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Abstract—A key challenge in feature correspondence is the difficulty in differentiating true and false matches at a local descriptor
level. This forces adoption of strict similarity thresholds that discard many true matches. However, if analyzed at a global level, false
matches are usually randomly scattered while true matches tend to be coherent (clustered around a few dominant motions), thus
creating a coherence based separability constraint. This paper proposes a non-linear regression technique that can discover such a
coherence based separability constraint from highly noisy matches and embed it into a correspondence likelihood model. Once
computed, the model can filter the entire set of nearest neighbor matches (which typically contains over 90% false matches) for true
matches. We integrate our technique into a full feature correspondence system which reliably generates large numbers of good quality
correspondences over wide baselines where previous techniques provide few or no matches.
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1 INTRODUCTION

COrrespondence between image pairs involve finding
the projections of the same scene points in both images.

By linking multiple images together, correspondence is a
critical first input for many vision systems [1], [2], [3]. As
applications vary wildly, correspondence algorithms must
accommodate a wide range of baselines and scenarios,
e.g. Internet images, noisy infrared images, high resolution
images, low-resolution video frames, etc. In addition, the
desired stability of downstream systems requires correspon-
dence algorithms to find as many matches as possible while
keeping false matches to a minimum. The simultaneous
need for large numbers of matches, robustness and flexi-
bility places a heavy strain on correspondence algorithms
and has motivated intensive research along this direction.

To date, feature matching [4], [5], [6] is the correspon-
dence solution of choice for many computer vision systems.
While lacking the correspondence density offered by optical
flow alternatives [7], [8], [9], [10], feature matchers provide
an attractive blend of wide baselines, fast speed and fine
localization. The goal of feature matching is to correspond
sparsely scattered, distinctive key-points. Distinctiveness
is enhanced by consolidating local patch information into
transformation invariant descriptors and matching deci-
sions are based on descriptor comparison. While generally
effective, feature correspondence typically discards many
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true matches to suppress the number of false matches [11],
[12], [13]. This can cause a paucity of matches which
negatively impacts downstream algorithms. The problem
is especially severe at the extremes of feature correspon-
dence’s working range shown in Fig. 1A). Lowering match
acceptance thresholds provides many more (sometimes by a
few orders of magnitude [11]) true matches. However, false
matches increase more rapidly in number, leading to the
mess shown in Fig. 1B).

Despite appearances, matches in Fig. 1B) may actually
be separable into true and false matches. This is because
true matches tend to be coherent, with neighboring pixels
sharing similar motions, while wrong matches are usu-
ally randomly scattered. This leads us to propose a novel
approach termed COherence based DEcision boundaries or
CODE, which computes a coherence based partition of the
potential correspondence space into true and false regions.
At first glance, this approach appears self-contradictory,
since coherence estimation and thus the partition is intrin-
sically coupled with the unknown (or highly imperfectly
estimated) correspondence. However, we observe that a
coarse coherence estimate is sufficient as we can eventually
rely on the feature’s spatial localization for fine matching.
This permits quasi-decoupling of the coherence and cor-
respondence steps. In CODE, we develop a robust, non-
linear regression formulation by treating feature matches as
noisy data points. This is used to model a coherence cost (or
the likelihood) for every possible motion. As the regression
model only needs to be coarsely estimated, it can be effec-
tively approximated from very noisy point correspondences
obtained from low acceptance thresholds. Once estimated,
the model forms a coherence based decision boundary for
verifying correspondence hypotheses. The result is efficient,
coherence enforcement for feature correspondences.

The proposed approach has some distinctive theoretical
and practical advantages. 1) Global motion modeling: By
applying our optimization on the bilateral domain which
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A) Traditional A-SIFT feature matches

B) A-SIFT feature matches with lowered acceptance thresholds

C) A-SIFT feature correspondence with CODE regression

Fig. 1: Feature matching for an example image pair. A) A-
SIFT [6], a highly regarded wide-baseline feature matcher.
B) Relaxed acceptance thresholds result in many more true
matches hidden in a pile of false matches. C) Our fusion of
A-SIFT with the proposed technique termed CODE. CODE
regression can model the motion adequately even under
such noisy matches in B). Note that only the right side of
the main arch structure is visible in the second image.

contains both spatial and motion coordinates [x, y, u, v],
a smooth curve can model spatially discontinuous mo-
tion (conceptually similar to edge preserving bilateral fil-
ters [14]). This dispenses with the need to handle disconti-
nuities by weakening the smoothing function or demanding
explicit discontinuity detection. Instead, a global as-smooth-
as-possible function accommodates a wide variety of mo-
tions, making modeling both flexible and robust. 2) Compu-
tational tractability: We show that an as-smooth-as-possible
regression function can be formulated as a convex cost with
a guaranteed global minimum. This avoids initialization
problems and facilitates mathematically elegant solutions.
3) Soft modeling: Given our input feature matches’ noisy
nature, modeling motion as a hard one-to-one mapping
assignment between images is unlikely to be accurate. The
proposed likelihood model expresses this ambiguity, and
it adds a layer of robustness. As a result, mistakenly high
scores for an incorrect motion need not affect the true
motion’s score, allowing graceful degradation on difficult
scenes. 4) Efficiency: Naive correspondence likelihood mod-
eling is potentially very expensive. If the likelihood of every
possible motion for every pixel is stored as a matrix, even a
small 640×480 image, with potential horizontal and vertical
motion ranges of [−640, 640] and [−480, 480], would require
an enormous matrix of size 640×480×(2×640)×(2×480).
By expressing likelihood with a regression model, we can
estimate every matrix entry with a few hundred variables.
This makes correspondence likelihood modeling computa-
tionally tractable.

In practice, CODE consists of a number of smooth likeli-

hood decision boundaries for validating feature correspon-
dences. These can be rapidly computed from noisy corre-
spondences hypotheses (50% wrong matches are acceptable
at this stage). Once computed, the decision boundaries can
filter the entire nearest-neighbor matching set (which often
has over 90% outliers) for inliers, with the one-to-one corre-
spondence forming a natural complement to the likelihood
based CODE boundaries. This process retains many more
correspondences than traditional descriptor based thresh-
olding methods while eliminating nearly all wrong matches.
Our regression can be computed in a few seconds and
since verification is cheap, the proposed technique scales
efficiently to large numbers of features. In practice, CODE
filtering time is O(N) where N is the pre-defined number
of feature matches used in the regression.

To make a complete feature correspondence package,
we fuse CODE with our re-implementation of GPU A-
SIFT [15] and Muja and Lowe’s [16] fast approximate nearest
neighbor matching. As CODE’s overhead is low, our full
system is faster than the original A-SIFT implementation [6],
while procuring many more matches. An example is shown
in Fig. 1C).

