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Abstract—The problem of using surface data to reconstruct
transmural electrophysiological (EP) signals is intrinsically
ill-posed without a unique solution in its unconstrained form.
Incorporating physiological spatiotemporal priors through prob-
abilistic integration of dynamic EP models, we have previously
developed a Bayesian approach to transmural electrophysiological
imaging (TEPI) using body-surface electrocardiograms. In this
study, we generalize TEPI to using electrical signals collected
from heart surfaces, and we test its feasibility on two pre-clinical
swine models provided through the STACOM 2011 EP simulation
Challenge. Since this new application of TEPI does not require
whole-body imaging, there may be more immediate potential
in EP laboratories where it could utilize catheter mapping data
and produce transmural information for therapy guidance. An-
other focus of this study is to investigate the consistency among
three modalities in delineating scar after myocardial infarction:
TEPI, electroanatomical voltage mapping (EAVM), and magnetic
resonance imaging (MRI). Our preliminary data demonstrate
that, compared to the low-voltage scar area in EAVM, the 3-D
electrical scar volume detected by TEPI is more consistent with
anatomical scar volume delineated in MRI. Furthermore, TEPI
could complement anatomical imaging by providing EP functional
features related to both scar and healthy tissue.

Index Terms—Bayesian estimation, electroanatomical mapping,
inverse problem of electrocardiography, magnetic resonance
imaging (MRI), post-infarction scar, transmural electrophysiolog-
ical imaging.

I. INTRODUCTION

P OST-INFARCTION scar tissues, if left untended, can
constitute electrophysiological (EP) substrates that could

initiate and sustain malignant arrhythmia leading to sudden car-
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diac death [1]. Characterization of these substrates is critical for
defining an effective therapeutic strategy for catheter ablation
of ventricular tachycardia (VT) [2]. Current state-of-the-art in
VT ablation is guided by electroanatomical voltage mapping
(EAVM) during sinus-rhythm [2]. However, point-to-point
catheter mapping is still one of the most challenging proce-
dures that incurs prolonged mapping time and exposure to
flouroscopy radiation [3]. Furthermore, EAVM provides a poor
surface surrogate for deeply-situated scars that often have
complex shapes varying with the depth of the myocardium.
Therefore, EAVM could result in substantial variability that
confounds therapy planning and limits therapy outcome. It may
also fail to identify mid-wall fibrosis that is present in up to
30% of patients with nonischemic cardiomyopathy [4]. Recent
studies have evidenced the mismatch between EVAM and mag-
netic resonance imaging (MRI) in characterizing post-infarction
scars [2], [3], [5], [6]. Though the cause of this mismatch is
still unclear, it is largely believed that EAVM cannot fully
detect nontransmural scar core or heterogeneous scar border
[6]. Also, poor catheter contact, insufficient chamber sampling
and far-field recording in EAVM can lead to false-positives on
normal myocardium [2].
This gap in the standard of care calls for a novel imaging

modality that could reveal 3-D subject-specific EP char-
acteristics across the depth of the myocardium. This EP
imaging modality could also complement traditional tomo-
graphic imaging by revealing functional conduction blocks in
structurally normal myocardium and by providing electrical
functional features related to anatomical scars. It could further
compensate for the problem that the routine use of MRI is
considered unsafe in the majority of VT patients carrying
implantable cardioverter-defibrillators (ICD) [3], [6].
However, the surface-to-volume transition of EP data in-

volves a notoriously ill-posed inverse problem that lacks a
unique solution in its most unconstrained case [7]. Starting with
body-surface electrocardiograms (ECG), decades of research
efforts arrived at surface solutions on the epicardium [8], [9]
or the ventricular surface [10], [11]. One of the first successes
in surface-to-volume transition examined activation current
density, and therefore focused on activation isochrones and
initiation sites during electrical depolarization [12].
We have previously developed a novel method of transmural

EP imaging (TEPI) that uses body-surface ECG to computation-
ally reconstruct subject-specific, condition-specific transmural
action potentials [13], [14]. The computed action potentials in-
clude not only the depolarization but also the repolarization fea-
tures, which are closely related to the study of arrhythmia [15]
and the location of post-infarction scars. Feasibility of TEPI was
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preliminarily verified on human subjects with prior myocardial
infarction, with reference to either in vivo EAVM [16] or con-
trast-enhanced MRI [17].
In this study, we generalize TEPI to using heart-surface elec-

trical data as inputs, in particular unipolar electrograms (EGM)
available from standard EAVM procedure. The previously
studied ECG-TEPI, because of its noninvasive data acquisition,
has the potential to facilitate a safer/earlier diagnosis and the
continuous monitoring of EP dysfunctions. In comparison,
EGM-TEPI uses less smeared data closer to the heart and does
not need anatomical data of the torso. It thus sees more imme-
diate potential in EP laboratories to provide transmural details
that better guide therapy planning. In this study we test the
feasibility of EGM-TEPI on two swine hearts (one healthy and
the other with chronic infarction) that were provided through
STACOM 2011 EP simulation challenge [18].
Another focus of this study is to investigate the relation be-

tween TEPI and two other state-of-the-art modalities (EAVM
andMRI) for post-infarction scar delineation.We no longer con-
sider a single modality of reference data, but incorporate and
compare both EAVM and MRI on each animal. Furthermore, ex
vivo MRI data are included to further reduce the uncertainty in
the reference of 3-D scar shape. Our feasibility study demon-
strates the potential of TEPI to complement surface catheter
mapping by providing the missing information along the trans-
mural dimension. Our preliminary data also show that, com-
pared to EAVM, TEPI is more consistent withMRI in scar delin-
eation. It indicates that TEPI can also complement tomographic
imaging by providing EP functional features around scar tissue
or structurally normal myocardium.

II. FORWARD AND INVERSE BIOELECTRICAL
PROBLEMS OF THE HEART

Various approaches to EP imaging using body-surface ECGs
[8]–[12] essentially aim to solve the inverse problem on the bio-
electrical field of the heart, where the solution is formulated
as different source generators equivalent to the action currents
across the depth of the myocardium. Because of the quasi-static
property of the bioelectrical field (capacitive, propagation, and
inductive effects are negligible) [7], we have previously shown
[19] that the potential field within the volume conductor can be
formulated as

(1)

(2)

• Equation (1) represents a Poisson’s equation on the bido-
main heart model, governing the distribution of extracel-
lular potentials within the 3-D myocardium as
a result of the current density ,
where is the transmembrane potential (action potential).

is the anisotropic intracellular conductivity tensor re-
flecting fiber directions, and is the bulk conductivity
assumed to be isotropic in our formulation [19].

• Equation (2) represents a Laplace’s equation on the mono-
domain torso model, governing the potential field in the
volume conductor external to the heart and bounded

by the body-surface. The subscript denotes each piece-
wise homogeneous region with conductivity , pro-
viding a general description of the inhomogeneous volume
conductor of the torso.

Boundary conditions of equations (1) and (2) enforce contin-
uous potentials and currents along the normal direction of the
bounding surface and any interface between regions and
of different conductivities. By Green’s theorem and integra-

tion by parts, we have shown that the relation between the poten-
tial field and cardiac current sources can be derived as follows
[7], [19]:

(3)

where and
. This (3) provides a general description of the

bioelectrical field on a volume conductor , where surface
is the outer-surface that bounds the volume , and are the
internal surfaces that divide regions of different conductivities.
In other words, (3) tells us that the potential at any point is
contributed by two sources: the volume integral of the primary
source of myocardial current density on the right-hand side
(rhs) of (3), and the surface integral of the induced secondary
sources on all the surfaces expressed in the form of equivalent
layer sources. More specifically, it includes the contribution
from the bounding surface as a consequence of sources that
lie outside (second term on the lhs), and the contribution
from internal surfaces as an effect of the discontinuity in
conductivity (third term on the lhs).
From this general description (3), various existing inverse

formulations could be derived. If we restrict our attention to the
potential field in the volume excluding the heart, the bounding
surface now includes the body surface and the heart sur-
face . In this case, the volume inte-
gral on the rhs of (3) vanishes and the resulting forward bioelec-
trical model relates the potential on the heart surface to that on
the body surface. Based on this formulation, most existing ap-
proaches to the corresponding inverse problem seek the equiv-
alent layer on the heart surface to represent the action sources
in the myocardium [8]–[11].

