional LP, yet it requires significantly smaller computation cost.

1 Introduction

Markov Random Field (MRF) has become one of the most popular models for funda-
mental computer vision tasks. In an MRF model, an MRF energy is minimized in order
to find an optimal solution to the task. Minimizing general MRF energies is NP-hard
[1], while certain types of the MRF energies can be minimized efficiently and exactly
by using, for example, graph cuts [2].

Conventional LP relaxation. Recently, Bhusnurmath and Taylor [6] promoted the
direct continuous linear programming (LP) solution to the binary sub-modular MRF.
The LP model was obtained by linearizing the l1-norm pairwise potential in the bi-
nary sub-modular MRF using auxiliary variables. Bhusnurmath and Taylor proved that
the solution to the continuous LP model is identical to the graph-cuts solution given the
same binary MRF energy. Their work was motivated by the fact that LP algorithms, e.g.
the interior point method, can be easily parallelized. This is natural, since the interior
point method is based on elementary matrix operations. The GPU version of all com-
mon matrix operations can easily be found in many toolboxes, such as MATLAB and
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Input Conventional QP [3, 4] Our LP
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Fig. 1: Conventional LP is computationally demanding but it preserves discontinuity of
the labels at the true boundary. QP [3, 4] has much lower computational complexity
but often produces over-smooth labels at the boundary. Our method provides a solution
sharper at object boundary at an affordable computational cost.

CULA1. On the contrary, the parallel implementation of graph cuts is very challenging,
on which consensus has not yet been reached [7, 8]. Furthermore, incorporating linear
constraints into an LP model is straightforward, while this is not the case for graph cuts.
Lempitsky et al. [9] also showed linear constraints can be useful to segmentation.

Motivations. As reported in [5, 6], the conventional LP relaxation contains a large
number of auxiliary variables and constraints, which would cause large consumption
in memory and computation. Consequently, the computation upon shared with multiple
computing units may still remain expensive.

In contrast to the LP model, the computational complexity of the quadratic pro-
gramming (QP) relaxation for the binary sub-modular MRF energy proposed in [3,
4] is much smaller than that required by the conventional LP model. This is largely
because no auxiliary variables or constraints are required in the model. However, the
QP model may produce over-smooth ambiguous labels at the desired discontinuities in
the solution. For instance in object segmentation in images, this may cause incorrect
segmentation. As shown in Fig. 1, the solution by conventional LP is clean and more
desirable than that from QP.

Our contributions. To gain high quality solution similar to that from LP, at a compu-
tational cost similar to that of QP models, we propose a novel LP relaxation for binary
sub-modular MRF to leverage both the compactness of the QP relaxation and the edge
preservability of LP relaxation. Our LP relaxation is obtained by linearizing a novel l1-
norm minimization problem that is derived from the Cholesky factorization of the QP
relaxation model. We further establish a tightenable approximation bound between our
LP relaxation and the conventional LP relaxation. The complexity of the resultant al-
gorithm for solving the proposed LP problem is of the same order of the corresponding
QP model, and it is significantly smaller than that of the conventional LP. In addition,
the derived novel l1-norm minimization is strongly related to the total-variation min-
imization problem according to our theoretical analysis. Thus, it is able to preserve
discontinuities in labels.

1 http://www.culatools.com/
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2 Background

2.1 The binary submodular MRF model in computer vision

In the generic MRF model for the labeling problems in computer vision, the labels in
the image are formulated as an Markov random field, and the corresponding distribution
is in the form of Gibbs distribution according to the HammersleyClifford theorem. The
labeling task is therefore cast into an Maximum a posterior (MAP) problem. Due to the
Gibbs distribution form, the MAP problem becomes an energy minimization problem,
and the energy is often written in the following standard form:

E(x) =
∑
p∈P

Dp(xp) +
∑

{p,q}∈N

Vpq(xp, xq),

where x is a label vector corresponding to all elements in the image, Dp(·) is known as
the unary term, or data fidelity term, and Vpq(·, ·) is a pairwise potential.