This work extends our previous conference papers [11],
[17]. In this paper, we provide a thorough exposition of
the proposed technique, and introduce an approximation
that improve its scalability to large numbers of matches. In
addition, we perform a number of new and expanded ex-
periments to validate the proposed technique against state-
of-the-art methods. To summarize the main contributions:
• We propose CODE, a principled approach expressing

the motion smoothness constraints as a matching likeli-
hood estimate of every possible motion of every image
pixel. CODE can be efficiently computed from highly
noisy feature matches and forms an effective mechanics
of discerning the difference between true and false
matches.

• We integrate CODE with A-SIFT to create a feature
matching system which yields high quality matches
at wide baselines where previous techniques provide
few or no matches. Despite the aggressive matching,
it avoids matching images of different scenes/objects.
We share our optimized implementation, in the form
of executable files, to the research community at: http:
//www.kind-of-works.com/home/code.

• We demonstrate our high numbers of reliable corre-
spondences bring compelling improvements when inte-
grated into the existing structure-from-motion systems.

1.1 Related Work
This paper owes a significant debt to pioneering research on
affine invariant, wide-baseline features [6], [18], [19]. How-
ever, the original works could not fully exploit their features’
invariance due to difficulty of identifying false matches.
This fact forced these methods to adopt very strict similar-
ity criteria which discarded many true match hypotheses.
By modeling the true underlying motion from very noisy
matches, our CODE technique can reliably differentiate true
and false matches. This results in a flood of good matches
shown in Fig. 1.

Similar to optical flow [7], [8], [9], [10], [20], we use
motion smoothness to facilitate correspondence matching.

http://www.kind-of-works.com/home/code
http://www.kind-of-works.com/home/code
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However, we retain feature correspondence’s design philos-
ophy, trading matching density and fineness in favor for
wide-baselines, higher speeds and robustness. As such our
technique may ignore subtle motion details which might be
retained by optical flow algorithms. If desired, density and
fine motions may be recovered through a subsequent re-
computation, but this is beyond the current paper’s scope.

Our formulation builds on the motion coherence frame-
work [21], [22]. Unlike the smoothness prior enforced in
most optical flow algorithms which directly penalizes mo-
tion differences, motion coherence seeks the smoothest con-
tinuous motion field consistent with observed data. The
global data integration has repeatedly demonstrated im-
pressive levels of stability [22], [23], [24]. However, the
original formulation does not accommodate motion discon-
tinuities and is vulnerable to local minima. By adapting the
motion coherence into a motion discontinuity-preserving,
global regression technique, we avoid these problems while
maintaining its robustness.

Edge-preserving bilateral filters [14] were a major in-
spiration for this work. However, unlike bilateral filtering
which is a local operation, our regression on the bilateral
domain computes a global model. This allows us to con-
nect information from across the image for robustness to
outliers. In addition, while bilateral filters return a single
value at each pixel, CODE will return a continuous function
encoding a distribution of likelihoods for all possible motion
values a pixel can take.

We also draw inspiration from previous attempts to fuse
smoothness constraints with a sparse feature correspon-
dence. These include graph matching [13], [25], [26], [27],
[28], bounded distortion [29] and mesh-based correspon-
dence reasoning [30], with a number of approaches [29],
[30] explicitly focused on removing false matches. How-
ever, the graph and distortion based techniques [29], [30]
are vulnerable to local minima. Further, their computation
cost increases with the number of features, making the
techniques less scalable to high resolution imagery. While
scalability and non-convexity are problems with most cor-
respondence formulations, assuming pre-computed, albeit
noisy correspondence creates a sub-problem which we show
is amenable to convex regression modeling, thus avoiding
both these issues.

In practical terms, a family of RANSAC techniques [31],
[32], [33], including the recent branch-and-bound formula-
tion [34], share our goal of removing false matches. How-
ever, the basic RANSAC formulation is designed for small
(e.g. 10−20 variables) linearizable models, making them ap-
plication specific. Our general smoothness based constraints
cannot be enforced with RANSAC, thus motivating our
investigation of regression techniques. In practice, it is best
to use our method to boost the number of true matches first,
then followed by RANSAC to estimate application specific
parameters when appropriate.

Also worth mentioning are region growing correspon-
dence algorithms [35], [36] which provide quasi-dense cor-
respondence while handling large baselines and occlusions.
These techniques provide many more correspondences than
ours. However our solution retains the feature based tech-
niques’ innate advantage in speed, correspondence accuracy
and handling large scale changes.

Fig. 2: Regression can be understood as finding a continuous
surface that explains scattered data points (denoted by “+”).

Finally we emphasize that different from the objectives
of SIFT flow [37] or object matching [38], we do not de-
sire correspondence between different objects. Given two
images of physically different objects, our desired result is
no correspondence.

2 OUR APPROACH

This section outlines our general formulation for coherence
based data regression. We begin by designing a multi-
function regression in Sect. 2.1 based on motion coher-
ence [21], [22]. Sect. 2.2 explains the bottlenecks of this
approach and proposes an accelerated approximation. We
provide a succinct summary of the regression process
in Sect. 2.3. Based on the theoretical foundation laid in
this section, Sect. 3 applies the regression techniques to the
correspondence problem.

2.1 Generalized Coherence for Data Regression

The problem is formulated as fitting a smooth function to
observed data points. The fitting function is f : p 7→ q,
where p ∈ RD and q are its domain and co-domain. We
assume f(p) is a linear combination of K smooth functions
{fk(p)}k=1,2,...,K , such that

q = f(p) =
K∑
k=1

ak(p)fk(p) , (1)

where ak(p) are known weighting functions over the D-
dimensional domain of p, which provide formulation flexi-
bility we exploit later.1

The observed data consists of N noisy scalar values {q̂j}
at corresponding locations {pj}, which are assumed to be
noisy observations of f(p), such that

q̂j = f(pj) + nj =
K∑
k=1

ak(pj)fk(pj) + nj , (2)

with nj representing noise. With respect to Fig. 2, p is a
spatial point on the two-dimensional X-Y domain. The
regression function f(p) is represented by a continuous
valued surface, while q̂j is the observed value for a spatial
point pj .

Each individual fk(.) function is composed of two terms:

fk(p) = Hk + φk(p) . (3)

1. The formulation is unchanged if q is a vector. However for compu-
tational speed, q is a scalar throughout this paper.
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Hk is an (optional) unknown scalar offset and φk(p) is
a smooth function evaluated with a motion coherence
smoothness penalty [21], [22]

Ψk =

∫
RD

|φk(ω)|2

g(ω)
dω , (4)

where φk(.) denotes the Fourier transform of a function
φk(.), while g(ω) is the Fourier transform of a Gaussian
function with a spatial standard deviation γ. Hence, Eqn. (4)
achieves smoothness by penalizing high frequency terms.

