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Highlights

• Modeling of beams with spatially varying geometric and material distributions.
• Spline parameterization of axially varying geometric and material parameters.
• Transversally varying cross-sections such as bilayer laminates and continuous grading.
• Isogeometric collocation of geometrically exact 3D beam model with mixed methods.
• Applicable to advanced manufactured and multi-material 3D printed beam structures.

Abstract

We present a fully isogeometric modeling and simulation method for geometrically exact, nonlinear 3D beams with spatially
varying geometric and material distributions, both along the beam axis and through its cross-section. The approach is based
on the modeling of 3D beams using the Cosserat rod theory and the numerical discretization using B-Spline and NURBS
parameterizations in an isogeometric collocation method. Transversally varying material constitutions are represented using
non-homogeneous, functionally graded beam cross-section definitions such as laminates and continuously graded cross-sections.
Furthermore, to model the axial variation of material and geometry, we introduce the parameterization of cross-section properties
as spline curves along the beam centerlines. This fully isogeometric modeling and analysis concept, which is based on spline
parameterizations of initial beam centerline curves, kinematic unknowns and axially varying material and geometric parameters,
has various practical applications enabled by advances in manufacturing technology, including multi-material 3D printing and
advanced manufacturing of composites with automated fiber placement. We verify and demonstrate the modeling and simulation
approach using several numerical studies and highlight its practical applicability.
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1. Introduction

In recent years, many new possibilities for design and manufacturing of slender and light-weight structures have
emerged through the advancement of additive manufacturing technologies [1]. Existing and potential applications
range from three-dimensionally (3D) printed micro-structures, which can be used to create meta-materials with
high strength-to-weight ratios [2,3], to multi-functional and composite materials with locally defined material
properties [4–6] (see Fig. 1a), to active, smart and self-assembling materials and structures, soft robots, and deployable
composite space structures, where compliant components need to be designed with tailored large deformation
behavior [7–12] (see Fig. 1b). In particular, multi-method and multi-material 3D printing now enable the fabrication
of freeform structures with arbitrarily varying material compositions, thus opening new perspectives for design and
application of spatially varying and composite materials.

Modeling and design of these structures, especially when they are made from soft materials and subject to
large deformations, calls for advanced simulation methods and computer-aided engineering tools that can efficiently
incorporate the complex material constituency. Thus, there is a demand for nonlinear modeling and simulation of
3-dimensional beam structures with spatially varying material properties. In the context of this work, we distinguish
two types of spatial variations: We consider a beam as transversally varying (TV) when its material properties
vary through the cross-section of the beam. This type of variation is often called functionally graded in beam
literature [13,14] and can, for instance, be realized through discrete stacking of materials or composites with varying
fiber orientations in multiple layers, or continuous grading of material distributions (see Fig. 2a for illustration).
Furthermore, an axially varying (AV) beam is characterized by varying parameters of the (homogeneous or
transversally varying) cross-section along the centerline of the beam, which could be continuously changing material
properties such as Young’s modulus or geometric parameters such as radius (see Fig. 2b for illustration).

For modeling and simulation of transversally varying, functionally graded 2D beams, several methods based
on Euler–Bernoulli and Timoshenko beam theories [15–17] have been proposed and a beam finite element for
functionally graded, i.e., rectangular, layered, beams was introduced including thermoelastic effects [18]. Many
attempts to model and simulate 3D beams undergoing large elastic deformations are based on the geometrically
exact 3D beam theory, usually referred to as Cosserat rod [19,20], Reissner [21] or Simo [22] beam theory, which
is based on the kinematic description of a beam using its centerline position and the orientation of the rigid cross-
section. For modeling of transversally varying, functionally graded and composite cross-sections, several extensions
and modifications of the theory have been made so far [14]. A geometrically exact formulation for multi-layer beams
was presented in [23], where moments and rotations can be discontinuous across layers, thus allowing for the overall
beam cross-section to deform. In [24] a variational iteration method was proposed for large deflection analysis of
planar curved beams made of functionally graded materials. This work is closely related to [25,26], where constitutive
coefficients of functionally graded 3D beams with general cross-section shapes and composite layouts were derived
and deformation analysis carried out analytically and via finite element methods (FEM). Further works include the
study of nonlinear free vibrations of functionally graded carbon nanotube-reinforced composite beams [27], as well
as Timoshenko-like modeling of initially curved and twisted composite beams [28]. The extension of geometrically
exact beams to finite strain 3D material models was presented in [29].

For modeling and analysis of beams with axially varying material and cross-section properties, such as tapered,
non-prismatic beams, it has been shown that the shear stress distribution depends on all internal forces and
moments, which means that it is not exactly reproduced by common Euler–Bernoulli- and Timoshenko-type beam
models [30,31]. To address this issue, for instance, Murı́n and co-workers have presented finite element formulations
for linear analysis of 3D beams with varying cross-section radii [32], nonlinear 3D truss elements with varying
stiffness [33] and a 2D beam finite element for modeling of functionally graded beams with spatially varying
properties, including electro-thermal-structural multi-physics analysis [34]. More recently, a simple Timoshenko-like
model for non-prismatic, planar beams was presented [35].

Many different methods have so far been proposed for the numerical discretization of the geometrically exact 3D
model and its extension to functionally graded cross-sections, such as finite element methods [36–38], finite difference
methods [39,40], and isogeometric collocation methods [41,42], the latter being the starting point for this work.
Isogeometric analysis (IGA) was first proposed in 2005 [43] and has since gained significant popularity in practically
all fields of computational mechanics, especially in structural mechanics where many new formulations also for beam
models have been proposed [44–47]. More recently, isogeometric collocation methods have been introduced [48,49] as
an efficient alternative to finite element methods [50] and were successfully applied to beam models [51–53], including
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Fig. 1. Examples of 3D beam structures with spatially varying materials and geometries (both axially varying and transversally varying) undergoing
large deformations and fabricated through additive manufacturing, here multi-material 3D printing.

Fig. 2. Configuration of the Cosserat rod as a framed curve with centerline r(s) and orthonormal frames R(s) = (g1(s), g2(s), g3(s)) defining
the cross-section orientations. Colors illustrate the spatial variation of material properties of a circular cross-section (a) with transversally varying
material through the cross-section and (b) axially varying material and radius along the centerline. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

the Timoshenko-like non-prismatic beam model [54], as well as other types of problems in structural and continuum
mechanics, such as elastostatics and dynamics [55], Reissner–Mindlin plates [56], Kirchhoff–Love shells [57], and
large deformation elasticity with contact [58].

The basis of isogeometric methods is the parameterization of geometry and discretization of unknowns using
B-Splines, NURBS and other spline-type functions, which are commonly used in computer-aided design (CAD). Here,
we not only apply an isogeometric discretization, but extend the concept of spline parameterizations to the modeling of
axially varying cross-section properties, i.e., material and geometric parameters that change along the centerline of the
beam. We demonstrate this fully isogeometric modeling and simulation approach using an isogeometric collocation
method for the Cosserat rod model, but the concept could be easily extended to other beam models or discretization
methods such as finite elements. Being applied to the geometrically exact 3D beam model, our approach does not
consider the above-mentioned dependence of the shear stress distribution on all internal forces and moments for
axially varying cross-section properties. Up to the authors’ knowledge, such a formulation has not yet been developed
in the context of nonlinear, geometrically exact 3D beams and according to [30] this dependence can be neglected if
the tapering or, in general, the axial variation of parameters, is small. To validate this assumption, we have carried out
comparisons with the planar beam, small deformation applications investigated in [54], where good qualitative and
quantitative agreement could be observed with deviations of displacements, forces and moments being not more than
4%. Though this limits the applicability of our fully isogeometric modeling and simulation approach to structures
with small axial variation and shear strains, e.g., slender rods, it is still beyond the capabilities of existing tools for the
design of complex structures that can be fabricated through advanced, additive manufacturing technologies.