A. Forward Bioelectrical Model for TEPI

In our problem, we target transmural action potentials and
include the bidomain heart model in the volume conductor.
1) ECG-TEPI: In our previous study of TEPI, we examined

the complete torso and the bounding surface was equivalent
to the body surface . The heart surface
was treated as an internal surface that contributed to a part of
the summation term on the lhs of (3), i.e., as one of the equiva-
lent layer sources resulting from the inhomogeneity inside and
outside the myocardium.
2) EGM-TEPI: To generalize TEPI to inputs from heart-

surface EGMs, we now consider only the 3-D bidomain heart
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model bounded by the heart surface .
Assuming an isolated heart with no outgoing current flow, we
again have a specific form of (3).
For both formulations we showed that, by a coupledMeshfree

andBoundary-Element approach [19], we can numerically solve
(3) and convert it to a matrix representation

(4)

where matrix is obtained from boundary element method
(BEM) approximating the surface integral on the lhs of (3), and
matrix from the meshfree method approximating the volume
integral on the rhs. The vector represents the transmural ac-
tion potential distribution, defined as macroscopic quantities to
represent collective behavior over small volumes of tissue. In
ECG-TEPI, the vector is the potential field on all the sur-
faces including the body surface. In EGM-TEPI, consists of
only heart-surface potentials. The use of macroscopic scale is
determined by the fact that the data available for the inverse
problem are at the organ level.

B. Ill-Posedness of the Inverse Problem

To understand the ill-posedness of the inverse problem in cal-
culating transmural action potential from different surface po-
tentials (body-surface versus heart-surface), we first obtain
the forward transfer matrix through a minimum norm solution
to (4): . The resulting is an matrix
where is the number of discrete points in the heart model, and
is the number of data points on the surface. Applying singular

value decomposition on the forward transfer matrix , we have

(5)

where matrices and consist of columns of the left- and
right-singular vectors of , and the vector represents an
orthogonal transformation of to the space spanned by the
right-singular vectors . is an matrix composed of
an diagonal matrix of the singular values of . The re-
maining columns of are all 0-valued.
First, regardless of the spectrum of the singular values, the

last elements of do not contribute to . In other
words, the observable components in are those mapped into
the subspace spanned by the first right singular vectors of
. The rest are silent. Theoretically, given data at one time

instant, there exists no way to assess those silent components.
This provides us with a high-level understanding of the limited
observability of given measurement data .
Second, the first components in the

transformed vector are modulated by their corresponding
singular values before contributing to . As the value of
decreases, the contribution of to decreases to the range
of noise or below. To estimate these components from will
thus be substantially affected by the noise in .
In the following we use and to denote the forward

transfer matrices for ECG-TEPI and EGM-TEPI, respectively.
For ECG-TEPI, we examined of eight different human
anatomical models [16], [17]. For EGM-TEPI, we examined

of the two swine models under study.

Fig. 1. Singular value spectrum (displayed in a semi-logarithmic plot) of two
forward transfer matrices involved in ECG-TEPI, and another two in-
volved in EGM-TEPI. denotes the condition number of the matrix. Note
the different dimensions of of these matrices (number of data points on the
heart/body surface) as labelled in the figure.

• Decay of singular values: As illustrated in Fig. 1, singular
value spectrums of the eight different matrices show
similar patterns and degrees of decay, and so do the two

matrices. However, matrices display a drastically
faster decay of singular values in comparison to .

• Condition number (the ratio between the largest and
smallest nonzero singular values): All the eight matrices
have condition numbers at the magnitude from

to with an average value of , indicating
severe ill-posedness of the problem. In contrast, the two
matrices considered in this study have a much smaller
condition number of and 46.12, respectively.

Note that: 1) shape and range of the singular value spectrum of
are similar to those reported in literature [20], where inverse

solutions are formulated on the epicardium (condition numbers
are at the magnitude of the inverse of double machine precision
); and 2) by acquiring measurements closer to the cardiac

sources, the ill-conditioning of the problem appears to be re-
duced in EGM-TEPI. Given the anatomical data derived from
tomographic images of any individual subject, the forward bio-
physical model (4,5) can be created and lays the foundation of
the inverse problem [see Fig. 2(a)].

III. BAYESIAN MAXIMUM A POSTERIORI ESTIMATION OF
TRANSMURAL ACTION POTENTIAL DYNAMICS

As the first step towards the generalization of TEPI, we di-
rectly apply the same methodology to both ECG- and EGM-
TEPI. To resolve the nonuniqueness of the solutions, proper
priors and assumptions about the solution must be made. In this
regard, we have a unique advantage that physiological knowl-
edge of action potentials are available from decades of research
on cardiac physiological modeling [see Fig. 2(b)]. Fig. 2(c) sum-
marizes the two fundamental components of TEPI.
1) Incorporate physiological, spatiotemporal priors of 3-D ac-
tion potentials through probabilistic treatment of computa-
tional models of 3-D electrical propagation.
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Fig. 2. Summary of the major components in TEPI approach.

2) Combine this probabilistic prior with surface data of uncer-
tainty to obtain amaximum a posteriori (MAP) estimate of
subject-specific action potentials.

The Bayesian approach is fundamentally a statistical view of
regularization. In the statistical setting, we view the transmural
action potential and the surface potential as random fields.
We seek an estimate of at each time instant to maximize
the posterior density function of given all the measurements
available up to the time instant , , where
and is the total number of data points of in time

(6)

Although are time-varying, the quasi-static formulation
allows us to proceed as if steady-state conditions existed at any
instant [7], and to assume that at each time instant is inde-
pendent with each other. The physiological priors of further
allow it to be modeled as a Markov process in time (explained
later Section III-A1). Combining these assumptions with Bayes
rule, the posterior distribution can be evaluated by
a pair of mutually recursive formulations

(7)

(8)

• Prediction with 3-D propagation models (Fig. 2 C1): (7)
first makes a prediction of the distribution of in the
absence of data . This prior density function is cal-
culated as an integral over the complete statistical space
of , involving the known posterior density function

and the probabilistic prior knowledge of
conditioned on .

• Estimation with available data (Fig. 2 C2): (8) then incor-
porates the likelihood function that captures the
dependency of the data on the random field . There-
fore, the posterior density function combines
the priors together with the measurement data. The MAP

estimate generated in (6) then provides a rational estimate
of that balances its conformity with the prior and its fi-
delity to the data.

A. Prediction: Physiological Spatiotemporal Priors

We propose that physiological knowledge of the spatiotem-
poral evolution of action potentials can be embedded as a
blackbox process behind (7). As illustrated in Fig. 2 C1, we
achieve this by incorporating a computational model of 3-D
electrical propagation, , and the integral in-
volved in (7) is approximated by Monte-Carlo (MC) simulation
and integration of over the space of the posterior
distribution of .
1) A Priori EP Model [Fig. 2(b)]: To describe the a priori

spatiotemporal process of action potentials, is
currently chosen to be the discrete version of the monodomain
two-variable Aliev-Panfilov model [21]

(9)

where represents the recovery current, and the time-varying
stimuli vector that contains information of the location, duration
and amplitude of the applied external stimuli in the ventricles.
The matrix relies on the 3-Dmyocardial structure and its con-
ductive anisotropy, and vectors , and consist of transmural
parameters that determine action potential properties at different
regions of the heart.
Per the definition of prior knowledge, values of all the rele-

vant model parameters are adopted a priorifrom [21] and thus
not subject specific. External stimuli for the earliest ventricular
excitation are selected from the four ventricular sub-endocar-
dial regions as experimentally determined in [22]. Because the
Aliev-Panfilov model (9) is dimensionless with and

, the amplitude and duration of the stimuli are set
to be 1.0 and 1.7 (reflecting a 5 ms duration of the stimuli in
a physiologically meaningful 450 ms ventricular EP cycle). Al-
though not subject-specific, this setup of provides a reasonable
a priori knowledge (with uncertainty) of the Purkinjie end-ter-
minals that are hardly available in subject-specific data.



