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A B S T R A C T

Lattice structures are frequently found in nature and engineering due to their myriad attractive properties, with
applications ranging from molecular to architectural scales. Lattices have also become a key concept in additive
manufacturing, which enables precise fabrication of complex lattices that would not be possible otherwise.
While design and simulation tools for stiff lattices are common, here we present a digital design and nonlinear
simulation approach for additive manufacturing of soft lattices structures subject to large deformations and
instabilities, for which applications in soft robotics, healthcare, personal protection, energy absorption, fashion
and design are rapidly emerging. Our framework enables design of soft lattices with curved members conforming
to freeform geometries, and with variable, gradually changing member thickness and material, allowing the
local control of stiffness. We model the lattice members as 3D curved rods and using a spline-based isogeometric
method that allows the efficient simulation of nonlinear, large deformation behavior of these structures directly
from the CAD geometries. Furthermore, we enhance the formulation with a new joint stiffening approach, which
is based on parameters derived from the actual node geometries. Simulation results are verified against ex-
periments with soft lattices realized by PolyJet multi-material polymer 3D printing, highlighting the potential for
simulation-driven, digital design and application of non-uniform and curved soft lattice structures.

1. Introduction

Lattice structures and other types of meta-materials have become an
important application of additive manufacturing (AM) methods, since AM
processes enable the fabrication of tailored materials with complex mi-
crostructures, as well as freeform geometric shapes at the macroscale.
Inspiration for such micro-structured materials is often taken from nature,
where cellular materials have emerged due to their myriad attractive
properties, such as high stiffness-to-density ratios, and the ability to realize
spatially-varying material behavior, i.e., stiffness, anisotropy, and density.

In engineering applications of lattice structures, i.e., cellular mate-
rials with truss-like microstructures, the focus has largely been on
lightweight, load-carrying parts, e.g., for the aerospace industry or
medical implants, which can be precisely fabricated through metal 3D
printing processes such as selective laser melting (SLM) and electron
beam melting (EBM) [1], or polymers via stereolithography (SLA) and
selective laser sintering (SLS). The mechanical performance of these stiff

lattice structures is characterized by small deformations, i.e., linear
elastic and plastic behavior, as well as fracture and failure. Most of the
modelling and simulation research, as well as commercial computer-
aided design (CAD) tools, focus on these stiff lattice structures [2–7].

In contrast, soft lattice structures are characterized by the ability to
achieve elastic large deformation behavior through geometric and/or
material nonlinearities [8], exploit mechanical instabilities [9,10],
tailor spatially varying material properties, and conform to freeform
design spaces through morphed and curved strut architectures. These
properties are highly desirable for many types of applications, such as
reusable energy absorbing devices based on nonlinear elastic rather
than plastic deformations, vibration mitigation through curved liga-
ments [11], tailored energy absorption response through functional
grading of material properties or hierarchical microstructures [12],
tissue-like medical implants, soft robotic actuators and devices [13], 4D
printing [14,15], or structures with complex constitutive behavior such
as negative Poisson’s ratio effects [16–18].
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Soft lattice structures are still an emerging direction of scientific
research and practical application. They can be realized through 3D
printing elastomeric materials, e.g., with high-resolution material jet-
ting methods such as PolyJet, SLA, digital light processing (DLP), where
printing of extremely stretchable materials was recently demonstrated
[19], Continuous Liquid Interface Production (CLIP) technology, which
is already being used commercially for a lattice-type shoe sole [20], or
3D printing of molds followed by injection of an elastomeric material
[8]. An important aspect for the feasibility of AM of lattice structures,
or in general any type of metamaterial, is the requirement of support
materials and structures for the 3D printing process of overhanging
structures. Due to the geometric complexity of lattices, mechanical re-
moval of internal supports is in general not possible and consequently,
fabrication of lattice structures has so far been limited to certain types
of unit cell designs and manufacturing processes that do not require
support, e.g. DLP, or powder bed supports in SLS. With the recent de-
velopment of soluble support materials for PolyJet 3D printing [21], it
has become feasible to manufacture lattices with arbitrary unit cells and
morphed topologies, and monolithically fabricate hybrid assemblies of
lattices with shells and solids even from multiple materials.

This work presents a computational design for additive manu-
facturing framework for soft lattice structures, that addresses the
complete workflow from CAD, to nonlinear mechanical simulation, to
re-design, and to manufacture using PolyJet multi-material 3D printing.
Design capabilities include the ability to specify global parameters such
as 3D freeform design domains and arbitrary unit cell designs that are
used to generate space-filling conformal lattice grids with curved struts,
see Fig. 1(a), as well as tailored, local grading of lattice geometry and
elasticity through spatially variable strut diameter distributions, see
Fig. 1 (b). Similarly, spatially variable strut material properties, i.e.,
Young’s modulus, could be defined and realized through voxel-level
PolyJet printing [22].

An important aspect of our framework is the prediction of the me-
chanical deformation behavior of soft 3D lattices, see Fig. 1 (c), which is
characterized by nonlinear elastic deformations, large strains and in-
stabilities such as buckling. A common approach to the analysis and
optimization of metamaterials and lattices is multiscale simulation
through homogenization of unit cell behavior [23–26]. However, due to
the functional grading and curved topology, which lead to non-peri-
odicity of the microstructure, as well as the nonlinearity of a soft lattice,
common homogenization approaches cannot be applied and the lattice
needs to be simulated at full scale. In addition, nonlinear simulation
based on continuum mechanics and 3D finite elements is not feasible
due to the huge computational effort involved and linear modelling
with 3D truss elements will not capture the nonlinear behavior of a soft
lattice.