The outline of this manuscript is as follows: In Section 2 we describe the geometrically exact Cosserat rod model
and then outline its numerical discretization using the isogeometric collocation method in Section 3. The modeling
and implementation of beams with transversally varying materials and functionally graded cross-sections in terms
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of their constitutive coefficients is presented in Section 4 and subsequently the isogeometric parameterization of
axially varying cross-section properties is introduced. In Section 5 a new mixed method is presented, which resolves
shear locking and convergence problems for thin rods with transversally varying cross-sections. The accuracy and
convergence behavior of the numerical methods are investigated and confirmed in Section 6, and further applications
of the modeling and simulation approach with rods and rods structures with TV and AV material and geometric
parameters are presented. The paper concludes with a summary of methods and results presented Section 7.

2. Cosserat rod model

In this Section we briefly introduce the Cosserat rod model, which we use for the mechanical description of slender,
elastic, 3-dimensional rods [19,20,22]. The Cosserat rod theory can be seen as a nonlinear, geometrically exact
extension of the spatial Timoshenko beam model, and is thus also based on the assumption that the cross-sections
remain undeformed, but not necessarily normal to the tangent of the centerline curve, which accounts also for shear
deformation.

In the Cosserat model, a rod is represented as a framed curve (see Fig. 2) and thus its configuration is completely
described by its centerline curve, i.e., the line of its mass centroids r : [0, L] → R3, and a frame, or local orthonormal
basis field R : [0, L] → SO(3). The centerline curve is arc-length parameterized in the initial configuration given by
r0 and R0, which means that ∥r′

0(s)∥ = ∥
dr0
ds ∥ = 1 ∀s ∈ [0, L] and thus L =

∫ L
0 ∥r′

0(s)∥ds is the length of the curve.
The local frames describe the evolution of the orientation of the cross-section and can be associated with 3D rotation
matrices R(s) = (g1(s), g2(s), g3(s)) ∈ R3×3

: R⊤R = I, det R = 1 ∀s ∈ [0, L]. As in [42], we use unit quaternions,
i.e., normalized quadruples of real numbers q = (q1, q2, q3, q4)⊤ ∈ R4

: ∥q∥ = 1, for the parameterization of frames
resp. rotation matrices:

q : [0, L] → SO(3) ⇝ R(s) = R(q(s)), (1)

where

R(q) =

⎛⎝q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 − q3q4) 2(q1q3 + q2q4)
2(q1q2 + q3q4) −q2

1 + q2
2 − q2

3 + q2
4 2(q2q3 − q1q4)

2(q1q3 − q2q4) 2(q2q3 + q1q4) −q2
1 − q2

2 + q2
3 + q2

4

⎞⎠ (2)

Based on the current (deformed) centerline r(s) and rotation matrix R(s) associated with the frame, as well as the
initial (undeformed) configuration r0(s) and R0(s), the kinematics of the Cosserat rod can be derived. Dropping the
dependency on the arc-length parameter s in the notation, the translational strains are given in the initial, material
configuration as:

ε = R⊤r′
− R⊤

0 r′

0. (3)

Using the curvature vector of the rod:

k =

⎛⎝g′⊤

2 g3

g′⊤

3 g1

g′⊤

1 g2

⎞⎠ ⇔ [k]× = R′⊤R, (4)

where [·]× represents the skew-symmetric cross-product matrix, the rotational strains are defined as:

κ = k − k0. (5)

With these two nonlinear strain vectors and a commonly used linear elastic constitutive law, which restricts the
model to large deformations and rotations, but small strains and stresses, the translational and rotational stress
resultants in the material configuration can be computed as:

σ = A ε + B κ,

χ = B⊤ε + C κ .
(6)

The constitutive matrices A, B, C ∈ R3×3 depend on the cross-section geometry and material, and will be described
in detail in Section 4 for spatially varying and functionally graded cross-sections. The stress vectors defined in (6) are
now rotated from the local into the global Euclidian coordinate frame, or in other words they are transformed from
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the material to the spatial configuration:

n = Rσ ,

m = Rχ .
(7)

Finally, the governing equations of the mechanics of the Cosserat rod model are formulated in terms of equilibria
of linear and angular momentum in the current, spatial configuration:

n′
+ n̄ = 0 ∀s ∈ (0, L),

m′
+ r′

× n + m̄ = 0 ∀s ∈ (0, L).
(8)

Here n̄ and m̄ are external distributed forces and moments. Furthermore, these differential equations have to be
completed with appropriate boundary conditions at the two ends of the rod for s = 0 and s = L . Fixed displacements
r̂ and rotations q̂ are specified as Dirichlet boundary conditions r(s) = r̂, q(s) = q̂ at s = 0, L and forces n̂ and
moments m̂ as Neumann boundary conditions n(s) = n̂, m(s) = m̂ at s = 0, L . Additionally, a unit length constraint
for quaternions must hold to complete the equilibrium equations: q⊤q − 1 = 0 ∀s ∈ [0, L].

3. Isogeometric collocation method

For the numerical discretization of the Cosserat rod model presented above we employ an isogeometric collocation
method. The approach is based on the parameterization of the unknown fields r(s) and q(s) using spline functions and
the collocation of the equilibrium equations (8). This method was introduced and investigated in [42], and here we
briefly review the basic approach.

3.1. Spline parameterization of Cosserat rods

The basis of any isogeometric method is the parameterization of geometry and unknowns using B-Splines and
Non-Uniform Rational B-Splines (NURBS), which are widely used in computer-aided design [43,59]. Definitions and
properties of B-Splines and NURBS can be found in detail in [60]. Here, we briefly introduce the main terminology
used associated with splines.

B-Splines are piece-wise polynomial functions and Non-Uniform Rational B-Spline (NURBS) piece-wise rational
function of degree p and order p + 1. With Ni (ξ ) : Ω0 → [0, 1], i = 1, . . . , n we denote the spline (B-Spline
or NURBS) basis functions, which are defined on the parameter domain Ω0 = [ξ1, ξm] ⊂ R using a knot vector
Ξ = {ξ1, . . . , ξm} with m = n + p + 1, i.e., a non-decreasing sequence of knots ξi ∈ R (i = 1, . . . , m) , ξi ≤

ξi+1 (i = 1, . . . , m − 1). For two distinct knots ξi ̸= ξi+1 the half-open interval [ξi , ξi+1) is called the i th knot span
or element and the total number of nonzero knot spans or elements in Ξ is denoted by ℓ. Typically, only open knot
vectors are used in IGA, which means that the first and last knot have multiplicity p + 1, while inner knots have
multiplicity 1 ≤ k ≤ p.

The geometry description of a Cosserat rod can now be expressed using spline curves for the initial centerline r0

and rotation quaternions q0:

r0 : Ω0 → R3, r0(ξ ) =

n∑
i=1

Ni (ξ ) r0,i ,

q0 : Ω0 → R4, q0(ξ ) =

n∑
i=1

Ni (ξ ) q0,i , ∥q0(ξ )∥ = 1,

(9)

with control points {r0,i }i=1,...,n, r0,i ∈ R3 and {q0,i }i=1,...,n, q0,i ∈ R4.
For illustration, the parameterization of a rod using cubic B-Spline basis functions (p = 3) with n = 7 control

points and ℓ = 4 elements in the knot vector Ξ = {0, 0, 0, 0, 1
4 , 1

2 , 3
4 , 1, 1, 1, 1} is shown in Fig. 3. Fig. 3a shows the

basis functions and Fig. 3b the rod itself in terms of its centerline curve and cross-section frames.
Since the centerline is now parameterized as a spline curve r0(ξ ) : Ω0 → R3 with an arbitrary domain of

parameterization Ω0 ⊂ R, it is general not arc-length parameterized. Thus the derivatives of any vector field
ξ → y(ξ ) : [0, 1] → Rd required for evaluation of the Cosserat rod model need to be converted to arc-length
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Fig. 3. Isogeometric rod parameterization; cubic B-Spline basis functions as shown in (a) with p = 3, m = 11, n = 7,Ξ = {0, 0, 0, 0,
1
4 , 1

2 , 3
4 , 1, 1, 1, 1} are used for the isogeometric parameterization of the Cosserat rod in (b) with centerline and rotation quaternions as B-Spline

curves (see [42]).

parameterization using:

y′
=

dy
ds

=
dy
dξ

dξ

ds
= ẏ

(
ds
dξ

)−1

= ẏ
1

∥ṙ0(ξ )∥
=

1
J

ẏ, (10)

with ẏ := dy/dξ and J (ξ ) := ∥ṙ0(ξ )∥.