WANG et al.: TRANSMURAL IMAGING OF VENTRICULAR ACTION POTENTIALS AND POST-INFARCTION SCARS IN SWINE HEARTS 735

The model uncertainty is reflected by a noise term in the
discrete version of (9)

(10)

where the explicit form of depends on the numerical
methods used for differentiating . In current study, the
implicit fourth-order Runge-Kutta method [23] is used. Note
that, because is not directly related to the measurement data
, we treat it as an intermediate variable in model (10).
The Markov assumption of is now justified by :

because the derivative of with respect to time in (9) is not
higher than the first-order, it is reasonable to obtain a discrete
(10) where depends only on .
2) EP-Model Based Evaluation of Priors (Fig. 2C1): Un-

like most Bayesian applications where the prior takes a static
form or goes through a linear transition, the prior
here is dynamic and needs to be evaluated through (7). Since
the conditional prior knowledge does not have an
explicit form but is described by the nonlinear EP model (10),
the integral in (7) can not be evaluated analytically. Instead, it
needs to be approximated by MC simulation and integration of
the EP model over the posterior distribution of .
To achieve this, first we draw a set of samples
of from the posterior density function of . On the
individual samples, we run the probabilistic EP model (10) to
generate a corresponding set of samples to approxi-
mate the mean and covariance of as follows:

(11)

(12)

where and are the weights associated with each sample.
is the covariance matrix of model noise . To further im-

prove efficiency, we use a quasi-MC method that, known as
theUnscented Transform [24], replaces the computationally-ex-
pensive random sampling with a deterministic sampling scheme
that generates a minimal set of samples to approximate the pos-
terior density function of up to the second-
order moment (covariance).
Though the Aliev-Panfilov model (9) is a relatively simple,

macroscopic model compared to other biophysical EP models,
it is selected to serve its role as a blackbox process to implic-
itly describe in (7). As described above, this means
a probabilistic treatment of the EP model involving MC simu-
lation over the complete space of . Considering the com-
plexity of this procedure (7), the Aliev-Panfilov model (9) is a
suitable choice: it captures the macroscopic phenomenon of our
targeted solutions (action potentials), without introducing any
computation that is not feasible during theMC-integration in (7)
or unidentifiable scales/variables in the MAP estimate (6). The
use of cellular models is subject to the scrutiny of its compu-
tational feasibility and identifiability, even though theoretically
(7) provides a general setting to incorporate arbitrary types of
EP models as a blackbox. This will be reserved for future in-
vestigation.

B. Estimation-Minimum Mean Square Error Estimate

1) Evaluation of Posterior Density Function and its MAP Es-
timate (Fig. 2C2): After we obtain the prior from
(7), the posterior distribution can be updated ac-
cording to the Bayes rule in (8). The MAP estimate can then be
generated as the solution to the optimization problem in (6). Due
to the high dimensionality of the random field , we take ad-
vantage of the widely-used Gaussian statistics so that the prob-
abilistic density functions involved in equations (7) and (8) can
be completely described by their mean and covariance matrices,
and the posterior density function (8) can be evaluated analyti-
cally. Furthermore, theMAP estimate of a Gaussian distribution
exactly coincides with its mean.
After the quasi-MC integration (7), (11) and (12) as explained

earlier, the Gaussian prior can be represented as

(13)

Because of the linearity of the measurement model (4)

(14)

where and measurement uncertainty are also Gaussian,
also follows a Gaussian distribution:

(15)

Combining Gaussian distributions (13) and (15), the posterior
density function in (8) can be analytically calculated
as , where [25]

(16)

The MAP estimate (mode) of this Gaussian posterior density
function equals its mean , at which the density function takes
its maximum value. The above solution (16) is equivalent to the
general linear minimum mean square error (MMSE) estimate
used in the Kalman filter (KF), where is obtained by mini-
mizing the trace of the posterior covariance matrix .
2) Connection With Tikhonov Regularization: To better un-

derstand the regularization nature of the Bayesian approach, we
rewrite the objective function (6) according to the monotonicity
properties of the logarithm

(17)

Because of the Gaussian distributions (13) and (15), we have

(18)

(19)

Equation (17) becomes equivalent to

(20)

Therefore, in the Gaussian case, the MAP estimation (20)
can be interpreted as Tikhonov regularization with the following
particular choices.
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• First, weighting matrices that correspond to the covariance
matrices of the data and the priors. Therefore, rather than
heuristic adjustment of a regularization parameter , the
relevant importance of data and priors are controlled by
natural and rational parameters of physical interpretations,
i.e., covariance matrices that represent their uncertainties.
This facilitates the incorporation of multiple complex con-
straints. Also, in addition to a point estimate, this approach
gives as a by-product the posterior covariance matrix
to measure the uncertainty of the solution.

• Second (more important to TEPI), physiological priors
that are described by probabilistic treatment

of a dynamic EP model. The sequential Bayesian setting
is able to accommodate such priors. In comparison, it
would be difficult to incorporate this complex prior in
deterministic regularization. For example, the commonly
used Tikhonov regularization term is equivalent
to the simplest assumption of prior density functions:

, i.e., is assumed to be
spatially uncorrelated and of equal variance, where is
the weight matrix and controls the regularization level.

Algorithm Summary and Implementation Details

In summary, TEPI builds on a sequential Bayesian estimator
realized through a recursive procedure of the following.
1) Prediction of the prior in the absence of data

(7), through quasi-MC simulation and integration of the
Alive-Panfilov model over the space of .

2) Evaluation of the posterior density function to
further incorporate the dependency of on (8), done
analytically by (16) because of the Gaussianity.

3) Eventually, generation of the point estimate that maximizes
the value of the posterior density function (6). In the case
of Gaussian, this MAP estimate coincides with the mean
of the posterior density function.

Fig. 2 provides a summary of the major components in TEPI.
3) Prior Assumptions: An initial prior of is needed

to start the sequential estimator. Because represents the
resting action potential field, in current study we assume
to be a zero-mean Gaussian distribution . Since
prior knowledge of stimuli location is incorporated through
the vector in the EP model (9), we desire small uncertainty
about the resting status of . Therefore, the covariance
matrix is set to be - for very small probability of
nonzero values. This prior starts the Bayesian estimator by

as described in
(6) and (8), and this sequential procedure repeats until the end
of the input ECG or EGM time series .
Other prior knowledge includes the covariance matrices for

Gaussian noises and . In our study, we assume that the co-
variances of and have the simplest possible structures

where the model noise is spatially uncorrelated and of equal
variance among all the nodes in the heart. is set to be ,

resembling a 30 dB signal-to-noise ratio (SNR) given an av-
erage signal energy of -valued . We also assume that the
measurement noise is uncorrelated between each pair of the
electrodes. The variance at each electrode is derived assuming
20 dB SNR on the corresponding spatial location of the input
signals . Fig. 18 (Appendix) provides a list of all the no-
tations and symbols used in this paper, including the different
assumptions of parameters in the Aliev-Panfilov model and hy-
perparameters of the statistics.
4) Computational Cost: TEPI is computationally intensive,

because the generation of priors (7) involves quasi-MC simula-
tion of the Aliev-Panfilvomodel, and the calculation of posterior
density functions (16) involves large-matrix operations. For ex-
ample, on a ventricular model with discrete nodes (typ-
ical dimension used in TEPI), though the Aliev-Panfilov model
takes merely min to complete the simulation of one ventric-
ular EP cycle on a Macintosh desktop (3 GHz Intel Xeon), pre-
dicting the prior by (7) involves model-simulations that
raise the computation time to h. The subsequent evalua-
tion of posterior density function by (8) involves large-matrix
operations at and, as observed in our previous experi-
ments, involves a similar amount of computational time as the
prediction phase. Thus the complete procedure of TEPI typi-
cally requires about 250 h for input ECG or EGM data of one
QRST cycle. Most recently, we began investigating the poten-
tial of graphic processing units (GPU) in accelerating TEPI.
Our first effort reported a promising speedup of TEPI on a
Tesla C2070 GPU card [26]. Combined with a more recent CPU
system (Intel i5), TEPI computation using GPU can be reduced
to the range of 2 (Tesla cards) to 4 (GTX card) hours [26].
5) Classification of Post-Infarction Scar: To detect conduc-