Our goal is to find the smoothest possible set of fk(.)
functions consistent with the given data points {pj , q̂j}.
This is expressed as the following energy minimization:

E =
N∑
j=1

C (q̂j − f(pj)) + λ
K∑
k=1

Ψk

=
N∑
j=1

C

(
q̂j −

K∑
k=1

ak(pj)fk(pj)

)
+ λ

K∑
k=1

Ψk .

(5)

Here, C(.) represents the Huber function as used in [17]:

C(z) = Huber(z) =

{
z2 if ‖z‖ ≤ ε
2ε‖z‖1 − ε2 if ‖z‖ > ε

(6)

and λ is the weight given to the smoothness constraint Ψk.
Directly minimizing E with respect to functions fk(.)

appears intractable as {fk(.)} are continuous functions.
However, we can reduce the problem to an optimization
over a finite number of variables as shown below.

Note the Fourier transform relation, φk(p) =∫
RD φk(ω)e2πι〈p,ω〉dω. We know that at the minimum of the

energy E of Eqn. (5), its derivative is zero. Hence,

δE

δφk(z)
= 0,∀z ∈ RD, k ∈ {1, 2, . . . ,K}

⇒
N∑
j=1

wk(j)

∫
RD

δφk(ω)

δφk(z)
e2πι<pj ,ω>dω

+ λ

∫
RD

δ

δφk(z)

|φk(ω)|2

g(ω)
dω = 0

⇒
N∑
j=1

wk(j)e2πι<pj ,z> + 2λ
φk(−z)

g(z)
= 0

(7)

where wk is a N × 1 vector that serves as a place-holder for
more complicated terms.

Rearranging the terms gives

φk(z) = g(−z)
N∑
j=1

wk(j)e−2πι<pj ,z> , (8)

Taking the inverse Fourier transform of Eqn. (8), we can
write our continuous functions {φk(p)} in terms of a finite
set of N -dimensional vectors {wk},

φk(p) =
N∑
j=1

wk(j)g(p,pj) =
N∑
j=1

wk(j)e
−
‖p−pj‖
γ2 ,

∀k ∈ {1, 2, ...,K} ,
(9)

where g(p,pj) is a Gaussian radial basis function and
{wk(j)} are unknown variables. Thus Eqn. (9) states that
the smoothest possible functions {φk(.)} which minimize

the energy in Eqn. (5) must lie in the space spanned by N
radial basis functions {g(p,pj)}. 2

For the smoothness constraint, substituting Eqn. (8) into
Eqn. (4) allows the continuous regularization function Ψk to
be expressed in terms of wk

Ψk = wT
kGwk , k ∈ {1, 2, ...,K} , (10)

where G is a symmetric matrix with its elements given as

G(i, j) = g(pi,pj) = e−‖pi−pj‖
2/γ2

. (11)

Substituting Eqns. (9) and (10) into Eqn. (5) yields

arg min
{fk(p)}

∑N

j=1
C (q̂j − f(pj)) + λ

K∑
k=1

Ψk

= arg min
{fk(p)}

∑N

j=1
C

(
q̂j −

K∑
k=1

ak(pj)fk(pj)

)
+ λ

K∑
k=1

Ψk

= arg min
{wk,Hk}

N∑
j=1

C

(
q̂j −

K∑
k=1

ak(pj)

(
Hk +

N∑
i=1

wk(i)g(pj ,pi)

))

+ λ

K∑
k=1

wT
kGwk ,

(12)

where the energy is dependent only on a finite number of
variables, i.e., {wk} and Hk. Since G is a Gram matrix [22],
this makes the coherence term Ψk in Eqn. (10) convex. As
the Huber loss function C(.) is also convex and the sum of
convex functions is convex, the overall energy minimization
problem in Eqn. (12) is convex. Therefore, a gradient descent
minimization of Eqn. (12) will lead to a guaranteed global
minimum.

Based on the estimated variables {wk} and Hk, the
global regression function f(p) is constructed from {fk(p)}:

f(p) =
K∑
k=1

ak(p)fk(p) =
K∑
k=1

ak(p)(Hk + φk(p))

=
K∑
k=1

ak(p)

(
Hk +

N∑
i=1

wk(i)g(p,pi)

)
.

(13)

This formulation mirrors that developed in our previ-
ous conference paper [17]. For applications of this global
regression approach to data fitting and image warping, we
encourage interested readers to refer to [17].

2.2 Accelerated Coherence Based Global Regression

Examining the formulation presented in Sect. 2.1, one can
find that the length of wk vectors and hence the number of
variables in Eqns. (8) and (12) increase linearly with N , the
number of observed data points under consideration. This
creates a computational burden when N is large. Motivated
to address this challenge, we propose an approximation that
decouples this linear computational dependency, with its
full derivation given in Appendix ??.

Consider fk(p) in Eqn. (13), the k-th smooth function
to be estimated. If many data points in the input set {pi}

2. This may partially explain the success of radial basis functions in
learning networks [39].
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are adjacent, a good approximation of fk(p) can be given as
follows,

fk(p) ≈ f̃k(p) = Hk +
∑M

j=1
w̃k(j)g(p, p̃j) , (14)

where w̃k is an M -dimensional vector (M � N ), and {p̃j}
are M representative cluster centroids distributed across the
space occupied by the original points {pj}. These centroids
are usually obtained by K-means clustering [40] on {pj}. If
most of the pj points have near duplicates in the set {p̃j},
the function f̃k(p) will be able to closely approximate all
possible values of the original fk(p) function in Eqn. (13).

Interestingly, the approximated regression functions
{f̃k(p)} can be easily integrated into the global energy
function (12), which becomes

arg min
{w̃k,Hk}

N∑
j=1

C

(
q̂j −

K∑
k=1

ak(pj)f̃k(pj)

)
+ λ

K∑
k=1

w̃T
k G̃w̃k ,

(15)
where G̃ is an M × M matrix, with G̃(i, j) = g(p̃i, p̃j)
and the overall cost remains convex. Note that in this
approximation, the values of λ and M are not coupled, i.e.,
the same λ can be properly used for different settings of M .

This clustering-based approximation is actually useful
in accelerating many computer vision tasks, where closely
located pixels create many redundant variables. Apart from
this paper, we believe our approximation can also aid the
original motion coherence [22] and its derivations [23], [24].