3.2. Collocation of strong form of equilibrium equations

As in isoparametric finite elements, the centerline position r and rotation quaternion q in the current/deformed
configuration are now discretized as spline curves rh and qh , just like their initial counterparts r0 and q0 in (9):

rh : Ω0 → R3, rh(ξ ) =

n∑
i=1

Ni (ξ ) ri ,

qh : Ω0 → R4, qh(ξ ) =

n∑
i=1

Ni (ξ ) qi , ∥qh(ξ )∥ = 1.

(11)

The basis functions Ni here refer to either the same or p-/h-/k-refined versions of the ones in (9) and the control points
ri ∈ R3 and qi ∈ R4 are arranged in two vectors r⃗ = (ri )i=1,...,n ∈ R3n and q⃗ = (qi )i=1,...,n ∈ R4n .

Now collocation of the strong form of the equilibrium equations of the Cosserat rod is applied, i.e., the
discretization from (11) is substituted into the balance equations (8) and the quaternion normalization condition,
which are then evaluated at a set of collocation points {τi }i=1,...,n:

fn(τi ) := n′(τi ) + n̄(τi ) = 0,

fm(τi ) := m′(τi ) + r′

h(τi ) × n(τi ) + m̄(τi ) = 0,

fq(τi ) := qh(τi )⊤qh(τi ) − 1 = 0.

(12)

At the boundary, i.e., for i = 1 and i = n, the above-mentioned equations are replaced with the evaluations of the
boundary conditions. In order to guarantee the stability of the method, the collocation points are chosen as the Greville
abscissae of the spline knot vector [48], which are defined as:

τi =
ξi+1 + . . . + ξi+p

p
, i = 1, . . . , n. (13)

With (12) we have defined a nonlinear system of 7n equations for the 7n unknowns, i.e., the control point vectors
r⃗ for rh and q⃗ for qh , which we can write as f : R3n

× R4n
→ R7n ,

f(r⃗, q⃗) =

⎛⎝fn(τi )
fm(τi )
fq(τi )

⎞⎠
i=1,...,n

(r⃗, q⃗) = 0. (14)
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This nonlinear system is then solved with a Newton’s method, which requires also the evaluation of the tangent
stiffness matrix K(r⃗, q⃗) = df/d(r⃗,q⃗) for linearization, see [42] for details.

In [42] it is furthermore shown how the isogeometric collocation formulation can be extended to rod structures,
where several rods can be interconnected. The rods are coupled rigidly, which means that change of position and
rotation have to be equal for all rods connected at an interface and that the equilibria of linear and angular momentum
must hold at the interface.

4. Isogeometric modeling of rods with spatially varying geometric and material parameters

Typically, the cross-sections of Cosserat rods as introduced above, or in general also in other 2D and 3D beam
models, are assumed to be made from a single material and to be constant over the length of the beam. However,
the constitutive relationship established in (6) is not restricted to such cases and can also admits transversally (TV)
and axially varying (AV) rod cross-sections, where the material composition can change throughout the cross-section
and material and geometry can both vary along the centerline. In the following, we address those more general cases
through the isogeometric analysis framework using spline parameterizations.

4.1. Constitutive coefficients for transverse variations

The constitutive equation (6) defines a linear relationship between strain and stress resultant of the rod model, and
reads in its most general formulation as:(

σ

χ

)
=

(
A B

B⊤ C

) (
ε

κ

)
, (15)

where the constitutive matrices A, B, C ∈ R3×3 take the following form:

A =

⎛⎝A11 A12 0
A12 A22 0
0 0 A33

⎞⎠ , B =

⎛⎝ 0 0 B13
0 0 B23

B31 B32 0

⎞⎠ , C =

⎛⎝C11 C12 0
C12 C22 0
0 0 C33

⎞⎠ . (16)

Their coefficients depend on the geometric layout and material constitution of the beam cross-section. A detailed
derivation of the coefficients can be found in [25] and takes into account that the Bernoulli hypothesis must be fulfilled,
i.e., that plain cross-sections must remain plain under deformation.

In the following, we restrict ourselves to cases where A12 = B13 = B23 = 0 and according to [25] the remaining
coefficients can be computed as:

A11 = k1

∫
S

G(x) dx, A22 = k2

∫
S

G(x) dx, A33 =

∫
S

E(x) dx,

B31 =

∫
S

E(x)x2 dx, B32 =

∫
S

E(x)x1 dx, C11 =

∫
S

E(x)x2
2 dx,

C22 =

∫
S

E(x)x2
1 dx, C12 =

∫
S

E(x)x1x2 dx, C33 ≡ C33(S, E).

(17)

Here, k1 and k2 are the shear correction factors, S is the geometric domain of the cross-section, and G = E/(2 + 2ν)
and E are the shear and Young’s modulus and ν is the Poisson’s ratio, which all depend on the material point x ∈ S
inside the cross-section domain S, which is aligned such that x1 denotes the coordinate along the g1-direction and x2
along the g2-direction.

For the conventional case of homogeneous, isotropic cross-sections, where E and G are constant throughout the
cross-section, this simplifies to:

A =

⎛⎝k1G A 0 0
0 k2G A 0
0 0 E A

⎞⎠ , B ≡ 0 , C =

⎛⎝E I1 0 0
0 E I2 0
0 0 G J

⎞⎠ , (18)

where A is the area, I1 and I2 the second moments of area, and J the polar moment of area of S.

4.1.1. Bilayer laminate cross-sections
As a first type of laminate or composite cross-section, we present the coefficients for bilayer cross-sections with

either rectangular or circular shape, see Fig. 4a–b.
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Fig. 4. Definition and geometric parameters of transversally varying (functionally graded) cross-section types: (a) rectangular and (b) circular
bilayer cross-sections, (c) rectangular continuously graded cross-section (here linearly graded), and (d) rotated cross-section (here circular bilayer).

For the following derivations, a few basic definitions and assumptions are made: the geometric dimensions of the
cross-section S ⊂ R2 are width b and height h for rectangular and radius r for circular shape; the layers are separated
along the local g2-direction; the layering is determined by the layer height hL ∈ (−h/2, h/2) or hL ∈ (−r, r ),
respectively; the domain of the lower layer is denoted as S0 = {x ∈ S : x2 ≤ hL} with Young’s modulus E0; the
domain of the upper layer is denoted as S1 = {x ∈ S : x2 > hL} with Young’s modulus E1; for both layers Poisson’s
ratios ν = ν0 = ν1 and mass densities ρ = ρ0 = ρ1 are equal.

Then, the constitutive matrices can be written as:

A =

⎛⎝k1µ̄ 0 0
0 k2µ̄ 0
0 0 1

⎞⎠ A33, B =

⎛⎝ 0 0 0
0 0 0

B31 0 0

⎞⎠ , C =

⎛⎝C11 0 0
0 C22 0
0 0 C33

⎞⎠ (19)

with k1 = k2 =
5
6 , µ̄ =

1
2(1+ν) , and:

A33 = E0 Ā0
33 + E1 Ā1

33, Ā0
33 =

∫
S0

dx, Ā1
33 =

∫
S1

dx,

B31 = E0 B̄0
31 + E1 B̄1

31, B̄0
31 =

∫
S0

x2 dx, B̄1
31 =

∫
S1

x2 dx,

C11 = E0 C̄0
11 + E1 C̄1

11, C̄0
11 =

∫
S0

x2
2 dx, C̄1

11 =

∫
S1

x2
2 dx,

C22 = E0 C̄0
22 + E1 C̄1

22, C̄0
22 =

∫
S0

x2
1 dx, C̄1

22 =

∫
S1

x2
1 dx,

C33 ≡ C33(S0, E0, S1, E1).