A main contribution of our work is thus a novel approach that
balances accuracy with computational efficiency by modeling the lat-
tice struts as nonlinear curved 3D beams. Furthermore, we develop a

new joint-stiffening approach similar to the one presented in [23,28],
which takes into account, in an approximate manner, the impact of the
3D geometry of lattices nodes on the overall deformation of lattice
structures by increasing the diameters of struts at joints. We employ an
isogeometric collocation method [27] for the numerical discretization
of the beam representation of a lattice structure, which enables the
integration with the CAD environment by a common NURBS descrip-
tion of centerline curves and the modeling of varying strut diameters
through NURBS parameterizations.

An overview of our computational framework for the design, si-
mulation and fabrication of soft lattices is shown in Fig. 1 and its main
components, the computer-aided design of the lattice structure in terms
of its global parameters such as design space, unit cell type and con-
formity (a), its local, graded and spatially varying material properties or
strut diameters (b), its computational simulation and performance
evaluation for given boundary conditions (c), which serves as a basis for
iterative re-design or automated design optimization processes from (c)
back to (a) or (b), as well as the manufacture using PolyJet 3D printing
(d–f), are described in full detail in the Methods section. The framework
and the accuracy of the mechanical simulation approach are evaluated
in the Results and discussion section and application-oriented design
examples are demonstrated and discussed, before the Conclusion of the
paper.

2. Methods

2.1. Computer-aided design of soft lattice structures

2.1.1. Computer-aided design framework
We developed a computer-aided design tool for the generation of

lattice structures with conformal freeform geometries and spatially
variable, graded strut diameters, which is based on two major steps: the
generation of the initial lattice wireframe and its solidification. The
design approach was implemented in the 3D modeling software
Rhinoceros® (also Rhino® or Rhino3D®) using the algorithmic design
environment Grasshopper™ and the open-source plugin IntraLattice [29].
A screenshot of the CAD environment is presented in Fig. 2.

The basic ingredients for the design of the lattice wireframe are the
definition of the design space, the type of unit cell to be used, grid
resolution of the lattice, and strut morphing options, see Fig. 1a. Besides
using a simple box-shape, IntraLattice allows the user to create con-
formal lattices that adopt the shape of complex design domains, such as
the interior of a boundary-represented (B-rep) volume, the volume
spanned by two bounding freeform surfaces, or a cylinder. The design
domain is then populated with unit cells to create the lattice topology.
A wide range of pre-defined unit cell layouts is provided by IntraLattice,
but also user-defined unit cells can be used by drawing the unit cell
topology as an assembly of struts in a cube. The wireframe topology can
be customized by defining the grid resolution in terms of the number of

Fig. 1. Overview of the digital design and
manufacturing framework for soft lattice
structures. The main steps are (a) the genera-
tion of a conformal wireframe structure, (b) its
solidification into a graded 3D lattice structure,
(c) nonlinear mechanical simulation of the
lattice, (d + e) 3D printing using a PolyJet 3D
printer with soluble support material, and (f)
support material removal, i.e. dissolving, to
obtain the final artefact.
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cells to be used in u-, v-, w-parametric directions or the size of the unit
cell. In this way, the nodes of the lattice are transformed such that they
conform with the design domain, but by default the struts that connect
two nodes remain straight. The struts themselves can also be morphed
such that they conform with the freeform boundary and parametric iso-
lines of the design domain, which are for instance given through the
parametric definition of the surfaces that span the design domain. In
this wireframe representation of the lattice, each strut is represented as
3-dimensional NURBS curve, which can be exported in any CAD format
and a specific XML format, which we use to interface with our simu-
lation software (see below).

For the solidification of the wireframe, see Fig. 1b, it is then ne-
cessary to define the circular cross-sections of the struts. IntraLattice
allows the user to define either a homogeneous, constant strut radius
for the whole lattice, or heterogenous, graded radii, which, for instance,
can be varied linearly along the x-, y-, z-directions in a Cartesian co-
ordinate system or along the r-, θ-, z-axis in a cylindrical coordinate
system. It is also possible to use user-defined heterogenous radii, which,
for instance, could assign a grading within each unit cell. It should be
noted that the grading of radii is not defined per strut, which could
yield discontinuous radii at nodes, but in terms of a continuously
varying field, which means that the radii at a node are all equivalent
and the radius along a strut is also variable. Likewise, it is also possible
to define a heterogenous material distribution for the struts, as de-
monstrated in our previous work [22], where multi-material 3D
printing was used to realize spatially-variable material distributions in
terms of Young’s modulus.

2.1.2. STL file generation for manufacture of lattice structures
In principle, the definition of strut radii already yields a solid re-

presentation of the lattice. However, for manufacture it is usually neces-
sary to represent the lattice in a mesh format, typically as STL file.
Therefore, the implicit description of strut volumes in terms of centerline
NURBS curves and cross-sections has to be discretized into a surface tri-
angulation and the node geometries have to be resolved, since struts
overlap at joints, see the triangulated lattice representation in Fig. 2.