tion blocks and post-infarction scars from the MAP estimate
, we examine its depolarization (action time AT) and re-

polarization (action potential duration APD) features. First, we
examine ventricular AT pattern by 26 3 local regions, with
17 LV divisions by AHA standards [27], 9 RV divisions in a
similar manner [28], and three transmural layers in each di-
vision. On each segment, we calculate the average difference
in activation time (dAT) between the MAP estimates
and the simulated healthy assuming sinus-rhythm exci-
tation. -means clustering is then applied on dAT to classify
all the 78 segments into three groups: normal, premature, and
delayed excitation. This will give us an initial knowledge of the
conduction blocks in the ventricles. Second, we further incorpo-
rate the repolarization feature APD because it is closely related
to the occurrence of myocardial scar. In particular, we calculate
the averaged change in AT (dAT) and APD (dAPD) extracted
from , and then apply -means on this fea-
ture among all the ventricular nodes to dif-
ferentiate them into two groups: healthy and scar. It is important
to notice that AT and APD are functional parameters, thus the
detected scars are electrically rather than anatomically defined.

IV. EXPERIMENTS AND RESULTS

A. Validation Study Design and Experimental Data Processing

Evaluations of EGM-TEPI are performed on data acquired
on two preclinical swine models, one healthy and the other with



WANG et al.: TRANSMURAL IMAGING OF VENTRICULAR ACTION POTENTIALS AND POST-INFARCTION SCARS IN SWINE HEARTS 737

Fig. 3. Experimental data from in vivo EP mapping and ex vivo MRI study.
TEPI input data include time sequences of CARTO unipolar EGM (a1), and
anatomical data (b1) derived from un-weighted MRI with 3-D fiber directions
(b2) from DW-MRI. Reference data include CARTO activation times (a3, color
bar in ), and for the infarcted heart CARTO bipolar EAVM (a2, color bar
in mV) and 3-D anatomical scar from DW-MRI (b3). Figures (a2) and (b3) are
provided by the STACOM’11-EP simulation challenge website.

five-week old chronic infarct, collected by researchers at the
Sunnybrook Research Institute (Toronto, ON, Canada) and pro-
vided to the participants in the STACOM 2011 EP simulation
Challenge [18]. For both swine models, in vivo electroanatom-
ical mapping and ex vivo MRI data were provided. In the fol-
lowing we describe the specific setup of our validation study.
For details of the animal models or data acquisition, please refer
to [18].
1) In Vivo EP Mapping Data: In addition to the coordinates

of the mapping points, the following in vivo endocardial and
epicardial EP data (CARTO-XP system, BiosenseWebster, Inc.,
Diamond Bar, CA, USA) are used for the purposes of our study.
• Input data: EGM. In the current study we consider epicar-
dial unipolar EGMs as inputs to the proposed EGM-TEPI.
In theory, this could be generalized to endocardial and/or
epicardial EGMs, and will be investigated in future study.
In order to temporally align EGM signals that were
recorded over several beats, we examine the range of
heart rhythm observed in the EGM data. Because the EP
data were recorded in stable sinus rhythm, the ranges of
cycle lengths collected are relatively stable at 777–820
ms (77–73 bpm, healthy) and 620–640 ms (96–93 bpm,
infarct) excluding occasional beats of preventricular
complexes (PVC). Therefore, temporal alignment of these
EGM signals is done by the best matching QRS complexes
in body surface lead III. Electrograms with correlation

are selected as input signals. Fig. 3(a1) shows a
snapshot of the temporally aligned epicardial EGM map
on the healthy swine heart.

• Reference data: EAVM scar and activation isochrones.
From CARTO bipolar voltage maps [Fig. 3(a2)], scar area
on the infarcted swine heart is delineated using clinical
cutoff threshold . It consists of dense scar core
and scar border. Epicardial and endocardial activation
times, as illustrated in Fig. 3(a3), have outliers removed
before being used as reference isochrone maps.

2) Ex Vivo MR Imaging Data: MRI data obtained ex vivo
(1.5T GE SignaExcite) are used in the following manner.
• Input data: anatomy and fiber direction. High-resolution
3-D anatomical mesh [extracted from the unweighted MR

images as shown in Fig. 3(b1)] and fiber structure [esti-
mated from DW-MR images as shown in Fig. 3(b2)] were
provided to this study by researchers at Siemens Corpo-
rate Research (Princeton, NJ, USA) and INRIA, Ascle-
pios project (Sophia Antitpolis, France). For TEPI, mesh-
free, macroscopic representations of the same ventricles
are generated with spatial resolution of nodes. This
is required for the algorithmic feasibility of TEPI to target
the identifiable scale given macroscopic surface EGM data
with limited spatial resolution of data points,
and for the computational feasibility of TEPI to perform
high-dimensional probabilistic estimation.

• Reference data: anatomical scar. On the infarcted heart,
reference data of the 3-D volume of scar tissue delin-
eated from DW-MR images is provided by researchers at
Sunnybrook Research Institute (Toronto, ON, Canada).
It was previously shown that, using DW-MRI on ex vivo
formalin-fixed swine hearts, the regions of increased
apparent diffusion coefficient (ADC) correlated very
well with dense scars [29]. Fig. 3(b3) shows a selected
short-axis DW-MR image where infarct areas are observ-
able with elevated image signal intensity.

3) Registration of Carto and MRI Data: Because CARTO
mapping and MR imaging were performed separately, proper
registration is needed to establish physical correspondence be-
tween the two sets of data. Due to the lack of landmarks that
could specify their pair-wise correspondence, we resort to the
two best available data sources for registration.
• Epicardial and endocardial scar areas on CARTO surface
(areas with low voltage) and on MR-derived surface
(areas with elevated image signals). We define the con-
sistency between two scar areas as the percentage of over-
laps in the total areas . Nevertheless,
because the mismatch of EAVM and MRI scar data has
been observed and reported extensively [2], [3], [5], [6],
[30], it is incorrect to assume a hard constraint of perfect
match of scar areas to guide the registration. Also this in-
formation is not available on the healthy heart.

• General anatomical shapes of the ventricles recorded in
both CARTO and MRI data. Due to the lack of known
correspondence in landmarks, we consider the average
distance from all the CARTO points to the MRI-derived
surface. This shape-based registration is generally valid.
However, it is also error-prone because CARTO mapping
has relatively low resolution, and there is often a large
discrepancy between anatomical shapes derived from
CARTO and those derived from MRI.

• The problem is further complicated by the different heart
shape and size in vivo and ex vivo. In addition, the above
two criteria of registration appear to be in conflict as ob-
served in the infarcted model under study.

Following a typical clinical procedure, we perform an initial
rigid registration rotation translation through visual inspec-
tion by an expert. It is performed in the commercial software
platform Amira (Visualization Sciences Group, Burlington,
MA, USA), which allows 1) visual inspection of ventricular
shapes, anatomical landmarks and scar areas, 2) manual selec-
tion of corresponding regions from CARTO and MRI data, and
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Fig. 4. Illustration of the registration procedure. (a) Initial rigid registration.
Orange points and wired-mesh represent epicardial CARTO points. (b) Perpen-
dicular projection of CARTO points (red) to the MRI-surface, initialized by (a).
Projected points are colored green. (c) Registration errors representingmatching
of anatomical shapes and scar areas, respectively.

3) export of the final transformation matrix. While carrying out
this process on the infarcted heart, we observe that the attempt
to maximize the scar overlap would deteriorate the match of
anatomical shapes, and vice versa. To resolve this conflict, we
choose an outcome that balances the two registration criteria.
This process is illustrated in Fig. 4(a). To refine the initial regis-
tration, we establish the correspondence by the nearest-distance
(perpendicular) projection of CARTO points to MRI-derived
surface as illustrated in Fig. 4(b). The two measures on the
match of anatomical shapes and scar areas are summarized in
Fig. 4(c).