(20)

The detailed calculation of those coefficients and integrals for both cases of rectangular and circular bilayer cross-
sections, please refer to Appendix A.1.

4.1.2. Continuously varying cross-sections
Next, we introduce the commonly addressed case of a rectangular, continuously functionally graded cross-section,

see Fig. 4c.
Here, the Young’s modulus varies throughout the cross-section as a function of the x2-coordinate:

E(x2) = E0 + (E1 − E0)
(

1
2

+
x2

h

)p

, (21)

where x2 ∈ [−h/2, h/2] and p > 0 is the exponent of a power law. This yields an asymmetric Young’s modulus
distribution with respect to the x1-axis of the cross-section and thus to the same general representation of the
constitutive matrices as in (19) and (20). The detailed coefficients are derived and calculated in Appendix A.2.

4.1.3. Rotated cross-sections
To further generalize the transverse variation of cross-section types we now introduce rotated cross-sections, where

for instance the orientation of the layering or gradient described in the preceding subsections is rotated by an angle
α ∈ R around the local g3-axis, see Fig. 4d.
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For any point x = (x1, x2)⊤ ∈ S, where S is the rotated version of an axis-aligned cross-section S0 with layered or
graded Young’s modulus distribution E(x0), this means that:

x = ϕ(x0) = Rα x0
=

(
cos α − sin α

sin α cos α

)
x0, (22)

where ϕ : S0
→ S is an injective and differentiable mapping. Then we can compute the constitutive coefficients of

the rotated cross-section S = ϕ(S0) using integration by substitution with |det Dϕ| = |det Rα| = 1:

A33 =

∫
S

E(x) dx =

∫
S0

E(x0) dx0
= A0

33,

B31 =

∫
S

E(x)x2 dx =

∫
S0

E(x0)(x0
1 sin α + x0

2 cos α) dx0
= cos α B0

31 − sin α B0
32,

B32 =−

∫
S

E(x)x1 dx =−

∫
S0

E(x0)(x0
1 cos α − x0

2 sin α)dx0
= sin α B0

31 + cos α B0
32,

C11 =

∫
S

E(x)x2
2 dx =

∫
S0

E(x0)(x0
1 sin α + x0

2 cos α)2 dx0
= cos2α C0

11 − 2 cos α sin α C0
12 + sin2α C0

22,

C22 =

∫
S

E(x)x2
1 dx =

∫
S0

E(x0)(x0
1 cos α − x0

2 sin α)2 dx0
= sin2α C0

11 + 2 cos α sin α C0
12 + cos2α C0

22,

C12 =−

∫
S

E(x)x1x2 dx =−

∫
S0

E(x0)(x0
1 cos α−x0

2 sin α)(x0
1 sin α+x0

2 cos α)dx0

= cos α sin α (C0
11 − C0

22) + (cos2α − sin2α)C0
12,

C33 = C0
33.

(23)

More compactly, we can write in matrix form:

A = A0 (= RαA0R⊤

α ), B = B0R⊤

α (= RαB0R⊤

α ), C = RαC0R⊤

α , (24)

slightly abusing the notation since Rα is now the extended 3-dimensional rotation matrix:

Rα =

⎛⎝cos α − sin α 0
sin α cos α 0

0 0 1

⎞⎠ . (25)

4.2. Isogeometric parameterization of axially varying cross-section parameters

As defined earlier, an axially varying beam is characterized by varying properties of the cross-section along the
centerline of the beam, see Fig. 2b. In general, we can consider both material and geometric parameters as axially
varying. This means that properties such as Young’s modulus E , Poisson’s ratio ν, radius r of a circular cross-section,
layer height hL of a bilayer cross-section, or even the general cross-section shape S can be expressed as a function of
the arc-length parameter s of the rod.

Summarizing all those cross-section parameters in one vector u = (E, ν, r, . . .)⊤ ∈ Rdu , we can parameterize the
axial variation of the cross-section properties as a NURBS curve:

u(s) =

nu∑
i=1

N u
i (s) ui . (26)

In this isogeometric parameterization, du is the number of design parameters, N u
i are nu NURBS basis functions with

knot vector Ξ u of degree pu with ℓu elements, and ui are the nu control points of the curve. This NURBS basis can be
chosen arbitrarily, depending on the design of the axially varying rod, i.e., it does not necessarily have to be the same
as the one used to parameterize and discretize the rods in (9) or (11).

For the constitutive matrices and coefficients, as introduced above in Section 4.1 for both homogeneous and
transversally varying cross-sections, the parameterization of the cross-section properties implies, of course, that they
also become dependent on s:

A(s) ≡ A(u(s)), B(s) ≡ B(u(s)), C(s) ≡ C(u(s)). (27)
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The axially varying constitutive matrices are used in the constitutive law (6) to compute the stress resultants from the
strains, which are then transformed to the material configuration in (7) and finally used in the equilibrium equations
(8). Since the balance equations require the arc-length derivation of the internal forces and moments:

n′
= (Rσ )′ = R′σ + Rσ ′,

m′
= (Rχ )′ = R′χ + Rχ ′,

(28)

it follows for an axially varying rod that also the constitutive matrices have to be differentiated, since they are not
constant anymore:

σ ′
= (Aε + Bκ)′ = A′ε + Aε′

+ B′κ + Bκ ′,

χ ′
= (B⊤ε + Cκ)′ = B′⊤ε + B⊤ε′

+ C′κ + Cκ ′.
(29)

Since the constitutive matrices are computed from the vector u(s), their derivatives A′, B′ and C′ can be easily
evaluated through the isogeometric parameterization, e.g.:

A′
=

dA
ds

=

du∑
i=1

dA
dui

u′

i . (30)

5. Mixed method for slender composite rods

Shear locking is a well-known phenomenon that occurs when shear compliant beam theories are employed for
slender beams, i.e., beams with small thickness-to-length ratios (r/L ≪ 1). It manifests itself through instability of
the numerical method, loss of accuracy and deterioration of convergence rates. Here, we address this issue in the
context of rods with transversally varying, functionally graded cross-sections.

A mixed method that cures shear locking for isogeometric collocation of the Timoshenko beam model was already
introduced in [51] and theoretically investigated in [53]. The approach was also extended to the Cosserat rod model
in [42,61] and is based on an independent discretization of the internal forces n and moments m:

nh : Ω0 → R3
: nh(ξ ) =

n∑
i=1

Ni (ξ ) ni , mh : Ω0 → R3
: mh(ξ ) =

n∑
i=1

Ni (ξ ) mi , (31)

thus introducing additional unknowns with the force and moment control points ni and mi (i = 1, . . . , n), and
consequently also requiring modified and additional collocated balance equations:

fn(τi ) := n′

h(τi ) + n̄(τi ) = 0,

fm(τi ) := m′

h(τi ) + r′

h(τi ) × nh(τi ) + m̄(τi ) = 0,

fq(τi ) := qh(τi )⊤qh(τi ) − 1 = 0,

fu(τi ) := nh(τi ) − (Rσ )(τi ) = 0,

fv(τi ) := mh(τi ) − (Rχ )(τi ) = 0.

(32)

Compared to the primal formulation using only displacement and rotation degrees of freedom in (12), here the
independent forces nh and moments mh are used in the equations fn and fm and in the additional equations fu and
fv they are set equal to their counterparts n = Rσ and m = Rχ computed from the primary variables.