The default approach taken by IntraLattice to discretize the circular
strut cross-sections is interpolating them by an inscribed polygon, here

a regular hexagon. However, as can be seen in Fig. 3, this leads to a
significant decrease of the area = ( )A r sinn

n
n

2
2

2 of the n-sided polygon
compared to the area =A r2 of the original circle of radius r , and an
even higher decrease of the 2nd moment of area, where

= +I (4 sin sin )x n
nr

n n, 48
2 44

and =Ix
r
4

4
. The relative error resulting from

this interpolation is 13% for the area and 24% for the 2nd moment of
area for the regular hexagon, which has significant impact on the me-
chanical behavior of the lattice structure, as is shown later in the Re-
sults section, since the tensile stiffness of a strut is proportional to A and
the bending stiffness proportional to Ix. With increasing number of
polygon sides n these errors decrease, but this leads to a higher number
of triangles required in the STL file and increased file size, which is not
desirable for large, complex lattice structures. Alternatively, we pro-
pose to discretize the circles of radius r and area A as polygons of
equivalent area, i.e., regular n-sided polygons with an increased

Fig. 2. Computer-aided design tool for soft lattice structures. The left window shows the main Rhino® application with the final STL representation of a lattice, which
is conformal to the two twisted surfaces shown in transparent red color. The right window shows the Grasshopper™ algorithmic design environment that is used to
generate the lattice based on several input parameters (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article).

Fig. 3. Relative errors in area A A A| |/n and 2nd moment of area I I I| |/x x n x,
due to discretization of circular cross-section of radius r by inscribed n-sided
polygon (blue lines) and n-sided polygon with adjusted circumferential radius rh
and equivalent area (red lines). Circular cross-section (green), inscribed poly-
gons (blue) and polygons with same area (red) are shown for =n 6,8, 12,16 (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).
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circumferential radius =r rˆ n
n

2 /
sin(2 / )

. As shown in Fig. 3, this also
significantly reduces the error in the 2nd moment of area and results in
3D printed lattices with the desired mechanical behavior, see Results
section.

To implement our design to manufacture framework in the
Grasshopper™ design environment, we have introduced into IntraLattice
the capabilities to specify the number of polygonal sides and modify the
circumferential radius for solidification, see “Radius for STL” and “STL
resolution” components in the Grasshopper™ window in Fig. 2. Fur-
thermore, we have added an interface of the CAD environment to our
nonlinear simulation program described below in Section 2.2 through
the NURBS representation of the lattice wireframe, as well as the ex-
traction of 3D node parameters discussed below in Section 2.2.3.

2.2. Mechanical modelling and nonlinear simulation of soft lattice
structures

Being able to design lattice structures with conformal freeform
shape and graded strut properties, we want to model and simulate their
mechanical deformation behavior and enable a simulation-based design
approach for such structures before their actual physical realization
through 3D printing. Since our focus is on soft lattice structures, we
assume that they deform elastically even for large deformations and
strains, i.e., no plastic deformation and fracture occur. Since modelling
the lattices as nonlinear elastic solids and discretizing them with a
nonlinear finite element method is computationally too expensive, we
model the lattices as assemblies of nonlinear 3D rods and discretize
them using an isogeometric collocation method [27], which allows a
direct integration of simulation, which is implemented into an in-house
C++ program, with the CAD approach and balances accuracy with
computational efficiency.

2.2.1. Mechanical modeling
For the mechanical modelling of a strut, we use the Cosserat rod

theory, which is a nonlinear, geometrically exact, elastic 3D beam
model that accounts for tension and shear deformation and is thus
suitable for modelling both thick and thin 3D beams [30]. The Cosserat
rod model is based on representation of the rod as a framed curve, i.e. a
rod is described by its centerline, which is a spatial curve
r s L( ): [0, ] 3 and a frame R s L SO( ): [0, ] (3), which describes
the orientation of the cross-sections along the centerline and can be
associated with a rotation matrix R

= =×d d d R R Is s s s( ) ( ( ), ( ), ( )) :1 2 3
3 3 , see Fig. 4a. This com-

pletely determines the kinematic configuration of the rod, which is
governed by the equilibrium equations of linear and angular mo-
mentum (here, = d ds/ is the arc length derivative):

+ =
+ × + =

n n
m r n m

s Lˆ 0,
ˆ 0,

(0, ),

as well as boundary conditions for end point positions, orientations,
forces and moments. Here, =n R and =m R represent the internal
forces and moments of the rod. External forces and moments are given

by n̂ and m̂. The stresses = C and = D are determined through
linear elastic constitutive laws using the geometrically nonlinear
translational strains = R r e3 and rotational strains = ×R R .
The geometric and material properties of the rod cross-sections, i.e.
area A, 2nd moment of area I , Young’s modulus E , and Poisson’s ratio ,
enter the formulation through the constitutive matrices C and D. The
elastic energy of the rod is given by = +U dsL T T1

2 0 , which can
for instance be used to calculate energy absorption.