2.3 Summary of the Coherence Based Regression

To provide a succinct summary of the regression process, we
give a recap of it here. Given N noisy scalar values {q̂j} at
corresponding locations {pj}, where pj is a D-dimensional
vector, we can explain the observed data {pj , q̂j} with a
continuous function f̃(p). The function f̃(p) is composed of
a linear combination of K smooth functions, which returns
a value for each query point {p}

q = f̃(p) =
K∑
k=1

ak(p)f̃k(p) , (16)

where {ak(p)} are known weighting functions over the
D-dimensional domain p. The function f̃k(p) is in turn
parametrized by {w̃k, Hk} variables:

f̃k(p) = Hk +
∑M

j=1
w̃k(j)g(p, p̃j)

= Hk +
∑M

j=1
w̃k(j)e−‖p−p̃j‖

2/γ2

,
(17)

which can be estimated by a gradient descent minimization
of the convex cost

arg min
{w̃k,Hk}

N∑
j=1

C
(
q̂j − f̃(pj)

)
+ λ

K∑
k=1

w̃T
k G̃w̃k =

arg min
{w̃k,Hk}

N∑
j=1

C

(
q̂j −

K∑
k=1

ak(pj)f̃k(pj)

)
+ λ

K∑
k=1

w̃T
k G̃w̃k .

(18)

A Huber loss function C(.) is adopted to evaluate the data
fitting quality. A summary of the estimated variables and
user-defined parameters are given in Table 1.

Estimated {Hk} optional bias variable in f̃k(p)

{w̃k} function variables in f̃k(p)

User-defined

λ weight of smoothness terms
γ std. deviation of smoothing Gaussian
ε threshold in the Huber function C(.)

K number of smooth functions for f̃(p)
{ak(p)} user defined weighting function
M length of w̃k

{p̃j} representative subsampled points
N number of data points

Others f̃(p) regression function in Eqn. (16)
cost given in Eqn. (18)

TABLE 1: Summary of parameters and variables in our
multi-function regression in Eqns. (16), (17), and (18).

3 COHERENCE BASED DECISION BOUNDARIES

With the general formulation for coherence based data re-
gression presented in Sect. 2, we now apply the regression
techniques to the correspondence problem. The key idea is
to estimate a coarse coherence based model from a sparse
set of very noisy feature matches. This model quantifies the
coherent matching evidence for every possible motion, pro-
viding a coherence based decision boundaries for verifying
correspondence hypotheses. More specifically, we achieve
this through two regression functions which act as a chain of
cascaded filters for eliminating wrong feature matches. We
describe individual modules below and elaborate on design
decisions and properties in Sect. 3.1.

Matching likelihood boundaries: What constitutes co-
herent motion? We consider a local motion is coherent if
it satisfies either of these criteria: a) a concentrated cluster
of local features making the motion; and b) many features
over a large spatial extent making the motion. A visual
illustration is shown in Fig. 3.

To enforce this coherence, we formulate a regression
based likelihood function in which each given feature match
is a noisy observed data of the form:

{pj = [xj ,mj ,xj + mj ,oj ], q̂j = 1} , (19)

where each match indexed by j hypothesizes a "1” value at
location pj . Here xj = [xj , yj ] and mj = [uj , vj ] are two-
dimensional vectors representing image coordinates and
motion vectors respectively, while oj is a 4× 1 vector repre-
senting the relative affine orientation of the matched feature
descriptor. From Eqn. (17), we choose a single function
K = 1 without the Hk bias variable, and set ak(p) = 1,∀p.
This leads to a regression function

f̃(p) =
M∑
j=1

w̃(j)g(p, p̃j) . (20)

Substituting the regression function (20) into the cost (18),
we attain

arg min
w̃

∑N

j=1
C(1− f̃(pj)) + λw̃T G̃w̃ , (21)

whose minimization estimates the parameters of f̃(p).
Observe that the smoothness cost w̃T G̃w̃ in Eqns. (4)

and (10) not only penalizes un-smooth motions but penal-
izes all motions by encouraging w̃ to be zero. Thus, the lack
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(b) (c) 

Incoherent motion 

(a) 

Coherent motion 

(d) 

Fig. 3: Coherence based separation of true and false matches.
Motions are considered coherent if (a) many local points
make similar motions or (b) there is broad spatial support
for the motion. This is enforced via the likelihood function
in Eqn. (21). In contrast, feature matches in (c) and (d) do
not give coherent motions, as the matches are not consistent
in (c), while there are insufficient smoothly moving points
to justify a long-range motion coherence model in (d).

of a bias term in f̃(p) given in Eqn. (20) means the likelihood
function stays at zero, unless forced upward by the data.
The likelihood function rises towards one if there exist a
cluster of adjacent matches whose collective pull justifies an
“un-smooth" peak. Alternatively, if a motion has significant
supports across a wide area but with no strong local pull,
the likelihood function can also rise to one, since a smooth
surface over a large extent can be fitted for these matches by
incurring a low smoothness penalty. In contrast, randomly
scattered, incorrect matches do not exert sufficient collective
pull and are ignored by the regression function. A simplified
matching likelihood function is illustrated in Fig. 4.

From noisy feature correspondences, we use Eqn. (21) to
fit a robust likelihood function given by f̃(p). The accep-
tance condition for a feature matching hypothesis pi is

accept(pi) = true if f̃(pi) > εlikelihood (22)

This mechanics can take very noisy data and remove most
gross matching errors. However, it lacks fine spatial aware-
ness and some erroneous matches will remain.

Bilaterally varying affine motion boundaries: The
matching likelihood function can be considered as a blind
cluster discovery mechanics. However, we know that correct
motions not only cluster but tend to approximate a piece-
wise smoothly varying affine model [23]. We enforce this
knowledge through a bilaterally varying affine regression
function, which computes a motion likelihood by checking
a hypothetical motion’s consistency against its estimated
model.

We focus on the X motion direction first. Observed data
take the form:

observed data = {pj , q̂j = xj + uj} , (23)

where xj , uj are obtained from the given feature correspon-
dence. The definition of pj remains unchanged from the
likelihood function formulation in Eqn. (19).