Due to the fundamental works by Boykov, Olga and Zabih [2] and Komogorov and
Zabih [10], it is well-known that the above energy, especially for binary label, can be
solved exactly by graph cuts, as long as E is submodular. One of the most successful
applications of this formulation is object segmentation [11].

More recently, approximate solution to general MRF models attracts much attention
from the energy minimization community [12, 13]. We argue that a more generalizable
approach for solving the binary submodular problem can make approximations to gen-
eral problems easier.

2.2 Conventional LP relaxation for binary submodular MRF

In the binary submodular MRF energy, the unary term is often formulated as a term
linear in the label vector. The complexity of the optimization for the MRF model only
lies in the pairwise potential. The pairwise potential can be written as:

Vpq(xp, xq) = wpq|xp − xq|o, (1)

where p and q are the indices of image elements, E is a neighborhood system and o is
either 1 or 2 in this paper. We will elaborate on the choice of the value of o in this paper.
In the context of segmentation, wpq can be defined as wpq = 1

1+{‖Ip−Iq‖2} + c, where
Ip, Iq are the image values at the p- and q-th pixel/superpixel in the image. The first
component in wpq encourages discontinuous labeling at image edges, and the constant
c that imposes smoothness to the resultant boundary. The constant weight in the latter
part is related to the curve-shortening flow in the active contour models [14, 15].

It has been pointed out that when o = 1, the minimization of the binary submodular
MRF energy with the above pairwise potential term in Eq. (1) is equivalent to an l1-
norm minimization problem in [6].

Formally, we may rewrite the total pairwise potential as∑
{p,q}∈E

wpq|xp − xq| =
∑
i,j

we
ij |xi − xj | = ‖diag(we)Dx‖l1 , (2)
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where we
ij = wpq if i = p, j = q, and we

ij = 0 if {i, j} /∈ E , [diag(we)]N
2×N2

is the
diagonal matrix composed of we, where we is the vectorized {we

ij} . D is an incidence
matrix defined as follow:

[D]N
2×N

ij =

{
1, if j = (i mod N)
−1, if (i mod N, j) ∈ E (3)

The LP model of the full MRF energy can be rewritten as follows:

min
x

vTx + 1Ty

s.t. − y ≤ diag(we)Dx ≤ y

0 ≤ x ≤ 1, 0 ≤ y.

(4)

where v is the weights in unary term, and the variable xpq is an auxiliary variable
induced by the linearization process. It is further shown in [5] and [6] that the l1-norm
minimization problem can be solved by LP, and it is proven in [6] that the solution to
the LP problem in [6] converges to either 0 or 1 without any external prodding.

A drawback of this LP formulation is that it requires a large number of auxiliary
variables and constraints. Suppose that there are N elements to be labeled, then there
can be as many as N +N ×N variables and N + 2N ×N linear constraints, which is
the worst case. The computational complexity of LP is known as O(n3) [16] where n
is the number of variables, and when n is fixed the complexity is O(m) [17] where m
is the number of constraints. As a result, the computational complexity for solving the
above LP problem is O(N6), and the computational cost can be high, which has been
witnessed in [5].

2.3 Comparing l1-norm minimization with l2-norm minimization

Two decades ago, it was observed that the minimization of square of image gradients
will result in blurry edges. This leads to the invention of the celebrated ROF total-
variation minimization model for denoising [18]. It has already been pointed out that
the l1-norm minimization in our context corresponds to total variation minimization
[19]. Likewise, the l2-norm minimization corresponds to the problem of minimization
of square of gradients in the context of denoising.

In segmentation, the solution from l2-norm minimization may also become over-
smooth and therefore ambiguous at the boundaries. This can affect the accuracy of
boundary locating in the segmentation, as shown in Fig. 1. Accordingly, we also expect
the solution of our model to contain sharp discontinuities, and the l1-norm minimization
seems promising.