This approach cures the shear locking problem for beams with homogeneous cross-sections, since the ill-
conditioning of stress components σ = Aε and χ = Cκ , which is caused by the difference in scales between
the constitutive matrices A ∼ r2 and C ∼ r4, is resolved by the independent discretization of forces nh = Rσ and
moments mh = Rχ . However, when transversally varying, non-symmetric cross-sections are used, the constitutive
equations additionally include the translational–rotational coupling terms with the matrix B, which scales as B ∼ r3,
see (A.2). This introduces an additional imbalance of the scales within the constitutive equations for both, the
translational and rotational stresses. Thus, shear locking and numerical instability can still be present when the above-
mentioned mixed method is used for slender, functionally graded rods, see numerical examples in Section 6.1.

To cure shear locking also for these cases, we introduce an enhanced mixed method, in which the translational and
rotational strain contributions to the internal stresses are separated:

σ ε
:= A ε, σ κ

:= B κ, χ ε
:= B⊤ε, χκ

:= C κ . (33)
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Then, the corresponding internal force and moment contributions are discretized independently:

nε
h : Ω0 → R3

: nε
h(ξ ) =

n∑
i=1

Ni (ξ ) nε
i , nκ

h : Ω0 → R3
: nκ

h(ξ ) =

n∑
i=1

Ni (ξ ) nκ
i ,

mε
h : Ω0 → R3

: mε
h(ξ ) =

n∑
i=1

Ni (ξ ) mε
i , mκ

h : Ω0 → R3
: mκ

h(ξ ) =

n∑
i=1

Ni (ξ ) mκ
i .

(34)

In addition to the 7n primal unknowns, i.e., the control points for rh and qh , we know have 4 · 3n unknowns for the
control points {nε

i , nκ
i , mε

i , mκ
i }i=1,...,n and the corresponding collocated balance equations become:

fn(τi ) :=
(
nε

h(τi ) + nκ
h(τi )

)′
+ n̄(τi ) = 0,

fm(τi ) :=
(
mε

h(τi ) + mκ
h(τi )

)′
+ r′

h(τi ) ×
(
nε

h(τi ) + nκ
h(τi )

)
+ m̄(τi ) = 0,

fq(τi ) := qh(τi )⊤qh(τi ) − 1 = 0,

f ε
u (τi ) := nε

h(τi ) − (Rσ ε)(τi ) = 0,

f κ
u (τi ) := nκ

h(τi ) − (Rχκ )(τi ) = 0,

f ε
v (τi ) := mε

h(τi ) − (Rσ ε)(τi ) = 0,

f κ
v (τi ) := mκ

h(τi ) − (Rχκ )(τi ) = 0.

(35)

Altogether, (35) forms a nonlinear system of 19n equations and unknowns:

f(r⃗, q⃗, n⃗ε, n⃗κ , m⃗ε, m⃗κ ) =

((
fn, fm, fq, f ε

u , f κ
u , f ε

v , f κ
v

)
(τi )

)
⊤

i=1,...,n = 0. (36)

This nonlinear system is again solved with a Newton’s method.
To achieve optimal convergence rates, the same basis functions Ni are used for the discretization of nε

h, nκ
h, mε

h and
mκ

h as were used for rh and qh and all equations are collocated at the original collocation points τi [51]. Furthermore,
much like the initial mixed method shown in (31), the continuity requirements for the basis functions are reduced,
since both, the primal and secondary unknowns, only have to be differentiated once instead of twice, as in the original
method (12). This also reduces the computational effort for the assembly of the system and its Jacobian matrix, since
second derivatives do not have to be evaluated anymore. The split of translational and rotational parts of internal
forces and moments in the enhanced mixed method introduces additional computational effort, since more discretized
variables need to be evaluated (e.g., nε

h and nκ
h instead of nh), transformed (e.g., Rσ ε and Rσ κ instead of Rσ ), and

assembled into separate positions in the force vector and stiffness matrix. Also, the computational effort for solving
the linear systems within the Newton’s method increases, of course, since the system size increases from 7n for the
primal method and 13n for the simpler mixed method to 19n for the enhanced mixed method.

However, the main objective and advantage of the mixed methods, and particularly the novel enhanced mixed
method for transversally varying cross-sections introduced here, is that they cure shear locking and thus provide
higher accuracy and increased stability compared to the primal or simple mixed method. This means that a smaller
degree or number of elements can be used to obtain same accuracy and less load steps and less iterations per load step
are required to obtain convergence, which makes the mixed methods overall computationally much more efficient, as
will be shown in Section 6.1.2.

6. Numerical results

In this Section we apply isogeometric parameterizations of axially and transversally varying cross-sections together
with the isogeometric collocation methods for nonlinear 3D composite rods in several computational examples. We
focus on both, the validation of the approach using convergence studies and reference examples, as well as advanced
applications that highlight the capabilities and efficiency of the isogeometric modeling and analysis concept.

6.1. Convergence studies

First, we investigate the effect of employing axially varying parameters and transversally varying, functionally
graded cross-sections on the general accuracy and convergence behavior of the isogeometric collocation methods
presented.
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Fig. 5. Rods with axially varying material parameters. Initial rods with axially varying Young’s modulus distributions on top (colored by Young’s
modulus) and deformed configurations below (colored by curvature strain).

6.1.1. Axially varying cross-section parameters
As reference set-up, we take a rod of length L = 1.0 m with a circular cross-section of radius R = 0.05 m. The

initial, constant material parameters are Young’s modulus E(s) ≡ E0 = 100 MPa and Poisson’s ratio ν = 0.45, which
we refer to as case (a). The rod is clamped at one end and a moment m̂(L) = π E0 I is applied at the other over 8 load
steps, deforming it into a semicircle, see Fig. 5a. Now, we introduce three variations of the above-mentioned rod with
axially varying Young’s modulus, which are parameterized as follows using u(s) ≡ E(s), see also Fig. 5b–d:

(b) p = 3, ℓ = 1, n = 4, u⃗ = E0 · (1.0, 0.0, 2.0, 1.0). The Young’s modulus is parameterized globally along the
rod as a polynomial of degree 3, since the B-Spline has only 1 element.

(c) p = 3, ℓ = 4, n = 7, u⃗ = E0 · (1.0, 1.0, 0.4, 1.4, 1.2, 0.7, 1.0). The Young’s modulus is parameterized
arbitrarily along the rod as a B-Spline of degree 3 with 4 elements (knot spans).

(d) The Young’s modulus is parameterized locally, using the same B-Spline basis employed for the spatial
discretization of the rod and u⃗ is chosen such that E(s) interpolates a sinusoidal curve, i.e., E(τi ) = E0 ·

(1 − 0.3 sin 2πτi ).

For all four cases of Young’s modulus parameterizations, we apply the same moment to deform them and compute
a reference solution r∗ with a highly refined isogeometric discretization using p = 10, ℓ = 128. Then, we evaluate
the L2-errors of deformed centerline positions eh = ∥rh − r∗∥, where rh indicates the solutions with lower levels of
k-refinement obtained for p = 3, . . . , 8 and ℓ = 4, . . . , 64. The corresponding convergence plots for eh over number
of elements (knot spans) ℓ are shown in Fig. 6.

Fig. 6a refers to the conventional case of a rod with constant cross-section parameters, i.e., here constant Young’s
modulus. The convergence rates that can be observed here correspond to the typical ones to be expected for an
isogeometric collocation method, as already presented for Cosserat rods in [42].

For the global parameterization with degree 3, which is shown in Fig. 6b, the convergence rates are well reproduced,
but the error constants are about 1–3 orders of magnitude higher due to the variation of the Young’s modulus. This
shows that the collocation method can deal well with those global cross-section parameterizations and there is no
negative effect on convergence rates. Such behavior can be expected for a Galerkin method, since the element-wise
integration can also exactly integrate the axially varying material parameters (if the degree of the spatial discretization
is not less than the one of the material parameterization). However, in the case of a collocation method, where there is
no fixed distribution of collocation points over elements, such behavior is not immediately clear from the theoretical
point of view.