By setting K = 3 in Eqn. (16) and setting a1(p) =
x, a2(p) = y, a3(p) = 1, we have

f̃x(p) = f̃1(p)x+ f̃2(p)y + f̃3(p), (24)

where each f̃k(p) = Hk +
∑M
j=1 w̃k(j)g(p, p̃j) represents

an affine motion parameter for the location p. To estimate

Motion (u) 

Pixel Coordinates (x)

Likelihood

Pixel Coordinates  

M
ot

io
n 

   Spatial Domain

Fig. 4: Inset: A set of motion hypotheses with discontinuities
over the one-dimensional X axis. Main figure: The same
data (black dots) on the bilateral domain u and X gives
rise to a motion likelihood model built from the proposed
regression technique. Observe that estimating a regression
function over the bilateral domain involves estimating a
value for every possible motion at every spatial location.
Thus, a cross section along the specified X-position yields
a likelihood function over the admissible motion range that
a query X-position can take from. Note also that a smooth
likelihood function computed for a motion-augmented bi-
lateral domain can explain motion data with discontinuities.

f̃k(p), from Eqn. (17), we optimize the following cost func-
tion

arg min
{w̃k,H̃k}

∑N

i=1
C(xi + ui − f̃x(pi)) + λ

∑3

k=1
w̃kG̃w̃k .

(25)

Similarly for the Y direction, we have a bilaterally vary-
ing affine model as follows,

f̃y(p) = f̃4(p)x+ f̃5(p)y + f̃6(p) , (26)

which can be computed from the cost

arg min
{w̃k,H̃k}

∑N

i=1
C(yi + vi − f̃y(pi)) + λ

∑6

k=4
w̃kG̃w̃k .

(27)

While not a direct likelihood function, the bilaterally
varying affine model can be applied to distinguish correct
and wrong feature matches through a thresholding step:

accept(pi) = true

if
√

(f̃x(pi)− xi − ui)2 + (f̃y(pi)− yi − vi)2 < εspatial .

(28)

In practice, we find this stage gives more refined estimates
but lacks the robustness of the preceding likelihood module.
Thus, we cascade the affine motion boundary estimation
after the likelihood boundary, which has removed most of
the grossly incorrect matches.

3.1 Important Design Considerations and Properties

Having outlined our basic formulation, we will now delve
into the properties and design considerations of our coher-
ence based regression functions.

Global smoothness: It is enforced in all the func-
tions. Unlike a local smoothness penalization which directly
penalizes (motion) differences between neighbors, global
smoothness enforced in our formulation seeks the globally
smoothest function. By integrating information from across
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Fig. 5: CODE applied to A-SIFT features [6]. A and B demonstrate CODE’s ability to handle large motion discontinuities
and occlusions, while C demonstrates its ability to handle large rotations. In alternative display, we color code feature
matches according to their spatial locations on the left image. The matching transfers these color codes to the right image.
To better illustrate the large rotation, C uses a vector display.

the image, global functions provide a high level of robust-
ness, allowing the regression functions to be computed from
very noisy input as shown in Fig. 5.

Domain choice: The choice of the domain for p in the as-
smooth-as-possible regression formulation can be arbitrary.
We are motivated to choose the domain shown in Eqn. (19)
out of three concerns:
Discontinuity preservation: Typically, global smoothness inter-
feres with discontinuity preservation. Consider a function
fk(p) where p represents pixel coordinates, while the range
of fk(p) represents motion. The smoothness (or infinite
differentiability) implies a continuity constraint:

lim
∆p→0

fk(p + ∆p)− fk(p) = 0, ∀p = [x, y]
T ∈ R2 , (29)

which forces the function value in the neighborhood of p
to be similar. This means smooth functions must incur large
errors at discontinuous motion boundaries.

We tackle this problem by using the bilateral domain
spanning both the spatial and motion dimensions, i.e.,
p = [x, y, u, v]

T , for conceptual understanding, we use a
simpler form than that in (19). This redefines neighbors such
that spatially neighboring points with different velocities are
no longer adjacent. Therefore, we can assign very different
function values to points with adjacent spatial coordinates,
while retaining the constraint that fk(p) must be smooth.
If the motion difference (∆u,∆v) between two points in the
bilateral domain p tends to infinity, the point separation also
tends to infinity, significantly reducing their influence on
each other. This separation holds irrespective of the spatial

coordinates, and allows motion discontinuity to be accom-
modated by a smooth function shown in Fig. 4. Examples of
this discontinuity handling are shown in Fig. 5 A, B).
Affine smoothness: It has been noted in [23] that because
of the local generalization property of affines, motions are
smoother when over-parameterized in the affine domain.
Thus, we concatenate the affine parameters o to p in (19).
This allows us to better handle ciruclar motions such as in
Fig. 5 C).
Symmetry: Finally, for the sake of mathematical symmetry
between left and right images, we concatenate the arguably
redundant xj + mj term to p in (19).

Note that we find many different domain choices give
good results and the domain’s chosen in this paper serve as
guidelines rather than canonical selections.

Multiple motion hypotheses: Computing regressions
on the bilateral domain means estimating a function value
for every [x, y, u, v]

T . This forces the function to consider
every possible value that each pixel can take. Thus, unlike
bilateral filters which estimate a single value for each pixel,
CODE regression functions encode the likelihood for every
possible motion each pixel can take. This soft-modeling
adds a significant layer of robustness, as mistakenly giving
a high score to an incorrect motion need not affect the score
of the true motion. The computed regression functions and
the resulting decision boundaries of CODE are subsequently
used to verify feature correspondence hypotheses, with the
hard, sub-pixel accurate feature matches forming a natural
complement to the soft likelihood models.
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Fig. 6: Workflow of the proposed CODE technique. It con-
sists of two major steps: building regression functions and
applying cascaded filters, which take noisy feature matches
obtained with different threshold values τ as the input. See
the text for details.

Convex cost: The cost functions for estimating likelihood
and bilaterally varying affine boundaries are convex. This
avoids the need for initialization and allows our algorithm
to handle challenging motions such as the large rotation
shown in Fig. 5C).

3.2 Implementation

Our algorithm begins with feature matching. View-invariant
features are computed through a GPU A-SIFT [15] with
nearest-neighbor matching computed by FLANN [16]. Typ-
ically, feature matchers choose to accept matches based on
a ratio test with a threshold setting τ = 0.6. i.e., a match
is accepted if its nearest-neighbor difference is at least 0.6
times smaller than its second nearest neighbor. However,
this can lead to few matches as shown in Fig. 1A). In
this paper, we take selected matches obtained with a weaker
threshold setting τ = 0.86 as the input. While matching
results appear like a mess in Fig. 1B), the weaker threshold
provides many true matches, from which information can
be mined.

The selected matches are used to compute likelihood
boundaries through the regression step in Eqn. (21). The
current set is filtered by the likelihood boundaries and
acceptable matches are used to compute bilateral affine mo-
tion boundaries in Eqns. (25) and (27). Once the regression
functions and the resulting decision boundaries of CODE
are computed, all matches obtained by setting τ = 1.0 are
passed through the cascaded filters. The finally accepted
feature matches are output matches. The minimizer used is
the Ceres solver [41] and the process is illustrated in Fig. 6.