3 A compact LP relaxation for binary submodular MRF

3.1 Deriving a compact LP relaxation via Cholesky factorization of l2-norm

Since the conventional l1-norm minimization is computationally expensive, we propose
to seek alternatives to it. In the following, we will show that a new l1-norm, which is
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induced by factorizing the l2-norm form of the boundary term in Eq.(1), can lead to a
more compact LP problem with significantly less computational complexity compared
to the original LP problem.

First, we rewrite the l2-norm in quadratic form:∑
i,j

we
ij

2(xi − xj)
2 = xTW̃x (5)

where W̃ = diag(w̄) + diag(ŵ)− 2W, w̄i =
∑

j w
e
ij , ŵj =

∑
i w

e
ij and W = [we

ij ].
The full derivation of the above is included in the Appendix.

A quadratic continuous optimization problem is NP-hard if the matrix in the quadratic
term is non-definite, i.e. the optimization is non-convex. In fact, having even single neg-
ative eigenvalue leads to NP-hard problem [20]. Regarding the convexity of the formu-
lation, we have the following proposition.

Proposition 1. The matrix W̃ in Eq.(5) is positive semi-definite.

The proof is included in the Appendix. Since W̃ is positive semi-definite, the formula-
tion is convex. It is also possible to ensure the matrix to be positive definite by adding
a small positive value to the diagonals. In addition to the well-posedness of this for-
mulation, we show that positive definiteness of the matrix W̃ allows the problem to be
linearized.

Our linear relaxation is based on the following facts:

xTW̃x = xTUTUx = ‖Ux‖2l2 ,

where U is an upper triangular matrix of the same dimension of W̃ and W̃ = UTU
is known as the Cholesky factorization/decomposition. The squared matrix U is unique
for symmetric positive definite matrix W̃. The Cholesky factorization of it generally
uses n3/3 FLOPs, where n is the rank of the matrix, and it is instantaneous for very
large matrix on modern processors.

We observe that the matrix [diag(we)D] operating on x in the conventional l1-
norm can also be thought of as being factorized from the matrix W̃. To see this, we can
rewrite Eq. (1) as follows:

‖diag(we)Dx‖2l2 = xT [diag(we)D]T [diag(we)D]x = xTW̃x.

This motivates us to have the following new reformulation of the pairwise potential
as:

E2
l+1

(x) = ‖Ux‖l1 (6)

Here, we call the above norm to be minimized as the Cholesky l1-norm.
A major difference between the conventional l1-norm and our Cholesky l1-norm is

that the linear operator U has much smaller dimension than [diag(w)D], giving rise to
a LP relaxation with significantly fewer variables and constraints.

min
x,δ+

vTx + 1T δ+

s. t. : − δ+ � Ux � δ+

0 ≤ xi ≤ 1, δ+i ≥ 0,

(7)
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where the first term is the same as in Eq. (4) and δ+ is an additional vector of auxiliary
variables used for the linear relaxation and its dimension is N , as the same as x. Essen-
tially, Eq.(7) tries to reduce the bounding values of Ux. The above LP is obtained by
applying the equivalence between l1-norm minimization and linear programming.

Compared with the conventional LP model in Eq.(4), our model in Eq.(7) has a
significantly smaller number of variables and constraints. Specifically, for the image
containing N superpixels, there are N + N × N variables and N + 2N × N linear
constraints for the worst case in the original model [6, 5], whereas there are only 2N
variables and 2N linear constraints in our model. The complexity of our model is there-
fore O(N3) which is the same as QP according to Eq.(5). The number of variables and
constraints does not change when increasing the number of edges in the graph. We will
compare the performance of the two formulations experimentally. The matrices were
all set to sparse mode in the implementation.

3.2 Mathematical relationship between l1-norm and Cholesky l1-norm

In this subsection, we are particularly interested in how tightly the proposed Cholesky
l1-norm can be related to the conventional l1-norm energy, and we are interested in the
interested in the relationship between the Cholesky l+1 -norm and total variation.