2.2.2. Numerical simulation
For the numerical discretization and computational simulation of

the governing equations of the Cosserat rod model we use an isogeo-
metric collocation method [27]. It provides an accurate and efficient
numerical discretization of the model and enables a seamless integra-
tion of the simulation method with the design approach through the
concept of isogeometric analysis [31], i.e. a consistent representation of
geometry as B-Spline and NURBS curves = =r rs N s( ) ( )i

n
i i1 , which are

directly imported from the wireframe lattice design. Here, Ni are B-
Spline or NURBS basis functions and ri the control points of the curve,
see Fig. 4b. The rotation matrices are parameterized as R R qs s( ) ( ( ))
with unit quaternions = ==q q qs N s s( ) ( ) , ( ) 1i

n
i i1 . To determine the

unknown control points of the centerline and quaternion curves
= = …x r q( , )i i i n1, , , we apply the concept of isogeometric collocation and

evaluate the balance equations of linear and angular momentum, as
well as the quaternion normalization condition, at collocation points j.
For the inner points …, , n2 1 this means:

+ =f n n( ) ( ) ˆ ( ) 0,n j j j

+ × + =f m r n m( ) ( ) ( ) ( ) ˆ ( ) 0,m j j j j j

=f q q( ) ( ) ( ) 0.q j j j

Together with the appropriate boundary conditions for forces and
moments or displacements and rotations at 1 and n, this yields a
nonlinear system of n7 equations for the n7 unknowns, =f x( ) 0. This
nonlinear system is solved using Newton’s method and using a load-,
displacement- or arc-length-controlled incremental nonlinear simula-
tion approach, which allows to capture instabilities and post-buckling
effects. Further details on the numerical approach can be found in our
previous work [27] and the extension of the method on rod-to-rod and
rod-to-rigid body contact problems in [32].

2.2.3. Representation of graded radii and joint stiffening approach
The rod formulation and isogeometric method also allow to accu-

rately represent graded design parameters of the cross-sections, such as
a spatially variable material distribution, e.g. in terms of Young’s
modulus [22], or radius. Here, we focus on lattices with graded cross-
section radii, which means that the radii vary not only globally from
strut to strut, but also locally within each strut. For instance, a globally
linearly varying radius in the x-direction would result also in a linearly
varying radius of a straight strut in terms of its local parameters s, but
for a curved strut the dependence on s could be nonlinear. Thus, we
parameterize the radius along each strut also as a NURBS curve, i.e.

Fig. 4. Cosserat rod modelling and isogeometric discretization. (a) Representation of a Cosserat rod by its centerline r s( ) and orthonormal frames
=R d d ds s s s( ) ( ( ), ( ); ( ))1 2 3 , defining the cross-section orientations. (b) Example of cubic, C2-continuous B-Spline basis functions. (c) Illustration of rigid rod coupling

approach.
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= =r L r r s N s r: [0, ] , ( ) ( )i
n

i
r

i1
r . Depending on the scenario, the

NURBS basis functions Ni
r can be chosen differently from those used for

the discretization of the rod centerlines.
For the modelling of lattice structures, each strut is represented as a

rod and discretized individually. To incorporate connectivity between
struts at joints, constraints need to be enforced as boundary conditions
on the rods. The most common and straight-forward approach is to
model the joints as rigid and enforce that both displacements and angles
between rods have to be preserved through the deformation process,
i.e., the centerline positions r and change of rotation R have to be
equal for all rods interfacing at the joint, see Fig. 4c and [27]. However,
it has been observed that using beam models with the rigid joint
modelling approach underestimates the actual stiffness of lattice
structures, since lattices have struts with relatively high thickness-to-
length ratios and large overlaps at the joints that result in 3D nodes
with non-negligible, finite volumes. Thus, so called joint stiffening ap-
proaches and semi-rigid joint formulations have been introduced to
stiffen the mechanical behavior of struts at joints [23,28]. Here, we
propose a formulation that stiffens the rods near joints, i.e. thickens
them by increasing the radius near the ends of the strut. While similar
methods typically require calibration of the stiffening parameters based
on experimental results, our approach is solely based on parameters
deduced from the actual 3D node geometries, see Fig. 5. If required, our
parameters could also be fitted to experimental results instead.

We represent the radius r s( ) as a quadratic B-Spline curve with =n 7r ,
see Fig. 5a. The knot vector and control points are calculated from the
nominal radii at end points r r,0 1, the strut length L, as well as the nor-
malized radii r r¯ , ¯0 1 and offset distances ¯ , ¯0 1 of the 3D node geometries,

see Fig. 5b. Defining the adjusted radii as = + ( )r r 1k k r
L0

2k
, the nodal

radii as =r r r̄f
k k k

0 and node offset as =r r1.4 ¯d
k k k

0 for each end of the strut,
=k 0,1, we define the knot vector of the radius curve r s( ) as
= r r L r L r L L L{0,0, 0, , , , , , , }r

f d d f
0 0 1 1 and the control points as

= +{ }r r r r r r r r r{ } , , , ( ), , ,i f f f f f f
0 0

*
0 1

2
0 1

*
1 1 1 , where r r,*

0
*
1 are determined such

that =( )r r rL
f f2
1 0. For unmorphed lattices, the normalized radius

= ( )r V¯ ¯3
4

1/3
, where =V V r¯ / 3 is the normalized volume of the 3D node,

and the normalized offset = r¯ / can be pre-computed for each type of

lattice and joint, see Fig. 5c.

2.2.4. Demonstration of simulation-driven design process
With the integrated digital design and simulation framework, see

Fig. 1, that we have presented in detail in Sections 2.1 and 2.2, we
facilitate an efficient simulation-driven design process for soft lattice
structures. This is now demonstrated with the design of a graded soft
lattice structure with specific nonlinear force-displacement behavior,
see Fig. 6.