In theory, better results can be obtained through itera-
tions, where the output matches form a new set of selected
matches. In practice, we find the gain is small and hence
restrict the study to a single iteration in this paper.

Parameter settings: To accommodate images of different
sizes, the Hartley normalization is applied to the selected
matches such that they have zero mean and average distance
from the center of

√
2. The user-defined parameters in

Table 1 for the likelihood boundaries are λ = 1, γ = 1, ε =
0.1,K = 1,M = 100, N = 30, 000, with the set {p̃j}
being centroids obtained from K-means clustering of the
selected data. Matches are accepted with an εlikelihood = 0.6
in Eqn. (22). The user-defined parameters for the bilateral
affine boundaries are λ = 1, γ = 1, ε = 0.1,K = 3,M =
100, N = 1000. Matches are accepted with an εspatial = 0.01
in Eqn. (28). The design details of the regression function
f(p) and weighting functions {ak(p)} are provided in
Eqns. (20), (24) and (26).

4 EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed CODE tech-
nique, we performed a series of experiments on differ-
ent feature matching tasks and applications. Experimental
results are reported in four subsections. Sect. 4.1 shows
how the proposed regression technique CODE significantly
improves the A-SIFT feature matcher [6]’s performance.
Sect. 4.2 applies an A-SIFT with CODE system (A-SIFT w
CODE) to the Structure from Motion problem. Sect. 4.3
compares our A-SIFT w CODE to other correspondence
algorithms. Finally Sect. 4.4 discusses relative computational
time of various correspondence approaches.

4.1 A-SIFT and CODE
CODE’s central purpose is true-false feature match dif-
ferentiation to retain ambiguous matches, which are of-
ten discarded in existing methods due to a conservative
thresholding step. To evaluate effectiveness on real scenes,
we computed A-SIFT, with and without CODE on twenty
image pairs shown in Appendix ?? in the supplementary
material. These images are grouped into sets A and B. Set
A has moderate viewpoint changes but some image pairs
with large illumination changes, while set B has very large
viewpoint changes. All images are resized to a height of 600
pixels (to accommodate the original A-SIFT’s limitation in
image resolution).

We show feature matching results in Fig. 7. Av. Precision
shows A-SIFT w CODE is more accurate than the original A-
SIFT. A match is considered incorrect if its distance exceeds
7 pixels (on an image normalized to 640 × 480)3 from the
fundamental matrix, and we used the implementation of
RANSAC algorithms from Peter Kovesi [42]. As reflected
from a comparison on Av. Match Num, CODE achieves
higher precision while at the same time providing a few
orders of magnitude more matches than the A-SIFT matcher.
This illustrates the sheer number of potential correspon-
dences that are discarded due to the inability to differentiate
between true and false matches. The improvements are
more marked at wide-baselines as can be seen by comparing
sets A and B.

Apart from quantitative improvements, Fig. 7 also shows
the proposed CODE approach produces qualitatively better
results, yielding quasi-dense feature correspondences com-
pared to the scattered matches of A-SIFT. Area % is an
alternative measure of feature match numbers. Raw match-
ing numbers are not so informative in themselves since an

3. We consistently set a threshold value of 7 as a compromise between
the thresholds of 12 and 5 pixels used in [36] and [29], respectively.
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Set A Set B
Algo Av. Precision Av. Match Num Area % Av. Time/ s Max time/ s Total Failures F-number

Se
t

A A-SIFT w/o CODE 0.9471 396.84 37.8% - - 4/13 0.799
A-SIFT w CODE 0.9673 7.3447e+03 100% 2.58 5.29 2/13 0.9027

Se
t

B A-SIFT w/o CODE 0.8073 43.714 20.9% - - 3/7 0.6692
A-SIFT w CODE 0.9143 1.4807e+03 100% 1.96 2.76 0/7 0.9552

Fig. 7: Comparison between the original A-SIFT matcher [6] and A-SIFT w CODE, applying the proposed CODE regression
to A-SIFT. For this test, we constructed a challenging dataset of static scene images. It includes representative images from a
variety of prior papers [11], [13], [24], [29]. Set A has limited out-of-plane rotation, while Set B features very large viewpoint
changes. CODE recovers many true feature matches that A-SIFT discards while maintaining high precision. This gain is
especially noticeable for wide-baseline image pairs contained in Set B.

algorithm can interpolate and extrapolate to obtain more
correspondences. To simulate this possibility, each match is
dilated with a radius of 12 pixels (on its 640× 480 rescaled
image) to define a matching area. The total matching area
covered by the A-SIFT is then measured against that of
A-SIFT w CODE, and the resulting area ratio is reported
as Area %. Even on this measure, CODE improves A-SIFT
quite significantly and allows to cover an appreciably larger
area. Note that this measure under-weights more difficult
scenes which have small areas of overlap. Therefore, we also
report Total Failures which gives the fraction of the tested
scene pairs with no matches returned from an algorithm. In
the absence of ground-truth, an approximate Recall is given
as (1 - Total Failures). Finally, F-Number is calculated as a
summary statistic:

F - number =
2×Recall × Precision
Recall + Precision

. (30)

Av. Time and Max. Time of 1.96 and 2.76 seconds
reflect the computational overhead of integrating CODE.
The computational overhead is marginal relative to the
runtime of the original A-SIFT matcher (about 20 seconds)
and our re-implementation (about 10 seconds). Runtimes
are measured on a laptop with Intel i7CPU (2.4GHz), 8GB
RAM and NVIDIA GPU GeForce GTX 660M.

4.2 Structure from Motion

In the last subsection, we performed a direct comparison
between the A-SIFT matcher and our integration of CODE

in feature matching. The experiments justified CODE signif-
icantly improves A-SIFT. In this subsection, we choose to
evaluate the two different feature matchers by integrating
them into a complete end-to-end Structure from Motion
(SfM) system, where feature matching is a fundamental
early processing module.

Structure from Motion (SfM) seeks to infer 3D models
from 2D images. It typically comprises two main stages:
a) camera position computation where camera poses are
inferred from feature matches such as A-SIFT, and b) a
multi-view stereo reconstruction step, where images with
known relative positions are fused into a full 3D model.
An interesting fact is a test dataset, designed more for one
of the stages, can be difficult for the other. For example,
images from the multi-view stereo database [43] permit high
quality dense multi-view reconstruction, if camera positions
are assumed known; but the same set of images are less
amenable to camera position recovery, due to difficulty in
computing reliable feature correspondences. Hence, most
SfM systems fail to reconstruct significant 3D scene sections.
We attempted to reconstruct these scenes by integrating A-
SIFT w CODE in the well-regarded Visual SfM system [3],
[44], [45], [46], [47]. While reconstruction results are not
always perfect, we can recover a complete 3D structure for
all multi-view scenes. An example is shown in Fig. 8.