B. Results

In the following experimental validation, we focus on the fol-
lowing.
• The quantitative accuracy of TEPI in computing the acti-
vation pattern (on both hearts), which may reveal abnormal
conduction behavior unseen in structural imaging.

• The quantitative accuracy of TEPI in localizing
post-infarction scar (on the infarcted heart), which will
reveal its relation with the state-of-the-art EAVM and
MRI.

For experiments on each animal model, we consider two cy-
cles of TEPI. The first cycles of TEPI are performed assuming a
priori knowledge listed in Fig. 18, i.e., 1) healthy uniformmodel
parameters and regular Purkinje end-terminals to initialize the
Aliev-Panfilov model (9), and 2) Gaussian priors with prede-
fined covariances. According to TEPI outcomes of the first cy-
cles, we update the locations of the initial ventricular activation
sites (see Section V-A) to initialize the second cycles of TEPI
with all the other assumptions remaining the same.
1) Healthy Heart: Fig. 5 shows the activation isochrone

maps measured by CARTO-XP system on the healthy porcine
heart. Ventricular excitation appears to start at septal-apical re-

gion of LV endocardium (endocardial map) and anterior-middle
region of RV (epicardial map), smoothly propagates through
anterior walls, and arrives at inferior-lateral LV at last. Because
there is a lack of early breakthrough at LV-anterior wall and
the LV is activated relatively late compared to RV, the early ac-
tivation at middle-anterior LV endocardium is probably caused
by breakthroughs from the RV anterior excitation. Though
measured on a healthy heart, this RV-to-LV activation pattern
is different from general human sinus-rhythm excitation. This
could be caused either by the difference in Purkinje conduction
systems of human and swine hearts, or by certain peculiar
conditions of the specific swine heart under study. The aim
of TEPI is to reconstruct this pattern of transmural action
potentials without knowing the specific locations of electrical
stimuli a priori.
After temporal alignment of CARTO unipolar EGMs and the

registration process, 173 out of 250 CARTO points are selected
to provide input EGM signals to TEPI, to reconstruct action
potential signals on 1738 meshfree nodes that represent the 3-D
ventricular model of the swine.
2) Transmural Action Potentials: Fig. 6(a) shows snapshots

of Aliev-Panfilov simulation with prior knowledge listed in
Fig. 18, i.e., the physiological spatiotemporal prior for TEPI if
assimilation of observation data does not occur. As expected,
both ventricles are activated simultaneously, with a slight earlier
total activation of LV than RV. Fig. 6(b) shows corresponding
snapshots of transmural action potentials computed by TEPI
under this prior, exhibiting a RV-to-LV activation where RV is
excited earlier than LV and the latest activation occurs in infe-
rior-lateral LV wall. This agrees with CARTO mapping data,
particularly in terms of the unusual activation pattern specific
to this heart, i.e., the apex-to-base, RV-to-LV activation, an
early activation at middle-lower anterior LV possibly caused
by breakthroughs from other stimuli, and the latest endocardial
activation at inferior wall of the LV. Fig. 7(a) shows the action
potential duration (APD) computed by TEPI. As expected, this
healthy heart has a smooth and uniform distribution of APD
throughout the myocardium. Because the prior assumption of
Purkinje terminals on the septal region of RV may be incorrect,
we hypothesize that it may lead to an incorrect estimation of
early activation at that region and thus a long APD as shown
in the results.
3) Activation Isochrones Versus CARTO Data: Fig. 7 (b.3)

shows the anterior view of the computed epicardial activation
isochrone and error maps, versus CARTO data (b.1) and the
simulated sinus-rhythm prior (b.2). As shown, the prior (b) used
to constrain TEPI shows LV-to-RV epicardial activation oppo-
site to that measured by CARTO (a). In comparison, TEPI out-
come shows early RV activation and RV-to-LV, anterior-to-infe-
rior propagation. Nevertheless, the initial assumption of an an-
terior LV stimulus is not completely corrected. Similarly, Fig. 8
shows the anterior-lateral view of the computed LV-endocar-
dial activation isochrone and error maps. Again, because of the
assumption of Purkinje end-terminals, the prior (b) shows a
base-to-apex activation that is opposite to CARTO data (a). De-
spite this false prior, TEPI manages to capture the relatively ear-
lier activation at middle-anterior LV endocardium and the sub-
sequent apex-to-base activation.
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Fig. 5. Activation isochrone maps acquired by CARTO system on the healthy swine heart. Color bar encodes the activation time (ms).

Fig. 6. Transmural action potentials (encoded by color bar, dimensionless) at 14 and 24 ms after the onset of ventricular excitation on the healthy swine.

Fig. 7. (a) Transmural action potential durations (encoded by color bar in ms) computed by TEPI. (b) Epicardial activation isochrone and error maps (encoded by
color bar in ms) between TEPI estimations and CARTO measurements.

Fig. 8. (a) Endocardial activation isochrone and error maps (encoded by color bar in ms) between TEPI estimations and CARTO measurements. (b) Box plots
of the absolute errors of the computed activation time. The center, lower bound and upper bound of the box represents the median (50%, lower quartile (25%)
and higher quartile (75%) of the data. The lower and higher bound of the whisker represent the minimum and maximum of the data that lie within the 1.5 IQR
(interquartile range) below and above the lower and higher quartile of the data, respectively. The red points above the whisker represent outliers.

Fig. 9 lists the absolute errors and correlation coefficients
between the computed and the measured isochrones. Fig. 8(b)

shows boxplots of the absolute errors of the computed activation
time on all the epicardial and endocardial nodes. As shown, the
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Fig. 9. Absolute errors and correlation coefficients between the computed and CARTO-measured activation time.

Fig. 10. (a) Examples of activation maps measured by CARTO-XP systems on the infarcted swine heart. Color bar encodes the activation time (ms). (b) Locations
(red points) and temporal traces of the input EGM signals, shown on the epicardial surface of the MRI-derived anatomical model. Epicardial scar area as detected
in MRI data is highlighted blue.

majority ( , upper bound of the box) of the computed acti-
vation time has relatively low absolute errors that are below the
median std (standard deviation) of the error distribu-
tion, i.e., 75% of the estimation has absolute error ms on
the epicardium and ms on the LV endocardium. A small
portion of the estimation shows larger absolute errors (the upper
portion of the whisker), including a few outliers (red points
above the upper bound of the whisker) that has an absolute error
beyond the 1.5 interquartile range (IQR) above the 75% of the
data median . These regions with large errors
are likely to correspond to locations where false prior assump-
tions of Purkinje end-terminals are not successfully corrected
by TEPI, and have contributed to a higher mean and std in the
computed absolute errors. The correlation between the com-
puted and measured isochrones are calculated with these out-
liers removed.
4) Comparison Between Two Cycles of TEPI With Different

Assumptions of Initial Activation Sites: Results of the second
cycles of TEPI are listed in Figs. 6–9 for snapshots of trans-
mural action potentials, epicardial and endocardial isochrones,
quantitative errors of the isochrones and the boxplots of their ab-
solute errors, respectively. As shown, the change of initial ac-
tivation sites has a visually evident impact on the early phase
of endocardial activation, bringing it closer to CARTO data.
The rest of the activation has relatively less prominent changes,
and appears to converge to similar features to those of the first
cycle. Quantitatively, the update of the initial activation sites
only moderately improve the median absolute errors of the com-
puted isochrones (Fig. 9, 7.32% and 25.61% reduction of me-
dian error for the epicardium and endocardium, respectively).
However, it is evident from the boxplots [Fig. 8(b)] that the re-
gions with larger absolute errors are substantially reduced, re-
sulting in a much smaller number of outliers as well as a much
narrower whisker that is shifted downwards (smaller error) in
the boxplots. This improvement of accuracy is more notable
in the increase of the spatial correlation between the computed

and measured isochrones: correlations of the second-cycle out-
comes are 1.83 (epicardium) and 1.70 times (LV-endocardium)
higher than that of the first-cycle.
5) Infarcted Heart: The diseased swine heart under study