In this example, we want to design a lattice structure with a fixed
wireframe representation using the “cross” unit-cell type and graded
strut diameters. The design goal is that the structure should exhibit
(almost) linear force-displacement behavior up to 5% strain in tension,
and then show significant softening for higher applied strains. We begin
the design process in our design environment in Rhino by specifying the
lattice topology as 5 × 2 × 2 cross unit cells of cell size
10 × 10 × 10 mm. For the initial design, see Fig. 6a, a constant strut
radius =r 0.75 mm is specified for the whole lattice and then a dis-
placement-controlled nonlinear simulation is carried out for tension
from 0 to 20% applied strain. The strain-force curve is plotted in Fig. 6e
and shows that the structural response is initially almost linear, but
with slight stiffening up to ∼8% strain. Then, the horizontal struts start
to buckle and significant softening can be observed. To change the
deformation behavior towards our design goal, we now introduce
grading of strut diameters along the tensile direction into the design.
Thinner struts should buckle at smaller strains and thus move the
softening behavior towards the desired applied strain of 5%. However,
thinner struts will also lead to a softer overall structural response and to
obtain a similar overall stiffness, areas with thicker struts are required,
too. To start the simulation driven re-design process, we generate two
new designs with graded strut diameters by simply modifying the
grading settings in the design environment, see “Mesh radius and
grading” in Fig. 6f. The first design has a linear grading from =r 0.8 to

=r 0.7 mm, see Fig. 6b, and the second a linear, centered grading from
=r 0.8 to =r 0.7 to =r 0.8 mm, see Fig. 6c. Then, we perform nonlinear

simulations for both graded designs, see strain-force curves in Fig. 6e.
Both structures exhibit the same stiffness in the small strain regime, less
stiffening before buckling/softening and soften at smaller strains (at
∼7% and ∼6.5%) than the initial design. Since the centered gradient

Fig. 5. Stiffening of joints through thickening of strut radii. (a) Example of a thickened strut radius curve r s( ), here for a strut between nodes of valance 8 and 12 in
an Octet lattice with unit cell size 10 mm, =L 7.072 mm, and nominal radius = =r r 0.750 1 mm. (b) Illustration of 3D node geometry with node volume V and offset

. (c) Tabular overview of normalized node volumes V̄ , radii r̄ and offsets ¯ for various unit cell and node types (nodal valence in brackets).
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behaves slightly better than the linear gradient, we continue by ex-
ploring another design with centered grading from =r 0.9 to =r 0.6 to

=r 0.9 mm, see Fig. 6d. The strain-force curve of this graded lattice
design in Fig. 6e now fulfills our design goals: same stiffness as the
initial design in the small strain regime, linear behavior up to 5% ap-
plied strain and then significant softening. All design parameters for
this structure are shown in the snapshot of the design environment in
Rhino and Grasshopper in Fig. 6f.

This shows that our simulation-driven design process can be effi-
ciently used for the design of soft lattices with desired nonlinear de-
formation behavior. Within our framework, design alternatives can be
easily generated in seconds by changing grading parameters and their
performance can be evaluated through the nonlinear beam analysis that
only requires seconds to minutes to complete.

2.3. Manufacture of soft lattices by PolyJet 3D printing

We manufacture the soft lattice structures with the commercial
material jetting 3D printer Stratasys J750 PolyJet, which deposits and
UV-cures liquid polymer resin with voxel-level control of material to
fabricate layer wise 3D geometries. As mentioned above, we generate a
triangulated boundary representation of the solidified lattice structure
in terms of an STL file at the end of our design and simulation pipeline
in Rhino®, which can be directly imported into the printer software.
Alternatively, a voxel-based format could be created and used to gen-
erate graded material properties through voxel-level multi-material
printing, see [22].

We use elastomeric materials from the Tango family or digital ma-
terials with a low volume percentage of glassy polymer material from
the Vero family. In particular, we use both TangoBlackPlus and
TangoPlus, for which we measured Young’s moduli of =E 0.47 MPa
and =E 0.45 MPa, respectively, as well as the digital material DM2160
from TangoBlackPlus and VeroPureWhite with =E 2.0 MPa. The
measurement data for the material characterization can be found in the
Appendix. For all materials, a Poisson’s ratio of = 0.45 and mass
density = 1,150 kg/m3 are used in the simulations [18,33]. Since the
failure strains of these 3D printed materials are beyond 100% [33], we
model them as elastic even for large structural strains of 20% and more.

As mentioned above, within the geometrically nonlinear beam for-
mulation we employ the commonly used linear elastic material model
to approximate the hyperelastic material behavior exhibited by soft
materials. The quality of this assumption is further discussed within the
following results section.

The PolyJet 3D printing process uses sacrificial material to support
any kind of overhanging structures and also encapsulates all surfaces in
a thin layer of support material, which makes it practically impossible
to mechanically remove the support material after printing. However,
using the recently introduced soluble support material SUP706, sacri-
ficial materials can be easily dissolved. This process typically takes
between ½-2 days in a water bath with 2% NaOH and 1% NaSiO3 so-
lution, heated to 45 °C. In our experiments, we did not observe any
significant change of integrity of the structures or material properties
through the dissolution process. Indeed, this process made the fabri-
cation of 3D soft lattice structures with arbitrarily complex unit cell
types and shapes feasible.

Since the resolution of the printer, i.e. the voxel size, is
43 × 86 × 16 μm, features larger than 0.1 mm can be fabricated and
grading of strut radii is accurately realized through the manufacturing
process, as the smallest radius used in our examples and applications,
see below, is 0.5 mm.