This experiment serves two purposes. First, it demon-
strates that CODE’s high quality feature matching results
can translate into meaningful improvements on other com-
puter vision tasks. Second, feature correspondence is indeed
critical to the final 3D model’s quality. Our experiment
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A set of multi-view images [43] Agisoft [48]: A commercial 3D reconstruction software

Visual SfM [3], [44], [45], [46], [47] Visual SfM using feature matches returned by A-SIFT w CODE

Fig. 8: Structure-from-motion seeks to fuse 2D images into 3D models. CODE recovers large numbers of reliable feature
matches, making this task easier and more robust.

provides an indirect visualization of feature correspondence
quality on challenging multi-view stereo datasets like [43].
Here each of the six image sequences has twenty-four
images, leading to a total of 1656 pairwise matches. Since
the 3D reconstruction task here is computationally much
heavier than all the other tests, we ran this comparative
experiment on a desktop PC with an NVIDIA GeForce
GTX980-Ti GPU. The complete 3D reconstruction results for
A-SIFT with and without CODE are shown in Appendix ??
in the supplementary material.

4.3 Comparison to Other Correspondence Algorithms
Thus far evaluations have focused on CODE’s ability to
facilitate A-SIFT feature correspondence. We now turn our
attention to comparing our full A-SIFT w CODE to other
matching techniques. In this section, we drop the cumber-
some name A-SIFT w CODE and call our technique CODE.
The most related algorithms are those which seek to remove
or refine incorrect feature matches. Two recent examples
are bounded distortion (BD) by Yaron et al. [29], and Mode
Seeking by Chao et al. [13], [26]. At the time of writing, they
represent a fair representation of the state-of-the-art. For
experimental completeness, we also evaluate quasi-dense
correspondence NRDC by HaCohen et al. [36] and agglom-
erative clustering ACC by Cho et al. [38]. As NRDC seeks
dense correspondence, computation time on large images is
prohibitively long. Because of this, unlike other algorithms,
NRDC is run on down-sampled images of 640× 480 resolu-
tion. As stated in [36], NRDC requires different settings for
evaluation on the co-recognition dataset [49]. However, this
impacts its general performance. Thus, we evaluate NRDC
using its default parameters, and also NRDC(t) tuned for
the co-recognition dataset. Next, we conduct evaluations
for these competing algorithms on three datasets, and we
present the evaluation protocol and experimental results for
each of these datasets one by one.

1) Co-recognition dataset [49] consists of six image
pairs where significant sections of the scene is re-shuffled.
It tests an algorithm’s ability to handle large independent
motions while providing large numbers of correspondence.
Ground-truth segmentation boundaries are provided. A
match is considered correct if it lies within a 7-pixel ra-
dius of the ground-truth segment boundary. The fraction

of true matches is tabulated as Av. Precision in Fig. 9. We
compute a correspondence area by dilating each match with
a 12-pixel boundary [36]. The percentage of the total area
overlapping with ground-truth segmentation is the Preci-
sion (area), a stricter measure than Av. Precision. Recall (area)
is the percentage of ground-truth segmentation detected
after dilation. F-number from Eqn. (30) provides a per-
formance summary. When comparing computational time,
we exclude the runtime of feature detection and nearest-
neighbor matching (our implementation is faster), and focus
only on that of a core, correspondence evaluation/filtering
algorithm. As NRDC does not use features, we provide its
full computational time, and acknowledge this difference
by indicating its runtime with a superscript ‘ ∗’. A more
detailed discussion on timing is provided in Sect. 4.4. We
report all the results based on the above metrics in Fig. 9.

The area based statistics used for co-segmentation eval-
uation favors NRDC, a quasi-dense matching technique.
However, our sparse feature matching method CODE re-
mains surprisingly competitive, with its Recall (area) perfor-
mance comparable to NRDC(t). In addition, it retains the
computational speed and precision traditionally associated
with feature matchers.

2) Our dataset consists of 20 images provided with the
code of [13], [26], [29] with some additions. The images
chosen have wide variations in scale, illumination, view-
point change and image resolution. This is also the dataset
used in Sect. 4.1, except that images are no longer down-
sampled. Image pairs are divided in two sets. Set A has no
large out-of-plane rotational motion and is in the working
range of all matching algorithms. Images in Set B have large
out-of-plane rotational motions and cannot be meaningfully
handled by [29] which utilizes SIFT features. Results are
tabulated in Fig. 10. For elaboration on individual statistics,
please refer to Sect. 4.1. CODE works quite well across a
wide variety of scenes as shown by the low number of Total
Failures. Its matches are also of good quality as reflected by
the over 90% precision.

3) ETHZ-toys [50], [51] consist of nine toys in different
positions making a total of 40 object images. There are
another 23 scene images where toys are hidden. In many
scenes, the toy is, for instance, partially occluded, at a
scale significantly different from that in its object image,



IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

C
O

D
E,

O
ur

s
Algo Av. Precision Av. Match Num Av. Time /s Max time/ s Total Failures Recall

(area)

Preci-
sion

(area)

F-number
(area)

BD [29] 0.81 31.833 10.17 18.01 0/6 0.0781 0.786 0.1421
Mode Seeking [13] 0.96 915.16 14.09 20.10 0/6 0.4445 0.877 0.5901

NRDC(t) [36] 0.95 3.565e+04 27.30* 30.75* 0/6 0.5096 0.776 0.6155
NRDC [36] 0.80 2.653e+04 25.12* 35.28* 0/6 0.3291 0.716 0.4510
ACC [38] 0.99 68 3.00 3.62 0/6 0.1901 0.934 0.3159

CODE, Ours 0.99 6.668e+03 2.94 3.43 0/6 0.5900 0.939 0.7249

Fig. 9: Evaluation on the co-recognition dataset [49]. We use a Recall (area) metric which favors dense correspondence over
feature matchers. Despite this, CODE is surprisingly competitive at the co-segmentation task. This is a testament to CODE’s
number of correspondences and ability to handle multiple motion models. Example results are visualized in the top panel.
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Algo Av. Precision Av. Match Num Area % Av. Time/ s Max time/ s Total Failures F-number
BD [29] 0.84 616.76 41.96% 102.85 577.6 6/13 0.657

Mode Seeking [13] 0.86 606.07 40.64% 40.39 270.23 3/13 0.815
NRDC(t) [36] 0.95 4.4946e+04 105.8% 24.9* 29.6* 5/13 0.747
NRDC [36] 0.95 4.8556e+04 112.5% 24.7* 31.4* 4/13 0.803
ACC [38] 0.96 65 18.8% 3.68 6.07 5/13 0.751