has a transmural anatomical scar that is centered at middle in-
ferolateral LV, and extends longitudinally and circumferentially
to the adjacent areas with decreasing percentage and transmu-
rality [Fig. 3(b3)]. This scar causes substantial delay and/or ab-
sence of activation around inferolateral region of LV, as shown
in CARTO activation maps [Fig. 10(a)]. CARTO maps also ex-
hibit a RV-to-LV, apex-to-base activation pattern that resembles
left bundle branch block (LBBB). The aim of TEPI is to detect
the scar and LBBB pattern without any prior knowledge of these
specific conditions.
From CARTO data mapped with a six-pole catheter (one tip

and six ring electrodes), at current stage we are only able to ex-
tract the tip EGM from each of the seven electrodes. After data
clean-up, temporal alignment of EGM signals and registration
procedure, we are left with 17 CARTO points of unipolar EGMs
as the input to TEPI, to reconstruct action potentials on 2084
nodes of the 3-D ventricular myocardium. Locations and traces
of these EGM signals are illustrated in Fig. 10(b). Note the lack
of CARTO sampling in scar regions.
6) Transmural Action Potentials: Fig. 11(a) shows the trans-

mural depolarization process simulated assuming sinus-rhythm
prior knowledge listed in Fig. 18. Under this general prior,
Fig. 11(b) shows the transmural action potentials computed by
TEPI, where LV excitations are suppressed and RV excitations
are advanced, giving an LBBB-like pattern with sequential
RV-to-LV, apex-to-base activation that is not normally present
in sinus-rhythm ventricular activation. Furthermore, there is
a substantial delay at inferior-lateral LV, consistent with the
location of the anatomical scar shown in MRI. Fig. 12(a) shows
the APD map computed by TEPI. Unlike the healthy heart,
there is a larger dispersion of APD on the infarcted heart and a
much shorter APD on inferior-lateral LV.
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Fig. 11. Transmural action potentials (encoded by color bar, dimensionless) at 34 ms (upper row) and 44 ms (lower row) after the onset of ventricular excitation
on the infarcted heart.

Fig. 12. (a) Transmural action potential durations (encoded by color bar in ms) computed by TEPI. (b) Epicardial activation isochrone and error maps (encoded
by color bar in ms) between TEPI estimations and CARTO measurements.

Fig. 13. (a-c) Endocardial activation isochrone and error maps (encoded by color bar in ms) between TEPI estimations and CARTO measurements. (d) Box plots
of the absolute errors of the computed activation time, represented in similar forms as those in Fig. 8.

7) Activation Isochrones Versus CARTO Data: Fig. 12(b)
and Fig. 13(a)–(c) illustrate multiple epicardial and LV-endo-
cardial views of the computed activation-isochrone and error
maps in comparison with CARTO data. The computed epicar-
dial isochrones capture the early RV activation and RV-to-LV
propagation pattern through anterior wall, with a substantial late
activation at inferolateral wall of LV. The error at anterior-LV is
possibly caused by the false initial stimuli assigned to basal-an-
terior LV endocardium according to [22]. The error at lateral-LV
is more difficult to analyze, due to the lack of CARTO data in re-
gions with scar. Similarly, the computed isochrones of LV endo-

cardium capture the apex-to-base activation on the septal wall,
the septum to lateral wall propagation and the latest activation
at inferolateral LV.
Fig. 14 lists the absolute errors and correlation coefficients

of the computed isochrones compared to the CARTO measure-
ments, and Fig. 13(d) shows the boxplots of the absolute errors.
Note that this infarcted heart has a longer total activation time
compared to the healthy heart, hence the higher absolute error.
Similar to what is observed in the healthy heart, about 75% of
the computed isochrones (as included below the upper bound
of the box) has absolute errors below 9.93 ms (epicardium) and
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Fig. 14. Absolute errors and correlation coefficients between the computed and
CARTO-measured activation time.

Fig. 15. Superimposed scars localized by CARTO-EAVM (light blue), MRI
(green), and TEPI (yellow). Overlap of scars between each of the twomethods is
highlighted red. Top row: transmural view of inferolateral endocardium. Bottom
row: Inferolateral view of epicardium.

11.97 ms (LV endocardium). A small percent of the computed
isochrones has larger errors, but the number of outliers is higher
than that obtained in the healthy heart. The correlations between
the computed andmeasured isochrones are calculated with these
outliers removed.
8) Comparison Between Two Cycles of TEPI: Results of the

second cycles of TEPI are listed in Figs. 11–14. Similar change
of TEPI outcomes as that seen in the healthy heart can be ob-
served. The change of initial activation sites has a more notable
effect on the estimation of endocardial activation, especially by
reducing errors caused by the false assumptions on the initial
activation locations. This is reflected in the examples of endo-
cardial isochrones in Fig. 13(a)–(c), as well as in the downward
shiftting of the box and whisker in the boxplots in Fig. 13(d).
Quantitatively, it results in a slight reduction (4.89%) of the me-
dian absolute error, and a more evident increase (1.72 times) of
spatial correlation between the CARTO data (Fig. 14). The ac-
curacy of epicardial isochrones is notably high in the outcomes
of the first-cycle TEPI (a median absolute error ms, and
correlation coefficient ), and it has a minimal change in
the second-cycle. It appears that TEPI is able to capture major
disruptions to the electrical propagation path and the perfor-
mance is not much affected by the assumption on the initial ac-
tivation sites.
9) Scar Consistency: TEPI, EAVM, and MRI: Fig. 15

illustrates the consistency between scars localized from
the three modalitiess: CARTO-EAVM (light blue), MRI
(green), and TEPI (yellow). Scar consistency as defined earlier

is also listed. Notable in Fig. 15(a) is
the evident mismatch of the scars detected by CARTO and

MRI. Foremost, due to the absence of transmural CARTO
data, the overlap only occurs on heart surfaces. On the in-
ferolateral endocardium, CARTO-EAVM shows scar towards
the basal and apical areas that is not confirmed in MRI data

. On the inferolateral epicardium,
MRI-delineated scar extends substantially further into inferior
epicardium consistency . This is likely due to the
limit of EAVM in detecting nontransmural scar or scar border
zone.
Fig. 15(b) and (c) shows the TEPI-detected scar superim-

posed with MRI and EAVM scars, respectively. On the endo-
cardium, similar to CARTO scar, TEPI scar extends further to-
wards base and apex than MRI scar. Its consistencywith EAVM
substrate (29.71%) orMRI scar (48.58%) on the endocardium is
higher than that between EAVM and MRI. On the epicardium,
TEPI scar is very similar to MRI scar, covering inferior re-
gion that is absent in EAVM data. Its consistency with EAVM
(28.96%) orMRI scar (64.65%) on the epicardium is also higher
than that between EAVM and MRI. Thus, in comparison with
EAVM, TEPI is more consistent with MRI in scar delineation.
10) Scar Transmurality: MRI and TEPI: Furthermore,

transmural data is available in TEPI and co-localizes well
with MRI scar, identifying 85% of the anatomical scar
sensitivity specificity . To further understand
the relation between the two transmural scar volumes (electri-
cally defined by TEPI versus structurally defined by MR), we
present a refined bull’s eye representation of scar volume. It
is based on the original 17-segment bull’s eye representation,
and we consider a three-layer transmural division within each
segment. As shown in Fig. 16, color bar encodes the scar per-
centage within each transmural layer in each segment. The total
percentage of scar in each segment is labeled on the figure. Out
of the eight segments to which the MRI scar extends (segments
11, 5, 10, 6, 16, 15, 12, 4 with decreasing percentage of scar
within), TEPI scar occupies the same eight segments with the
same center (segment 11), and two adjacent segments with
small percentages [13 (15%); 7 (10%)].
For the center of scar mass where the majority of the segment

is structurally damaged (93% of segment 11; 51% of segment
5), TEPI scar co-localizes with the anatomical scar with good
accuracy (segment 11: 100%, segment 5: 99%). On these two
segments, we further calculate the following.
• Relative size: The portion of scar in this specific location
versus the entire scar volume.