3. Results and discussion

Having introduced the computational design, simulation and man-
ufacture framework for soft lattice structures in detail, we now validate
the simulation approach against mechanical testing experiments for
several lattice structures with various unit cell types and graded radii.
We also introduce more complex examples of conformal freeform lat-
tices, a twisted structure and a shoe sole design, which highlight the
usability of our approach for practical applications.

3.1. Experimental validation of workflow

For the experimental validation of our design-to-manufacture
workflow, we carry out mechanical tension and compression tests with
3D printed lattices, as well as numerical simulations with the above-

Fig. 6. Simulation-driven design of a graded soft lattice structure with specific tensile force-displacement behavior. Four designs of a lattice with 5 × 2x2 “cross” cells
are investigated, with (a) constant strut radius =r 0.75, (b) linear grading from =r 0.8 to =r 0.7, (c) centered grading from =r 0.8 to =r 0.7 to =r 0.8, and (d)
centered grading from =r 0.9 to =r 0.6 to =r 0.9 (left images show undeformed configurations colored by strut radius, right images show deformed configuration at
20% strain). (e) Strain-force curves of the four lattices in tensile simulation. (f) Snapshot of the design environment in Rhino and Grasshopper for generating lattice
configuration (d).
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presented approach.
The results for a column-like lattice structures with uniform strut

radii are reported in Fig. 7, showing initial designs, strain-force curves,
as well as snapshots at 20% strain from experiment and simulation.
Various unit cell types, i.e., “Vintiles” (Fig. 7a), “Cross” (Fig. 7b),
“Octet” (Fig. 7c), and “X” (Fig. 7d + e) are studied. Fig. 7a-c compares
the results for compression and tension tests for lattices with 5 × 2x2
unit cells of cell size =c 10 mm and radius =r 0.75 mm, printed with
TangoBlackPlus material. In Fig. 7d + e we compare the tension be-
havior for “X” type lattices printed with TangoPlus material, in (d) for
5 × 2x2 cells of size =c 10 mm and in (e) for 7 × 3x3 cells of size

=c 6.5 mm.
We extended the study to functionally graded lattices with spatially

varying strut radii, see Fig. 8. Again, we use 5 × 2x2 unit cells of size
=c 10 mm and type “Vintiles” (Fig. 8a) and “Cross” (Fig. 8b). The strut

radii are cylindrically varying along the x-axis, i.e. the longest direction
of the beams. From inside to outside, the radius changes from 0.50 to
0.75 mm for the “Vintiles” case and vice versa for the “Cross” structure.

To be able to carry out mechanical tests, we integrate clamps at both
ends of the short beam-like lattice designs, which are printed from Vero
materials. The clamps are positioned 50 mm apart such that they
slightly overlap the lattices by a distance equal to strut radius, r mm on
each side, resulting in good bonding between the Vero and Tango parts
when monolithically 3D printed. Since Vero acts rigidly compared to
the soft lattices due to its high Young’s modulus of over 1 GPa [33], the

clamps help in mounting the lattices in the mechanical testing machine,
but do not distort the measurements. To assess the general measure-
ment errors and deviations, we have 3D printed three identical copies of
each design and carried out two tests for each of the prints, i.e. a total of
six mechanical tests for every design. The figures show the average and
extrema of those measurement results. The compression and tension
test were performed on an MTS mechanical testing machine with a load
cell of 100 N over a range of 0% to 20% structural or engineering strain.

The “Vintiles” lattices in Fig. 7a and Fig. 8a show initially linear
behavior in both compression and tension, gradually becoming non-
linear for larger strains in terms of softening in the former and hard-
ening in the latter case due to geometric effects in the lattice. Sig-
nificant deviations are only recognizable for compression of the graded
lattice in Fig. 8a1, where the simulation overestimates the force when
compared to experimental results. However, this is likely related to a
global buckling mode that can be observed in experiments (bending
towards the left side in the photo in Fig. 8a1), which occurs due to
inaccuracies in the experimental setup and cannot be reproduced in the
simulations.

The “Cross” lattices in Fig. 7b and Fig. 8b exhibit interesting in-
stabilities, i.e., micro-buckling of struts in the loading direction during
compression and of struts perpendicular to the loading direction during
tension. The initially linear behavior in both compression and tension is
well captured in simulations, but the strains at which local buckling
occurs (kinks in the strain-force curves), are mostly over-estimated in

Fig. 7. Validation of mechanical testing against simulations for soft lattices with 5 × 2x2 cells, cell size =c 10 mm, and uniform strut radius =r 0.75 mm. Column (0)
shows yx- and yz-views of lattice designs, columns (1) and (2) show strain-force curves and snapshots at 20% strain for compression and tension, respectively, for
lattices with (a) Vintiles, (b) Cross, (c) Octet unit cells. (d) and (e) show only tension for X unit cells with (d) 5 × 2x2 cells, =c 10 mm, =r 0.75 mm, (e) X, 7 × 3x3
cells, =c 6.5 mm, =r 0.75 mm.
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the simulations. Nevertheless, the post-buckling response is well cap-
tured in terms of nonlinear softening behavior, for both the uniform
lattice in Fig. 7b and the graded lattice in Fig. 8b.