When the arbitrary parameterization over 4 elements with degree 3 is applied, see Fig. 6c, a negative effect on
both error constants as well as convergence rates of higher order discretizations with p ≥ 6 can be observed, since
the collocation points of the spatial discretization are not compatible with the Young’s modulus parameterization.
Furthermore, the absolute errors are again higher, since the axially varying parameterization of the cross-section is
“rougher” due to the choice of control points in u⃗.

The Young’s modulus distribution in case (d) is actually very similar to case (b), but interpolating the sinusoidal
shape of E(s) with the same basis functions as used in the spatial discretizations. As shown in the convergence plots in
Fig. 6d, the absolute errors are also similar to (b), however, especially for higher order and higher number of elements
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Fig. 6. Convergence study for axially varying Young’s modulus distribution. Convergence plots show L2-error in deformed centerline position
eh = ∥rh − r∗∥ for all four cases (a)–(d) of Young’s modulus parameterizations.

it seems that the theoretical convergence rates can be more closely obtained. This behavior is reasonable, since the
local material parameterization is collocated at suitable points, but there is an additional error component stemming
from the interpolation of the sinusoidal curve.

Altogether, we can conclude from these convergence studies that the isogeometric collocation method still provides
an accurate and efficient discretization method when AV cross-section parameters are used. Most importantly, the
most convincing feature of collocation is preserved, i.e., high accuracy can be obtained for a low number of degrees
of freedom when a higher order discretization with a relative small number of elements is employed.

Remark 1. Here, we have used a beam with a fairly large thickness-to-length ratio, i.e., 2r/L = 0.1, since we
wanted to avoid that shear locking affects the results. As mentioned above in Section 5, mixed methods can be used to
eradicate the effects of shear locking and improve convergence rates for odd spline basis function degrees and general
accuracy, i.e., error constants.

6.1.2. Slender rods with transversally varying materials
The use of functionally graded cross-sections with transversally varying materials does in general not affect the

accuracy and convergence behavior of the discretization method, since the constitution of the cross-section only
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Fig. 7. Convergence study for slender rods with transversally varying materials. Convergence plots show error in centerline position for (a)
R = 0.05 m and (b) R = 0.005 m using (1) primal (r, q)h , (2) mixed (r, q, n, m)h , and (3) enhanced mixed (r, q, nε, nκ , mε, mκ )h methods.

defines the constitutive parameters, see Section 4.1. However, when the Cosserat rod is slender, a mixed method
should or has to be used to resolve the shear locking problem. Having introduced an extension of the mixed collocation
method in Section 5, we now evaluate its performance for the analysis of slender rods with transversally varying
material compositions.

Again, we take a rod of length L = 1.0 m, which now has a circular, bilayer laminate cross-section, see
Section 4.1.1. The material parameters are chosen as Young’s moduli E0 = 100 MPa, E1 = 10 MPa and Poisson’s
ratios ν0 = ν1 = 0.45. Now, the radius of the cross-section is varied using (a) R = 0.05 m and (b) R = 0.005 m,
while the relative layer ratios are kept constant using layer heights hL = −0.5 R. Like before, the rods are clamped
at one end and moments m̂(L) = 0.5πC11 (which depend on R, see (20)) are applied at the other end incrementally
over 8 load steps, deforming each rod to almost a semicircle.

For each choice of R, we use the conventional formulation, where only centerline positions and quaternions are
discretized (primal (r, q)h , see Section 3.2), the original mixed method from [42], where additionally the translational
and rotational stresses are discretized (mixed (r, q, n, m)h , see Section 5, Eq. (32)), and the newly presented enhanced
mixed method, where the translational and rotational contributions to the translational and rotational stresses are
separately discretized (enhanced mixed (r, q, nε, nκ , mε, mκ )h , see Section 5, Eq. (35)) to compute the displaced
configurations. We evaluate the L2-errors of deformed centerline positions against reference solutions with highly
refined isogeometric discretizations (p = 10, ℓ = 128) and resulting convergence plots are shown in Fig. 7.
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Table 1
CPU times for primal (PM), mixed (MM) and enhanced mixed (EM) methods for slender rods with transversally varying materials. Assembly,
linear solution and total time are shown for one iteration (in milliseconds), as well as for solving the beam displacement in (at least) 8 load steps
for r = 0.05 and r = 0.005 (in seconds).

per iteration [ms] r = 0.05 [s] r = 0.005 [s]

PM MM EM PM MM EM PM MM EM

# load steps – – – 8 18 8 8 129 8
p = 4 # iterations – – – 64 246 46 106 2014 48
ℓ = 16 Assembly 10.2 4.2 7.0 0.680 1.037 0.327 1.029 8.352 0.330
n = 20 Linear solve 1.5 2.4 4.8 0.099 0.622 0.230 0.155 4.770 0.225

Total 11.7 6.6 11.8 0.779 1.659 0.557 1.183 13.121 0.555

# load steps – – – 8 17 8 8 128 8
p = 4 # iterations – – – 64 214 47 200 1774 48
ℓ = 64 Assembly 37.9 24.2 47.2 2.498 5.275 2.261 7.353 42.308 2.222
n = 68 Linear solve 4.2 6.2 11.6 0.266 1.327 0.542 0.851 11.017 0.557

Total 42.1 30.5 58.8 2.764 6.602 2.803 8.204 53.325 2.778

When the rod becomes more slender, the primal method loses accuracy due to shear locking, see Fig. 7a1 and b1.
Furthermore, the convergence behavior of the Newton iteration is affected and a lot of iterations per load step are
required (around 10–20), or the 8 load steps had to be further subdivided to achieve convergence for R = 0.005 m.

The original mixed method, which is shown in Fig. 7a2 and b2, seems to attain high accuracy and good convergence
rates for both cross-section radii. However, to obtain these results, we had to further subdivide the application of the
moment from 8 to 32 and 160 (!) load steps for R = 0.05 m and R = 0.005 m, respectively. Otherwise, the method
is numerically unstable and the Newton iterations would not converge at all. Thus, employing this method for TV
cross-sections means a tremendous increase in computational cost and is not advisable.

For the newly proposed enhanced mixed method, it can be seen in Fig. 7a3 and b3 that almost the same
high accuracy and ideal convergence rates can be achieved independently of the slenderness of the cross-section.
Furthermore, the method only needed very few Newton iterations for each of the 8 load steps, typically only 6
iterations for a relative accuracy of 10−9.

In Table 1 we have summarized the CPU times required for assembly and solution for the three methods with
p = 4 and ℓ = 16,64, using an Intel c⃝ CoreTM i7-5960X 3.00 GHz PC with 32 GB RAM in single-core mode and
UMFPACK direct sparse linear solver [62]. Per iteration, the mixed method (MM) is faster than the primal (PM) and
enhanced mixed method (EM), but while PM and MM suffer from locking and instability, and thus need a lot of load
steps and iterations, EM is very efficient and overall much faster than both PM and MM — and at the same time also
more accurate than PM.

Thus, we can conclude that the newly developed enhanced mixed method overcomes the shear locking problem
and provides a stable and efficient solution process for slender rods with TV cross-sections.

6.2. Applications of rods with spatially varying materials

Next, we study a few simple applications of modeling of 3D beams with spatially varying materials, i.e., beams
with both axially and transversally varying cross-section parameters, including rotated cross-section orientations.

6.2.1. Homogeneous vs. graded vs. bilayer cross-sections
Functionally graded, TV cross-sections with asymmetric Young’s modulus distributions, such as the bilayer

laminates and continuously graded variations introduced in Section 4.1, are characterized by the coupling of tension
and bending deformations. This enables the design of rods with very specific and tailored deformation behavior.