Let us consider the reduced QR factorization of the rectangular matrix [diag(w)D]

in the l1-norm boundary term, i.e. [diag(w)D] = QN2×NRN×N , where Q is an or-
thogonal matrix, such that QTQ = IN×N , and R is an upper triangular matrix. The
following fact will relate our Cholesky l1 relaxation to the original l1-norm minimiza-
tion.

Theorem 1. The upper triangular matrix U in the Cholesky l1-norm minimization
model in Eq.(6) is identical to the upper triangular matrix R in the QR factorization of
[diag(w)D] in the l1-norm minimization model in Eq.(2)

The proof of this theorem is presented in the Appendix. This theorem implies sev-
eral additional relationships between the l1-norm and the Cholesky l1-norm.

Corollary 1. Ux = QTQUx = QT [diag(w)Dx].

The above equality implies that the Cholesky l1-norm is the l1-norm of the linearly
transformed weighted gradients, and the transformation matrix is Q. The weighted vari-
ations in x are projected on the subspace of Q before calculating the total. Hence, we
may also view our Cholesky l1-norm as a total subspace-variation. This observation
implies that the quasi-total variation minimization may share the discontinuity preserv-
ability of the total variation minimization.

Besides, Theorem 1 offers us a stronger relationship between the two formulations
in terms of a tight equivalence-of-norm bound.

Theorem 2. The difference between Cholesky l1-norm and l1-norm satisfies the follow-
ing inequalities:

(‖diag(w)Dx‖/‖Q‖) ≤ ‖Ux‖ ≤ ‖QT ‖‖diag(w)Dx‖

where the norms are all l1-norm, and they are either the l1-norm of vector or the induced
l1-norm of matrix.
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The proof of this theorem is included in the appendix.

Remarks. From the above, we can observe that the difference between the Cholesky l1-
norm and the l1-norm is determined by ‖Q‖l1 and ‖QT ‖l1 which are variable and hope-
fully reducible by selecting a proper W̃ at the beginning. For example, the weight ma-
trix W̃ may be chosen such that its unique Cholesky factor Q gives ‖Q‖l1 ≈ ‖QT ‖l1 ≈
1, without any loss of accuracy in modeling. This means the above bound is tightenable
in principle. This result encourages us to further explore the useful subspaces in the
Cholesky l1-norm to approximate the total variation norm.

4 Experiments

In the experiment, we will evaluate our method in the context of interactive object
segmentation, in which the unary term encodes the seeding information [11] and the
pairwise potential is defined as under Eq. (1). We compare our method with the original
graph cuts (GC) [2], the l1-norm minimization via LP [5, 6], and the l2-norm minimiza-
tion by QP [3, 4].

4.1 Experimental settings

Data and performance measure To evaluate the performance gain in terms of computa-
tion. We perform the conventional LP and our proposed LP on GPU for synthetic data.
In this experiment, we randomly generate the model parameters and apply the interior
point method to solving the LP.

To evaluate the effectiveness of our method, we evaluate on a clownfish dataset
and the Oxford interactive segmentation benchmark dataset [21]. Ground truth results
and user input seeds on objects and backgrounds are provided in both datasets. The
performances of the methods measured by the overlapping ratio between the labeled

region and the ground truth object region: Γ =
size
(
Result Region∩True Region

)
size
(
Result Region∪True Region

) .
Implementation issues We adopt superpixelization [22] as a preprocessing to reduce
the computational cost. The number of superpixels is around 800 for all test images.
We choose the average color of each superpixel to represent the superpixel. We imple-
ment all the methods in MATLAB. We used the linprog function and quadprog
function. We use default option settings of the functions. The graph cuts is based on
Michael Rubinstein’s implementation 2. There are some parameters in the model for
segmentation. We used c = 0.00001, λ = 10 in all the experiments. The threshold value
for converting the continuous labels to binary labels is empirically chosen as 0.08. We
also experiment on the effect of differnt threshold values. We perform the experiments
on a PC with Intel Core i5-450M (2.4GHz) processor and 4GB memory.