In Fig. 7b, we have also plotted the simulation results without our
thickening approach (Sim. (no thick.)), which show a considerably
softer behavior. Also shown are measurements for structures that were
printed with a discretization of the circular cross-sections with only an
inscribed hexagon (Exp. (n= 6)) and simulations with a smaller radius
that corresponds to the equivalent cross-section area (Sim. (r= 0.68)).
It can be seen that their behavior is considerably softer, which under-
lines the necessity to discretize the cross-section in the STL files with
either a polygon with a sufficiently large number of edges (typically we
have used n=16) or an increased effective radius.

The structural deformation behavior of the “Octet” unit cell type
shown in Fig. 7c is similar to the “Vinitiles” cells, i.e., nonlinear soft-
ening for compression, here induced by micro-buckling of struts, and
hardening for tension. The simulations capture this well in both cases
and are in good agreement with the experiments. For the structures
with “X” unit cell type investigated in Fig. 7d + e, agreement is good
when using smaller unit cells as shown in Fig. 7e. The simulation results
are, however, too stiff with larger unit cells but same dimensions as
shown in Fig. 7d. This might be related to a geometric defect that occurs
in all our printed samples, the right column of cells (which was printed
on top) being skewed.

Overall, the presented experimental and numerical simulations re-
sults are in good agreement. Deviations between measurements and
simulations could be due to hyperelasticity of the material behavior.
Though axial strains observed for individual rods do not exceed 15% for
20% applied structural strain, curvature induced strains can be much
higher, especially when buckling occurs, as for the “Cross” lattice type,
where the determinant of the deformation gradient ranges from 0.56 to
1.30 in the compression case. Other potential reasons include un-
certainties in the material parameters, especially slight anisotropy of
the material, or in the fabricated geometries, e.g., circular or polygonal
cross-section becoming jiggered, or defects such as the one in Fig. 7d.
No qualitative differences in the accuracy of results could be observed
with either graded or uniform strut radii, which shows that our ap-
proach is well-suited for simulation of functionally graded lattices.

3.2. Twisted grid structure with curved struts

Having validated our design and simulation framework, we now
investigate an example with curved struts, a twisted lattice with “Grid”

unit cells, see Fig. 9. Compared to the previous lattices used for vali-
dation purposes, the complexity of the design is increased here in
several ways: the lattice is defined by a freeform design domain; the
struts conform to the domain by becoming curved; and this geometric
complexity results in an interesting mechanical behavior, that could not
be predicted by standard, linear simulation tools.

The design and manufacture process for the structure is outlined in
Fig. 9a. First, two rectangular surfaces of 100 × 20 mm were created,
offset 20 mm from each other. These surfaces are twisted by 2 along
the x-axis, resulting in the intertwined red freeform NURBS surfaces
shown in Fig. 9a1. Then, a lattice wireframe is generated between those
surfaces with 10 × 2×2 unit cells of type “Grid”, i.e. cuboids, and the
struts are morphed such that they align with the twisted surfaces, see
the green wireframe in Fig. 9a1. For the solidification, a constant strut
radius of =r 0.75 mm is specified and an STL file is generated
(Fig. 9a2). The lattice structure is printed with TangoPlus, along with
attached clamps that are printed with VeroPureWhite (Fig. 9a3). After
dissolving the support material that covered all struts, we obtain the
desired soft lattice structure with twisted shape (Fig. 9a4).

We also study the mechanical behavior of the structure and validate
the simulation for this complex shape. First, we clamp the structure
vertically in the mechanical testing machine, such that it cannot extend
when subject to its body weight. The actual shape of the slightly de-
formed structure is in good agreement with the corresponding simula-
tion, see Fig. 9b. Then, we release the lower fixture and the lattice can
now freely deform and rotate at its lower end when subject to self-weight
plus the weight of the Vero clamp of 0.09 N. In the experiment, shown in
Fig. 9c, we observe coupling of extension and twist behavior, which re-
sults in 12.5% strain and a rotation of the lower end by °69 . The nu-
merical results agree well, with a strain of 11% and a rotation of °74 .
Furthermore, the shapes of deformed struts are also similar in simulation
and physical experiment, including features such as buckling of struts
and complex bending, which are highlighted using red arrows in Fig. 9c.

With the twisted lattice, we have validated our approach also for the
design and simulation of geometrically complex, non-intuitive struc-
tures that exhibit non-classical mechanical behavior. Here, we parti-
cularly benefit from the integration of design with isogeometric simu-
lation, as the exact geometries in terms of NURBS curves are used
without any loss of geometric accuracy.

3.3. Digital design and manufacture of a soft lattice shoe sole

Finally, we present a digital design to manufacture workflow for a

Fig. 8. Validation of mechanical testing against simulations for soft lattices with graded strut radii, using 5 × 2 × 2 cells, =c 10 mm. Column (0) shows yx- and yz-
views of lattice designs, columns (1) and (2) show strain-force curves and snapshots at 20% strain for compression and tension, respectively, for lattices with (a)
Vintiles, =r cyl x0.50 ( ) 0.75 mm (b) Cross, =r cyl x0.75 ( ) 0.50 mm.
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consumer product application with complex geometry and material
distribution; a lattice-structured shoe sole motivated by a recent pro-
duct introduced by Carbon + Adidas, their Futurecraft4D shoe [20].
Such a shoe sole with a tailored soft lattice structured with morphed
geometry and graded struts could be easily adapted to different shoe
designs and customized not only for aesthetics, but also with an
adaptive stiffness distribution, that considers the customer’s footprint
for individual walking comfort or therapeutic reasons, or performance
requirements regarding energy absorption for sports applications.