CODE, Ours 0.96 4.41e+03 100% 2.97 6.27 1/13 0.940
Algo Av. Precision Av. Match Num Area % Av. Time/ s Max time/ s Total Failures F-number

BD [29] 0.61 14.1 13.5% 27.51 64.88 2/7 0.657
Mode Seeking [13] 0.84 416.4 22.07% 8.14 9.98 3/7 0.680

NRDC(t) [36] 0.94 1.843e+03 14.29% 25.69* 31.17* 5/7 0.439
NRDC [36] 0.96 7.985e+03 48.03% 21.93* 26.59* 2/7 0.822
ACC [38] 0.99 9.28 6.90% 1.87 2.60 5/7 0.444

CODE, Ours 0.92 4.41e+03 100% 1.73 2.05 0/7 0.960

Fig. 10: Evaluating CODE against other feature matchers. A challenging image dataset and a set of metrics as described in
Sect. 4.1 are used for this evaluation. The dataset contains full-resolution, representative images primarily from a variety
of papers [13], [24], [26], [29]. Set A has limited out-of-plane rotation while Set B has very large viewpoint changes. CODE
with constant parameters excels in a wide variety of scenarios. This is shown by low Total Failures and high Precision.

distorted due to physical bending of the object, or having a
glass encapsulation. We compute correspondence between
every scene-toy image pair. If a scene contains a toy and
a correspondence algorithm finds matches, it is considered
a correct retrieval. If a scene does not contain a toy but
an algorithm finds correspondences, it is considered an
incorrect retrieval. Recall and precision statistics are com-
puted for these trials and tabulated in Fig. 11. As processing
920 image pairs with all algorithms is prohibitively costly,
we only compare to the top performers from the previous
tests over the image sets A and B. The results in Fig. 11
show that CODE is general enough to accommodate large
scale changes, non-rigid deformations and significant partial

occlusion. It does so while avoiding correspondence on
image pairs of different scenes. Over 920 image pairs, we
had 0 incidence of incorrect retrieval and correctly retrieved
95.4% of the objects. This compares favorably to the next
best algorithm, NRDC, with a precision and recall of 75%
and 48.8% respectively.

To summarize the experiments, CODE demonstrates su-
perior standings on a variety of challenging test cases, as
a very competitive feature matching technique. In terms of
precision, number of matches and computational time, it is
consistently better than alternatives like BD [29] and Mode
Seeking [13], [26]. Its match numbers is exceeded by quasi-
dense matching NRDC. However, CODE can obtain reliable
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Algo Precision Recall F-number
Mode Seeking [13] 0.2333 0.9767 0.3767

NRDC [36] 0.7500 0.4884 0.5915
CODE, Ours 1 0.9535 0.9762

Fig. 11: The ETHZ-toys dataset [50], [51]. We measure the
object-retrieval correctness. Mode Seeking [13] tends to find
correspondence on image pairs even when there exists no
common objects. This produces high recall but low preci-
sion. NRDC [36] represents a better balance. In contrast, our
algorithm is aggressive in match retrieval but also strict in
enforcing correctness, leading to a high F-number.

feature correspondences on many scenes where NRDC has
no matches as seen in Total Failures and Recall from Fig. 10
and Fig. 11, respectively.

4.4 Computational Time

It is true that computational efficiency is not the most critical
issue when the primary concern is on estimating quality
feature matches for an image pair. However, applications
like Structure from Motion and image stitching typically
require all-pair feature correspondence, where the complex-
ity scales quadratically with the dataset size. As a result,
an innocuous 30-second runtime scales to 50 minutes for
all-pair matching on a small 10-image set. In this respect,
feature matchers have a significant advantage over dense
matchers as the heavy cost absorbed in the feature computa-
tion is only incurred once per image. This leaves a relatively
low recurring time shown in Table 2. Observe that our
theoretical time on a 10-image dataset is 12.4 minutes, while
NRDC’s is 45 minutes. In addition, our timings reported in
Table 2 include many high resolution images, while NRDC
used down-sampled 640×480 images. Such a clear runtime
advantage enables a practical algorithm to leverage the
enhanced accuracy offered by high resolution imagery to
benefit challenging tasks such as Structure from Motion.

Next, we compare our computational time against other
match verification or refinement alternatives like BD [29]
and Mode Seeking [13], [26]. From Fig. 9 and Fig. 10, it can

Time in
seconds

Feature
computa-

tion
Match CODE

Recur-
ring
time

Total
time

A-SIFT w
CODE 8.62 4.37 2.96 7.33 15.95

NRDC [36] - 26.98 - 26.98 26.98

TABLE 2: Breakdown of average timing of Set A in Fig. 10.
We compare our feature matcher with NRDC, a dense
matcher. Note that while our algorithm is only about 2 times
faster, its recurring time is 3 times faster than NRDC, leading
to significant efficiency gains on image sets of moderate or
large size. See the text for a detailed discussion.
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Fig. 12: CODE scales efficiently to high resolution images
with many thousands of matches. Runtimes over different
numbers of input feature matches N are plotted: red for
CODE, blue for BD [29] and green for Mode Seeking [13].

be seen that CODE’s average time is typically 5 to 6 times
lower than alternatives. However, CODE’s maximum time
can be one to two orders of magnitude lower, suggesting
a scalability advantage. The picture is clearer in Fig. 12,
which shows CODE’s computational cost scales well to
handling large numbers of feature matches. This is due to
CODE’s generalization ability. As proposed in Sect. 2.2, the
computationally expensive regression step can be computed
on a subset of M matches, where M is pre-defined. The sub-
sequent match verification step is fast and scales efficiently
with the increasing number of input matches N (N � M ).
This makes the overall cost O(M).4

5 CONCLUSION AND FUTURE WORK

We present a feature correspondence algorithm in which
a smoothness based regression is utilized to identify cor-
rect matches based on their shared coherence. By reduc-
ing the strain on feature uniqueness, it provides many
more matches over wider-baselines than previous solutions.
These results are especially remarkable for a novel formula-
tion and suggest a promising research direction. Our current
experiments are limited to sparse feature matching with
an emphasis on speed and reliability. As such our solution
ignores fine motion details and small independent motions.
More visual illustrations are shown in Appendix ??. How-
ever, by reliably modeling general motion, we believe our
technique lays a solid foundation for subsequent works to
enhance the density and fineness of motion estimates. Note

4. Code is available at http://www.kind-of-works.com/.
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that we have recently customized the algorithm for pose
estimation in [52].
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