2 http://www.mathworks.com/matlabcentral/fileexchange/
21310-maxflow
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4.2 Results

The clownfish dataset. We first present and analyze the experimental results for the
clownfish dataset which contains 62 images. See Fig. 2 for example segmentation re-
sults and input seeds. In addition to the manually drawn background seeds, we include
the points at the image border as the background seeds in this experiment. As expected,
we can see that the results of the conventional LP is very similar to those by graph cuts.
A characteristic of them is that they suffer from the small-cut problem. In contrast, QP
may produce larger regions due to the possible diffusion of labels at the boundaries.
Thus, the resultant regions can be larger than the desired region. Our method compro-
mises the two types of methods and the overall results may outperform the others, e.g.,
when LP suffers from small-cut problem and/or QP suffers from large-cut problem. We
also visualize the continuous labels of conventional LP, QP and our method in Fig. 3.
The solutions of LP are binary without thresholding, and the solutions of QP can be
over-smooth. The boundaries in the solutions of our LP are clearer than QP, and the so-
lutions are smoother than LP. Quantitative segmentation results of the clownfish dataset
are shown in Fig. 4. The results show that QP slightly outperforms the conventional LP
on this dataset, and our method slightly outperforms the others. From Table. 1, we can
see that the computational cost of our compact LP model is comparable to QP and re-
quires significantly less computational expenses compared to conventional LP. We also
note that there is some minor difference between the results by graph cuts and those by
conventional LP. We conjecture that the difference is a result of early termination of the
interior point method for solving the LP.
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Fig. 2: Example results of the seed-initialized interactive segmentation on clownfish
dataset. The results are shown as extracted image regions against the ground truth shape
contours in purple.

The Oxford dataset. We mainly evaluate our method on the Oxford dataset which con-
tains 151 images. The user input seeds provided in this dataset are generally insufficient
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Fig. 3: Example labels of segmentation results in Fig. 2.

Fig. 4: Quantitative results on clownfish dataset.

for producing a satisfactory segmentation. We adopt the robotuser [21] to simulate the
additional user interactions. By increasing the number of interactions, the segmentation
results can finally become satisfactory. The maximum number of user interactions is
set to 20 in our experiments. See Fig. 6 for example results. We can observe that GC
and LP performs quite alike, while QP may produce larger regions. In most of the sit-
uations our methods produce more accurate segmentation results than QP. We present
the solutions of QP and our method before thresholding in Fig. 7. The LP produces
binary labels as expected, the QP produces smooth labels near the object boundaries
and our method produces piecewise smooth labels with relatively clear discontinuities
at the boundaries. The quantitative results are shown as red boxes in Fig. 8(a).

To quantitatively reveal the effect of the discontinuity preservability of our method,
we further consider the robustness of the segmentation to threshold values. We hy-
pothesize that the continuous labels with clear discontinuities at the boundaries will be
robust to different threshold values. Therefore, we generate a vector of 100 threshold
values equally spaced in [0, 1] for the evaluation. We apply all these threshold values to
the continuous labels of QP and our method. Surprisingly, we observe that our method
overwhelmingly outperforms the QP for almost all the threshold values in the sense of
average overlapping ratio. See Fig. 8(b) for the plots of mean performance with standard
deviation.
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Fig. 5: Comparison of computational times on GPU. As a reference, in [6], the average
computation time was 0.66 sec. for GC on CPU and the 0.76 sec. for LP on GPU.

Computational costs. We propose to compare the computational costs for solving con-
ventional LP and our method using the same implementation of interior point method
on CPU and GPU. The GPU implementation is realized by simply using gpuarray
in MATLAB. We used small number of variables because MATLAB does not support
sparse matrix in GPU.The results are shown in Fig. 5. From the plot we can observe
that the computational cost of our method is almost unchanged but slightly oscillating
when increasing the number of variables.