The detailed workflow with our digital manufacture and design
framework is outlined in Fig. 10. Again, we start from two freeform
surfaces that define the design domain for the lattice generation, the red
surfaces in Fig. 10a. As mentioned, these surfaces could be easily
adapted to represent designs or footprints of a specific person, e.g.,

acquired from a 3D scan. Then, the wireframe is generated, here using
18 × 6x2 cells of type “X”, which conform to the freeform shape geo-
metries, and solidified with a linear gradient of strut radius from 1.0 to
1.2 mm from tip to heel (Fig. 10b). While this linear grading of the strut
radii is chosen arbitrarily, it could reflect the desire for a stiffer re-
sponse under the heel in a real shoe design. This could also be adapted
into a performance goal for a design optimization process. Here, we
carry out a simulation of the shoe sole, where the top surface is sub-
jected to increasing, downward-directed displacement, which leads to
contact with the rigid ground surface and compression of the lattice
(Fig. 10c). Then, we introduce an elastic surface on top of the lattice
into the design, which simulates the interface with the upper shoe
(Fig. 10d) and proceed with 3D printing. The printed structure with
support material is then shown in Fig. 10e and after dissolving in

Fig. 9. Twisted grid structure. (a) Design of lattice (top to bottom): wireframe (green) with 10 × 2x2 grid type cells, =c 10 mm and curved struts, conforming to
twisted surfaces (red); solidified lattice with =r 0.75 mm in STL format; as printed structure with support material; final structure without support material. (b)
Lattice is clamped to its original length of 100 mm and subject to deformation under self-weight (experiment vs. simulation). (c) Lattice is clamped at top and free at
bottom, subject to un-twisting deformation under self-weight plus weight of lower clamp (experiment vs. simulation) (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article).

Fig. 10. Lattice shoe sole. (a) Lattice wire-
frame (green) with conformal design given by
top and bottom freeform surfaces (red) and
18 × 6x2 cells of type “X”. (b) Solidified lattice
with radius linearly increasing from 1 mm at
tip to 1.2 mm at heel. (c) Simulation with
uniform pressure load on top surface and con-
tact on ground surface. (d) STL representation
with added top surface plate. (e) As printed
lattice with support material (upside down). (f)
Deformed soft lattice under load on rigid top
surface (transparent). (g) Higher resolution
photo of the shoe sole with “X” unit cells (left)
and an alternative design with “Cross” type
cells (right) (For interpretation of the refer-
ences to colour in this figure legend, the reader
is referred to the web version of this article).
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Fig. 9f. The lattice was printed with the digital material DM2160 and
the top surface with rigid-like VeroPlus material, which is transparent.
Fig. 10f then illustrates the deformation of the 3D printed lattice shoe
sole when a load is applied to the top surface. A higher resolution photo
of this lattice shoe sole design, as well as of an alternative design using
“Cross” unit cells are shown in Fig. 10g.

With this example of a tailored soft lattice shoe sole, we demon-
strated the usability of our framework and the potential to incorporate
soft lattice structures into specific product applications. Here, we also
integrated the soft lattice structure with a stiff, shell-like part, that was
realized in a single, monolithic multi-material 3D print, which high-
lights the benefits of using multi-material material jetting technology
for soft lattice-type applications.

4. Conclusion

We have presented a computational workflow framework for soft
lattice structures, which covers the design of soft lattice structures in
specific components, nonlinear mechanical simulation of the lattice
structures, and fabrication using 3D printing. The CAD approach allows
design of 3-dimensional lattice structures that conform to a freeform
design space and have functionally graded properties, here in terms of
strut radii. Mechanical simulation is based on nonlinear 3D rod mod-
elling and an efficient isogeometric collocation method, that is based on
the exact NURBS geometries of curved struts. The method is enhanced
with a joint-stiffening approach, which thickens the strut radii near
joints, based on parameters deduced from the actual 3D node geome-
tries. We have validated the design and simulation method by 3D

printing soft lattices on a PolyJet multi-material printer with soluble
support material. Furthermore, we have demonstrated that complex
nonlinear behavior including instabilities, post-buckling, and coupling
of extension and twist modes can be predicted by our simulations, ex-
ceeding the capabilities of existing tools, and highlighted the applic-
ability of the framework by applying it to a specific application – a shoe
sole with tailored mechanical behavior.

To further enhance the overall framework in the future, we plan to
extend it to a computational design optimization approach, which can
be used to obtain optimal grading of individual strut radii or even
curved strut shapes. Furthermore, functional grading of material
properties through voxel-based multi-material printing can be easily
integrated into our framework. To further improve the accuracy of the
simulation method, hyperelastic material models could be im-
plemented.
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Appendix A

Fig. A1 shows the stress-strain curves obtained for the characterization of the materials used in this work with the commercial material jetting 3D
printer Stratasys J750 PolyJet, namely TangoBlackPlus, TangoPlus and DM2160, which is a mix of TangoBlackPlus and VeroPureWhite [33]. The
curves are obtained by performing uniaxial tension tests on 3D printed samples of 50x10x4 mm size on a MTS Criterion universal testing machine
with a 100 N load cell. Since the two materials from the Tango family exhibit only mildly hyperelastic behavior with softening for higher strain rates,
we determine the Young’s modulus by averaging the results from 5 to 6 samples in the strain range from 1%–3%. However, for DM2160 hyperelastic
material behavior is more prominent and we chose the Young’s modulus by averaging from 5%–15% strain.
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