To demonstrate this, we compare the bending behavior of three slender cantilever beams of length L = 1 m with
rectangular cross-sections with b = 3 mm, h = 2 mm, E0 = 100 MPa, E1 = 10 MPa, and ν = 0.45 with (a)
homogeneous cross-section with E = 0.5(E0 + E1), (b) continuous, linear grading with p = 1, and (c) bilayer
laminate with hL = 0 mm. Consequently, all respective coefficients of the constitutive matrices A and C are equal for
the three cases, but B(a)

31 = 0 and B(c)
31 =

3
2 B(b)

31 .
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Fig. 8. Homogeneous vs. graded vs. bilayer cross-sections. Initial rods with (a) homogeneous cross-section, (b) linear transverse grading and (c)
bilayer laminate (on top, colored by Young’s modulus distribution) and deformed, curved configurations after moment was applied (below, colored
by curvature strains).

Fig. 9. Bilayer cross-section with axially varying geometric parameters and rotation. Initial (colored by Young’s modulus) and deformed (colored
by curvature strains) rod configurations in (a) x/z-view and (b) y/-x-view. (c) Convergence of L2-error of displacements.

We apply a moment m̂(L) = 0.5πC11 at the free end of the beams and discretize them using the enhanced mixed
method with p = 6, ℓ = 16 to compute the deformations. The initial beams and their deformed configurations for
all cases are shown in Fig. 8. Application of a moment results in constant extensional strains and bending curvatures,
which are:

ε
(a)
3 = 0, ε

(b)
3 = 0.0055, ε

(c)
3 = 0.0129,

κ
(a)
1 = 1.571, κ

(b)
1 = 2.022, κ

(c)
1 = 3.155.

While the homogeneous beam bends by exactly 90◦, the linearly graded beam bends about 115◦, and the bilayer
beam bends even slightly more than 180◦. This provides an interesting insight into the behavior and resulting design
opportunities of beams with TV material compositions.

Remark 2. In this simple case of 2-dimensional beam bending, the above-computed quantities can also be determined
analytically through the relationship:(

A33 B31
B31 C11

) (
ε3
κ1

)
=

(
0
m̂

)
.

6.2.2. Bilayer cross-section with axially varying geometric parameters and rotation
Now, we introduce an application where a TV cross-section, here a bilayer laminate, has AV geometric properties,

here cross-section radius, layer height and rotation, see Fig. 9.
The bilayer cantilever beam has length L = 1 m, radius parameter r0 = 0.025 m, Young’s moduli E0 = 100 MPa

and E1 = 10 MPa, and ν = 0.45. The following cross-section properties are axially varying, here parameterized
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linearly from s = 0 to s = 1: radius r (s) = r0(2 − s), layer height ratio h R(s) = 0.25 + 0.5s, and rotation angle
α(s) = π s. Thus, we have pu

= 1, ℓu
= 1, nu

= 2 and the parameter vector is u ≡ (r, h R, α)⊤. A follower moment
m̂(L) = R⊤(0.5π C22(L/2), 0, 0)⊤ is applied on its free end.

The initial shape and material constitution of the beam and its deformed configuration are visualized in Fig. 9a–b.
As can be seen from the deformed shapes and the values of curvature strains κ1 and κ2, the beam undergoes a highly
complex and nonlinear bending behavior with coupling of both curvature modes, twist and tension. Our isogeometric
modeling and analysis framework enables convenient modeling of such complex beams and their accurate analysis,
here using the newly introduced enhanced mixed method, as can be seen from the convergence plot for the L2-error
of displacements shown in Fig. 9c.

6.3. Application to a graded 3D lattice structure

Finally, we apply the concept of AV and TV material compositions to a graded, lattice-like rod structure. This
application points towards the design of structures with spatially varying materials for specific deformation behavior,
instabilities, or energy absorption capabilities, such as the soft, compliant lattice structures presented in [63].

Here, we introduce a tire-like, cylindrical 3D lattice structure with outer radius 100 mm, inner radius 70 mm,
and height 30 mm, see Fig. 10. We use a honeycomb-type lattice unit cell structure with 16 cells in circumferential
direction of the cylinder. The individual struts have an axially varying radius, which varies in radial direction of the
cylindrical geometry from 1.5 mm at the inner side to 1.0 mm at the outer side. Struts at the inner and outer sides of the
cylindrical geometry are transversally varying bilayers with height ratio h R = 0.8, where the smaller layer has Young’s
modulus E1 = 1.2 GPa and the larger layer and all uniform rods have Young’s modulus E0 = 0.6 MPa. Thus, the
small layers act like a very stiff coating on the otherwise rather soft structure. The Poisson’s ratios are ν0 = ν1 = 0.45.
These material parameters correspond to typical polymer inkjet 3D printing materials, as for instance used in [63].

For axially varying cross-section properties, here the radius, we simply use a linear global parameterization,
i.e., u ≡ r and pu = 1, ℓu = 1. The isogeometric discretization of the totally 512 rods is done using the mixed
methods with p = 6, ℓ = 8. The original mixed method is used for interior rods with homogeneous cross-sections
and the enhanced mixed method is used for the bilayers, since there is a strong difference of Young’s moduli of more
than three orders of magnitude.

For the mechanical simulation of the structure, the rods at the right end are clamped and a displacement of 40 mm in
x-direction is incrementally applied to the rods on the left end over 30 load steps. This results in an overall compression
of 20% of the structure in x-direction and to complex deformation patterns of the individual rods, including torsion
and double-curved bending deformations, see Fig. 10.

7. Summary and conclusions

We have introduced a fully isogeometric modeling and analysis method for 3D beams with spatially varying mate-
rial and geometric parameters. The beams were modeled using the geometrically exact, nonlinear Cosserat rod theory
and discretized by an isogeometric collocation method. Axially varying material and geometric properties of the
beam cross-sections are also parameterized using spline functions, allowing a convenient and flexible implementation
of the method in the IGA context. Effects of the axially varying parameterizations on convergence behavior were
investigated, showing that there are no significant implications on convergence rates of the collocation method.
Transversally varying, functionally graded cross-sections were also implemented as bilayer laminates and with
continuous grading of Young’s modulus. To overcome shear locking and convergence issues for those transversally
varying beams, a new enhanced mixed collocation method was introduced and successfully numerically evaluated.

The next step based on this work is the implementation of isogeometric design optimization methods, that optimize
the spatially varying material and geometric parameters of the cross-sections. Furthermore, shape and (ground-
structure) topology optimization could be used to implement an even more flexible optimization framework for
3-dimensional beam structures. Potential applications for these methods, which would already be realizable with
current advanced manufacturing technologies, include design and optimization of soft, multi-material and composite
rod structures that are subject to large deformations and instabilities, such as soft robotic actuators, artificial muscles
and flexible space structures.

To overcome the limitations of the Cosserat rod model in terms of the approximation of shear stress distribution for
axially-varying beams, a model could be derived that enables the coupling of all forces and moments with stress and
strain components. This model could then be validated against the current model, a beam model where a continuum
hyperelastic constitutive law is used and integrated over the cross-section, see [29], and full 3D finite element analysis.
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Fig. 10. Graded 3D lattice structure. The initial, tire-like lattice structure is shown on the left side, colored by the Young’s modulus distribution.
The deformed structure after application of 40 mm deformation is shown on the right side, colored by the torsion strain κ3.
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Appendix

A.1. Constitutive coefficients for bilayer laminate cross-sections

We continue the derivation and calculation of the constitutive coefficients for bilayer laminate cross-sections as
presented in Section 4.1.1.