The statistics of the computational costs for our experiment on Oxford dataset are
shown in Table 1. Very recently, a fast optimization approach has been proposed for
solving a similar segmentation model [23]. However, the computational cost of their
approach for 760 superpixels is 23.7 sec. on a machine with 2.7GHz Intel CPU.

Table 1: Comparison of computational costs.

CPU-LP[6, 5] CPU-QP [3, 4] CPU-Our method
Worst-case complexity O(N6) O(N3) O(N3)

Average time (s) 72.35 1.13 12.9

5 Conclusion and future work

In this paper, we proposed a novel LP relaxation for the binary sub-modular MRF
model. Our LP relaxation contains significantly fewer variables and constraints com-
pared to the conventional LP. We also showed that our l1-norm minimization is tightly
related to the total variation minimization through mathematical analysis. Experimen-
tal results show that our method is significantly faster than the conventional LP, and it
uniformly outperforms QP when converting the continuous labels to binary labels. Our
model may be of use to other MRF models, e.g. the TV-MRF [24], as well as many
applications, such as shape estimation [25–27].
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Fig. 6: Comparison of segmentation performance on Oxford dataset. The upper images
in each row show the input images overlaid with input seeds. The lower images in each
rows show extracted image regions against the ground truth shape contours in purple.
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Fig. 7: Continuous labels before thresholding from LP, QP and our method on example
inputs in Fig. 6.

(a) (b)

Fig. 8: Quantitative results of the experiments on Oxford dataset. a) Comparison of
segmentation accuracy. b) Comparison of QP and our LP for all threshold values.

A Appendix

A.1 Derivation of Eq. (5)∑
ij

we
ij

2(x2
i + x2

j − 2xixj) =
∑
i

x2
i

∑
j

we
ij +

∑
j

x2
j

∑
i

we
ij − 2

∑
ij

we
ijxixj

=
∑
i

x2
i w̄i +

∑
j

x2
j ŵj − 2

∑
ij

we
ijxixj = xTW̃x

where W̃ = diag(w̄) + diag(ŵ)− 2W, W = [we
ij ].

A.2 Proof of Proposition 1

Proof. The definition of W̃ is as follows.

W̃ = diag(w̄) + diag(ŵ)− 2W
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where w̄j =
∑

k wjl =
∑

k wlj′ = ŵj′ , if j = j′. In short diag(w̄) = diag(ŵ). Note
that wjj′ = 0 for j = j′. Hence, we have the following.

W̃jj′ =

{
2w̄j , for j = j′

−2wjj′ , otherwise

Therefore, matrix W̃ is a symmetric diagonal dominant matrix, and the diagonal ele-
ments are nonnegative. Such matrix is a positive semi-definite matrix. ut

A.3 Proof of Theorem 1

Proof. Substituting [diag(w)D] = QN2×NRN×N into Eq. (2), we obtain the follow-
ing form of the boundary term.

Bl1(x) = ‖QRx‖l1

where we applied the QR factorization. The l2 relaxation of this form will lead to

Bl2(x) =
(
xTRTQTQRx

)1/2
=
(
xTRTRx

)1/2
= ‖Rx‖l2

The corresponding l+1 -norm minimization is therefore the following

Bl+1
(x) = ‖Rx‖l1 = ‖QRx‖l1

Note that the Cholesky decomposition is unique and R is upper-triangular. We can
conclude that U = R. ut

A.4 Proof of Theorem 2

Proof. We prove the left hand side first.

‖diag(we)Dx‖l1 = ‖QUx‖l1 ≤ ‖Q‖l1‖Ux‖l1

⇔ 1

‖Q‖l1
‖diag(we)Dx‖l1 ≤ ‖Ux‖l1

where we have replaced R with U. The right hand side is likewise.

‖Ux‖l1 = ‖QTQUx‖l1 ≤ ‖QT ‖l1‖QUx‖l1 = ‖QT ‖l1‖diag(we)Dx‖l1 ,

which completes the proof. ut
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