• Transmurality: Tthe percentage of three transmural layers
in the scar

As summarized in Table I, the majority of the scar is distributed
in the epicardial and middle layer, with decreasing percentage
transmurally from epicardial to endocardial layer. TEPI and
MRI data are consistent in quantifying scar transmurality,
particularly in segment 11 that resides in the middle of the scar
mass and most likely corresponds to scar core.
For the rest of the structural scar that occupies a moderate per-

centage of the segment (10%–40%) and is likely to involve outer
borders of the scar, the correlation between the anatomical scar
and EP scar becomes more intricate and less well understood
[30]. This might also explain the small-percentage extension of
TEPI scar to two adjacent segments relative to anatomical scar.
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Fig. 16. The refined Bull’s eye representation of the 17 3 segments of LV and the detected scar. (a) MRI anatomical scar. (b) TEPI scar assuming sinus-rhythm
prior. (c) TEPI scar assuming LBBB prior as determined from (b). The gray levels within each segment represent the three transmural layers. The color encodes
the percentage of scar within each transmural layer. The total percentage of scar in each infarcted segment is given on the figures.

TABLE I
RELATIVE SIZE AND TRANSMURALITY OF THE SCAR CORE. THE RELATIVE
SIZE EQUALS (THE PORTION OF THE SCAR IN A SPECIFIC SEGMENT)/(THE
TOTAL SIZE OF THE SCAR). TRANSMURALITY EQUALS (THE PORTION
OF THE SCAR IN EACH TRANSMURAL LAYER)/(THE TOTAL SIZE OF

THE SCAR WITHIN THE SEGMENT)

Because the arrhythmogenic mechanism of scar border has sig-
nificant clinical interest and is not yet well understood, the ca-
pacity of TEPI in localizing scar core and border will be a major
focus of our future study.
Results of scar localization from the second-cycle TEPI is

shown in Fig. 16(c), which displays moderate improvement of
localization accuracy. TEPI scar of this cycle does not extend
to the extra segments 17 and 13 as that of the previous cycle.
Quantitatively, the center of EP scar is in good agreement with
the scar core (segments 11 and 5) while the percentage of scar
segment 16 is reduced from 99% in the first cycle to 25%, much
more consistent with the MRI scar.

V. CONCLUSION AND DISCUSSION

In summary, a novel and effective modality of transmural EP
imaging is in great demand to address the gap in current clinical
practice of EP mapping. However, the transition from surface
to volume EP data is a notoriously ill-posed problem that does
not have a unique solution in its general unconstrained form.
This paper builds on our previously developed solution to this
problem, and the main contributions include the following.
1) The generalization of TEPI to inputs from heart-surface
EP mapping data. This opens a more immediate clinical
potential of TEPI in guiding ablation therapy.

2) The investigation of the consistency among three different
modalities (TEPI, EAVM, and MRI) for the delineation of
post-infarction scars.

3) The rigorous validation of TEPI involving multiple
state-of-the-art in vivo and ex vivo reference data.

Our feasibility study demonstrates that, with a priori
assumption from literature, EGM-TEPI is able to capture sub-
ject-specific transmural EP pattern with reasonable accuracy,
and to localize post-infarction scars across the depth of the my-
ocardium. Furthermore, compared to the low-voltage EAVM
scar area, the scar volume detected by TEPI is more consis-
tent with anatomical scar defined by MRI. Both preliminary
findings are promising and entail long-term studies.
First, though ECG- and EGM-TEPI are theoretically built on

the same physical principles (4) applied to two different volume
conductors, practically this change of measurement data may
play an important role in the ill-posedness of the problem. As
observed in our analysis of in Section II-B), the decay and
range of the singular value spectrum seem to be similar be-
tween ECG-TEPI and other ECG-based inverse formulations
but with equivalent source models assumed on the heart sur-
faces. This indicates that inverse problem formulated on trans-
mural sources may not necessarily be more ill-posed than for-
mulations based on surface equivalent layer sources. Rather it
is the nonuniqueness of the solution that calls for special con-
straints. Second, when the measurement surface is on the heart
surface, the inverse problem of EGM-TEPI appears to deal with
a much smaller condition number and slower decay of singular
values in the forward matrix. This further motivates the new re-
search direction of EGM-TEPI. Future research should investi-
gate the relation and difference between TEPI outcomes in these
two applications (as well as potential algorithm revisions in one
application or the other).
Furthermore, the application of EGM-TEPI is currently built

on an biophysical model assuming an isolated heart with no
outgoing current flow. This assumption is proper in the current
study because of the open-chest experimental settings (see Sec-
tion V-B). However, it may not hold in general clinical setting
dealing with closed-chest scenarios. Therefore, future investi-
gations need to study the effect of this assumption on an in-
tact heart. We may also extend TEPI to consider the potential
application of ECG-EGM-TEPI, the investigation of which re-
quire simultaneous body-surface ECG recordings and epicardial
EGM recordings.
Second, we observe that anatomical scar and TEPI scar

appear to co-localize with good quantitative accuracy at scar
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Fig. 17. Stimuli settings for two different cycles of TEPI on the healthy heart.
(a) Sinus-rhythm based on general Purkinjie end-terminals determined by [22].
(b) Updated stimuli according to the outcome of TEPI initialized by (a).

core, while displaying a more intricate relation at scar outer
border. Similar observations between anatomical scar and
recorded EGMs have been reported previously on an electro-
mechanical analysis of infarct border zone [30]. In the future,
larger experimental studies have to be performed to confirm
our preliminary data and, in particular, to examine the relation
between anatomical and electrical scar.
Built on essentially the same methodology that was previ-

ously validated in our studies of ECG-TEPI [14], [16], [17], this
study further demonstrates the feasibility of surface-to-volume
transition in the inverse cardiac bioelectrical problem. In the fol-
lowing, we discuss the relevant implications, limitations and fu-
ture work to follow this study.

A. Physiological Priors and Probabilistic Approach

The Bayesian approach has started to gain popularity in
bioelectrical applications [9], [31], [32]. In addition to its
ability to accommodate multiple priors of physical interpre-
tation (through covariance matrices), the Bayesian context
also provides an opportunity to incorporate a new type of
constraints that have not been much used in the inverse bio-
electrical problems: dynamic spatiotemporal priors provided
by computational models of electrical propagation.
There are two sets of prior assumptions involved in TEPI:

those in the EP model and those in the Gaussian statistics.
1) Physiological Priors: Unlike commonly used constraints

of spatial/temporal smoothness, physiological prior considers
the anisotropic reaction-diffusion process incorporated through
stimuli and parameters in the EP model (9).

Ventricular Stimuli: The comparison study performed
between the two cycles of TEPI provides a good understanding
of the impact of the assumption of Purkinje end-terminals
on TEPI. The second cycle of TEPI is performed with initial
activation sites determined from the outcome of the first cycle
of TEPI, whose initial activation sites are located according to
the regular locations of Purkinje end-terminals experimentally
determined in human hearts [22]. For example, on the healthy
swine model, the clustering analysis on AT shows that the
activation is suppressed in all the segments with the assumed
Purkinje end-terminals. Instead, the earliest premature activa-
tion is detected at the endocardial layer of anterior-middle RV
(segment 22) and LV apex (segment 17). Based on this, we
randomly select a stimulus in each of the two segments. Fig. 17
illustrates the stimuli configuration for the sinus-rhythm prior
(a) and the updated prior (b).