For the rectangular cross-section with width b and height h, the integrals in (20) can be analytically evaluated as:

Ā0
33 =

∫ b/2

−b/2

∫ hL

−h/2
dx2 dx1 = b

(
h
2

+ hL

)
, Ā1

33 =

∫ b/2

−b/2

∫ h/2

hL

dx2 dx1 = b
(

h
2

− hL

)
,

B̄0
31 =

∫ b/2

−b/2

∫ hL

−h/2
x2 dx2 dx1 =

b
2

(
h2

L −
h2

4

)
, B̄1

31 =

∫ b/2

−b/2

∫ h/2

hL

x2 dx2 dx1 =
b
2

(
h2

4
− h2

L

)
, (A.1)

C̄0
11 =

∫ b/2

−b/2

∫ hL

−h/2
x2

2 dx2 dx1 =
b
3

(
h3

8
+ h3

L

)
, C̄1

11 =

∫ b/2

−b/2

∫ h/2

hL

x2
2 dx2 dx1 =

b
3

(
h3

8
− h3

L

)
,

C̄0
22 =

∫ b/2

−b/2

∫ hL

−h/2
x2

1 dx2 dx1 =
b3

12

(
h
2

+ hL
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22 =

∫ b/2

−b/2

∫ h/2

hL

x2
1 dx2 dx1 =

b3

12

(
h
2

− hL

)
.

For the circular cross-section with radius r , the analytical evaluation of the integrals in (20) is a little more complex.
Defining the layer angle θ = 2 arccos(hL/r ) and layer width bL = r sin(θ/2) in addition to the layer height hL , and



O. Weeger et al. / Comput. Methods Appl. Mech. Engrg. 342 (2018) 95–115 113

parameterizing the boundaries of the integrals either as x1(x2) = r sin(arccos(x2/r )) or x2(x1) = r cos(arcsin(x1/r )),
it follows:

Ā1
33 =

∫ bL

−bL

∫ x2(x1)

hL

dx2 dx1 =

∫ bL

−bL

r cos(arcsin(x1/r )) − hL dx1 =
r2

2
(θ − sin θ) ,

Ā0
33 = πr2

− Ā1
33 =

r2

2
(2π − θ + sin θ) ,

B̄1
31 =
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∫ x2(x1)

hL

x2 dx2 dx1 =
1
2
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2
3
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31 = −
2
3
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C̄1
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−bL
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x2
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16
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4
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For both cases, rectangular and circular cross-sections, the torsion constant C33 cannot be determined as a closed-
form solution in terms of the parameters hL , b and h resp. r , and E0, E1, and thus have to be determined through
solving a 2-dimensional PDE problem on the cross-section domain S, see [25]. For circular cross-sections, we have
obtained an approximation from numerical data as C33 = E0 C̄0

33 + E1 C̄1
33 with:

C̄0
33 =

1
16

πr4 (
2(1 + hL/r )2

+ (1 + hL/r )3) ,

C̄1
33 =

1
16

πr4 (
2(1 − hL/r )2

+ (1 − hL/r )3) ,

(A.3)

which was then used in the numerical applications presented.

A.2. Constitutive coefficients for continuously graded cross-sections

We continue the derivation and calculation of the constitutive coefficients for continuously graded, rectangular
cross-sections as presented in Section 4.1.2. The parameters of the cross-section are width b, height h and Young’s
modulus distribution E(x2) = E0 + (E1 − E0)

( 1
2 +

x2
h

)p
with E0, E1, p > 0. Then, the analytical evaluation of the

integrals yields:

A33 =
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−h/2
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p + 1
,
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2
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,

C11 =
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12
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, (A.4)

C22 =

∫ b/2

−b/2

∫ h/2

−h/2
x2

1 E(x2) dx2 dx1 =
b3h
12

pE0 + E1

p + 1
,

C33 ≡ C33(b, h, E0, E1, p).

References
[1] I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing,

second ed., Springer-Verlag New York, 2015.

http://refhub.elsevier.com/S0045-7825(18)30366-9/sb1
http://refhub.elsevier.com/S0045-7825(18)30366-9/sb1
http://refhub.elsevier.com/S0045-7825(18)30366-9/sb1


114 O. Weeger et al. / Comput. Methods Appl. Mech. Engrg. 342 (2018) 95–115

[2] B.G. Compton, J.A. Lewis, 3D-printing of lightweight cellular composites, Adv. Mater. 26 (34) (2014) 5930–5935.
[3] X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, J.A. Jackson, S.O. Kucheyev, N.X.

Fang, C.M. Spadaccini, Ultralight, ultrastiff mechanical metamaterials, Science 344 (6190) (2014) 1373–1377.
[4] A.P. Garland, G. Fadel, Design and manufacturing functionally gradient material objects with an off the shelf 3D printer: Challenges and

solutions, ASME J. Mech. Des. 137 (11) (2015) 111407.
[5] A.D.B.L. Ferrera, P.R.O. Nóvoa, A.T. Marques, Multifunctional material systems: A state-of-the-art review, Compos. Struct. 151 (2016) 3–35.
[6] O. Weeger, Y.S.B. Kang, S.-K. Yeung, M.L. Dunn, Optimal design and manufacture of active rod structures with spatially variable materials,

3D Print. Add. Manuf. 3 (4) (2016) 204–215.
[7] N. Hu, R. Burgueõ, Buckling-induced smart applications: Recent advances and trends, Smart Mater. Struct. 24 (6) (2015) 063001.
[8] Q. Ge, A.H. Sakhaei, H. Lee, C.K. Dunn, N.X. Fang, M.L. Dunn, Multimaterial 4D printing with tailorable shape memory polymers, Sci.

Rep. 6 (2016) 31110.
[9] Z. Ding, C. Yuan, X. Peng, T. Wang, H.J. Qi, M.L. Dunn, Direct 4D printing via active composite materials, Sci. Adv. 3 (4) (2017) e1602890.

[10] Z. Ding, O. Weeger, H.J. Qi, M.L. Dunn, 4D rods: 3D structures via programmable 1D composite rods, Mater. Des. 137 (2018) 256–265.
[11] T.W. Murphey, Large strain composite materials in deployable space structures, in: 17th International Conference on Composite Materials,

The British Composites Society, Edinburgh, United Kingdom, 2009.
[12] T.W. Murphey, D. Turse, L. Adams, TRAC boom structural mechanics, in: 4th AIAA Spacecraft Structures Conference, American Institute

of Aeronautics and Astronautics, Grapevine, TX, United States, 2017.
[13] S. Suresh, A. Mortensen, Fundamentals of Functionally Graded Materials, IOM Communications Limited, 1998.
[14] D.H. Hodges, Nonlinear Composite Beam Theory, in: Progress in Astronautics and Aeronautics, vol. 213, American Institute of Aeronautics

and Astronautics, 2006.
[15] B.V. Sankar, An elasticity solution for functionally graded beams, Compos. Sci. Technol. 61 (5) (2001) 689–696.
[16] Z. Zhong, T. Yu, Analytical solution of a cantilever functionally graded beam, Compos. Sci. Technol. 67 (3–4) (2007) 481–488.
[17] X.-F. Li, A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams,

J. Sound Vib. 318 (4–5) (2008) 1210–1229.
[18] A. Chakraborty, S. Gopalakrishnan, J.N. Reddy, A new beam finite element for the analysis of functionally graded materials, Int. J. Mech.

Sci. 45 (2003) 519–539.
[19] S.S. Antman, Nonlinear Problems of Elasticity, in: Applied Mathematical Sciences, vol. 107, Springer New York, 2005.
[20] S. Eugster, Geometric Continuum Mechanics and Induced Beam Theories, in: Lecture Notes in Applied and Computational Mechanics, vol.

75, Springer International Publishing, 2015.
[21] E. Reissner, On finite deformations of space-curved beams, Z. Angew Math. Phys. ZAMP 32 (6) (1981) 734–744.
[22] J.C. Simo, A finite strain beam formulation. The three-dimensional dynamic problem. Part I, Comput. Methods Appl. Mech. Engrg. 49 (1)

(1985) 55–70.
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