Similar observations are obtained on both hearts. The change
of initial activation sites appears to have a more evident effect
on the computed endocardial isochrones, most likely in reducing
the errors in locations where the false assumptions of Purkinje
end-terminals cannot be corrected in the first cycle. By the time
the electrical propagation reaches the epicardium, the assump-
tion of initial activation sites seems to have a minimal effect
on TEPI estimation. Therefore, with the general assumption of
Purkinje end-terminals listed in Fig. 18, TEPI is able to reveal
the prominent subject-specific electrical propagation as shown
in both animal models. When such assumption is updated (po-
tentially more correct), the occurrence of larger errors is reduced
as shown in the boxplots [Fig. 8(b) and Fig. 13(d)]. As a re-
sult, the overall absolute error (median and std) shows a slight
reduction, while the spatial correlations with the CARTO mea-
surement are more substantially increased. This improvement
of quantitative accuracy also contributes to a more precise de-
lineation of scar volume. If needed, this prior knowledge could
be approximated by examining body-surface ECG data or inva-
sive catheter mapping data, or reconstructed from surface data
as proposed in [33].
The observed influence of initial activation sites on TEPI

is consistent with the fundamental theoretical aspects behind
TEPI. Because TEPI is essentially built on a sequential MAP
estimator, the assumption of initial activation sites is expected
to impact the prior distribution of only in the beginning
time steps. As the algorithm iterates in time, the effect of such
assumption is circumvented by the data-driven estimation and
eventually has minimal effect for estimation in the subsequent
time steps. As observed in our previous studies, if only initial
activation sites are updated between consecutive TEPI cycles,
TEPI outcomes typically converge within three or four cycles.
Further improvement of the outcome will have to involve the
adapting of other parameters or structures of the EP model.

Model Parameters: Compared to the initial activation
location, parameters of the Aliev-Panfilov model (9) model
( , , , and ) are expected to affect every MAP iteration
and to have a larger impact on TEPI outputs. To estimate
model parameters together with action potentials is a pos-
sible solution. Furthermore, parameter estimation will entail
a personalized EP model that can be used for predicting pa-
tient response to therapy. While personalization of EP models
has shown its predictive power in therapy planning [34], it
becomes difficult if the available data are limited to surface
mapping data as in this study, e.g., without incorporating a
priori any data of post-infarction scars. This requires exten-
sive future studies.
2) Bayesian Approach: At current stage, we use several as-

sumptions to simplify the problem that is otherwise algorithmi-
cally and computationally complex. These assumptions could
be relaxed in the future to a more general setting.

Gaussian Assumption: As explained earlier, the widely-
used Gaussian statistics lead to a specific case of MAP estima-
tion that allows a simple evaluation of posterior density func-
tions (16) and is equivalent with a quadratic form in Tikhonov
regularization. Nevertheless, equations (6)–(8) could in general
accommodate different posterior density functions to be eval-
uated by Bayes rule. While the specific analytic formulations
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Fig. 18. Summary of the notations and symbols used in this paper, including all the assumptions and parameter values used in the Bayesian estimation.

(16) no longer apply, many different techniques can be used for
this purpose, such as particle-based Monte Carlo Markov Chain
(MCMC) method [25].

Hyperparameters: For simplicity, hyperparameters con-
troling the priors (covariance of , and listed in Fig. 18)
are predefined and fixed in our current study. As explained in
(12), the covariance of the priors is a com-
bination of the effect from the initial assumption of , the
nonlinear interaction described in the model (10), as well as the
additional model noise . Therefore, the assumption of
does not play as important a role as the assumption on the EP
model or the statistics of and .
We have previously quantified the impact of the covariances

of and on TEPI solutions [14], and showed that TEPI was
able to deliver a reasonable outcome with the current treatment
of hyperparameters. In the future, we aim to develop a princi-
pled way of quantifying the relative importance of the data and

the priors by extending the Bayesian approach to a hierarchical
form. For example, if the covariance of is expressed as ,
we could estimate not only the posterior conditional density of
but also the hyperparameter . Furthermore, if we have a va-

riety of constraints, we could incorporate them simultaneously
without fixing the relative weight of each component. For ex-
ample, the covariance for the measurement noise could be
expressed as . The identity matrix repre-
sents the independent and uniform noise over the electrodes. Co-
variance between close or distant electrodes can be introduced
in . The relative importance of the different components of
noise variances is then balanced through the hyperparameters
and . This can be done by an expectation-maximization

algorithm where posterior density functions and hyperparame-
ters are estimated recursively. Such a hierarchical Bayesian ap-
proach will ultimately replace the heuristic alternatives that pre-
define hyperparameters.
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B. Experimental Data Acquisition and Processing

One of the uncertain factors and challenges of this study lies
in the preparation of experimental data.
First, the epicardial catheter mapping was performed in a

open-chest fashion. This nonstandard use of CARTO system
may produce substantial errors, and the open-chest setting may
alter the shape and physiological state of the heart. In an alter-
native closed-chest fashion, epicardial mapping can be done by
entering pericardial space percutaneously and mapping with
CARTO system. Second, because CARTO data are acquired
through a point-by-point mapping process, beat-to-beat vari-
ability and occasional PVC beats require extra care. Because
the mapping was performed when the animals were under
stable sinus-rhythm, we try to overcome the variability of acti-
vation over different beats by rejecting epicardial electrograms
from dissimilar lead III beats. This however still introduces
uncertainty and largely reduces the number of input data avail-
able to TEPI. Third, because of the limited sampling resolution
of CARTO and our limited knowledge in extracting unipolar
EGMs from the ring electrodes of the six-pole catheter, the
number of inputs for TEPI is very small. All the above factors
need to be acknowledged during the validation process.
Furthermore, one of the most challenging tasks during the

data processing arises in the attempt to spatially register in vivo
CARTO mapping and ex vivo MR imaging data. This is essen-
tially caused by the lack of landmarks that could specify the
absolute correspondence between the two datasets. Instead we
have two plausible criteria, i.e., anatomical shapes and scar lo-
cations, which could partially guide the registration but neither
could be completely trusted. This problem is further compli-
cated by the fact that these two criteria appear to be in conflict,
and that the heart shape may have altered between in vivo and
ex vivo studies. In our study, we considered alternative nonrigid
registration methods to overcome the potential limitations of a
rigid registration followed by perpendicular registration caused
by the low dimensionality and initial error of the rigid registra-
tion. However, even though higher-dimensional nonrigid trans-
formation may have offered better shape correspondence, the
match of scar areas was ignored and led to even lower match
between CARTO andMRI scar data. Facing this ill-defined reg-
istration problem, we opted for a balanced compromise between
the match of anatomical shape and the match of scar area (when
available). In order to optimally balance the two criteria, new
registration algorithms may need to be developed. This topic is
beyond the scope of the current research andwill be investigated
in future studies.

C. Scientific Versus Diagnostic Capacity

At current stage, TEPI has limited accuracy in precisely quan-
tifying action potential signals (scientific capacity) [14], [17].
Yet it suffices to capture the subject-specific abnormal action
potential pattern (diagnostic capacity), which allows us to quan-
tify activation/repolarization isochrone patterns with reasonable
accuracy [34], and to detect regions responsible for abnormal
EP behavior such as post-infarction scars [17]. Similar observa-
tions were made in a recently proposed approach to transmural
action potential reconstruction and its application in identifying
myocardial ischemia [35].

As shown in (3), cardiac current density is proportional to
the spatial gradient of action potential . Mathematically, the
existence of this gradient operator on the rhs of (3) decides
that there are different quantitative values of that would give
the same potential field in the torso. To give a trivial but con-
crete example, given a specific vector and a constant vector
, because of a constant field is zero. There-
fore, without any prior constraint, the solution to (4) could be
any as long as it satisfies , being the true solu-
tion of action potentials. This lays one of the theoretical causes
of the pattern-wise accuracy of the reconstructed action poten-
tials. This also explains the necessity of physiological priors to
reduce the solution space.
The gradient operator in (3) also relates to another detail

of TEPI implementation regarding the dimensionless value of
in the Aliev-Panfilovmodel. Commonly, an empirical

conversion is needed to bridge the gap between the
dimensionless value and the physiological unit so that

when is measured in . However, because a
constant field has no contribution to as a result of the gradient
operator in , we have .
Therefore, the implementation of TEPI does not involve any
conversion of the dimensionless . Instead, the mea-
sured (in mV) is scaled by 1/100 before being input to TEPI.
In addition to the aspects discussed above, the proposed ap-

proach of transmural EP imaging has large capacity for future
developments, for example, to accommodate a wider variety of
EP and imaging data, to be extended tomore complex arrhythmia
patterns such as VT, and to include investigations on atria.

APPENDIX

A list of the notations used in this study, including all the
assumptions and parameter values used in the Bayesian estima-
tion, is provided in Fig. 18.
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