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a b s t r a c t

Diversity and accuracy are the two key factors that decide the ensemble generalization error.
Constructing a good ensemble method by balancing these two factors is difficult, because increasing
diversity is at the cost of reducing accuracy normally. In order to improve the performance of an
ensemble while avoiding the difficulty derived of balancing diversity and accuracy, we propose a novel
method that weights each classifier in the ensemble by maximizing three different quadratic forms. In
this paper, the optimal weight of individual classifiers is obtained by minimizing the ensemble error,
rather than analyzing diversity and accuracy. Since it is difficult to minimize the general form of the
ensemble error directly, we approximate the error in an objective function subject to two constraints
(∑wi ¼ 1 and �1owio1). Particularly, we introduce an error term with a weight vector w0, and
subtract this error with the quadratic form to obtain our approximated error. This subtraction makes
minimizing the approximation form equivalent to maximizing the original quadratic form. Theoretical
analysis finds that when the value of the quadratic form is maximized, the error of an ensemble system
with the corresponding optimal weightw* will be smallest, especially compared with the ensemble with
w0. Finally, we demonstrate improved classification performance from the experimental results of an
artificial dataset, UCI datasets and PolSAR image data.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Ensemble learning as an active research indeed improves the
performance of a single learner by combining multiple learners
[1,2]. In recent years, it has been widely used in fields of not only
supervised learning but also unsupervised learning [3–5]. Classi-
fier ensemble [6–8] is considered as a classical application that
ensemble learning is employed to combine multiple classifiers in
supervised learning in order to improve the accuracy and stability
of a single classifier. Moreover, it is also named as multiple
classifier system [8]. In a classifier ensemble system, a classifier
as a learner is called an individual classifier or an individual. At
present, many ensemble methods [9–13,37,38] have been pro-
posed and they roughly fall into two basic categories. One lays
emphasis on how to construct individual classifiers, and the other
lays emphasis on how to combine individual classifiers.

For the former, it concentrates on making different training
subsets for individual classifiers, and many classical ensemble
strategies have been proposed, such as bagging [2], AdaBoost

[14], random forest [7], rotation forest [9] and so on. For the latter,
it engages in how to combine the outputs of individual classifiers
and is considered as a research hotspot of classifier ensemble
recently. From the point of the value of classifiers’ coefficients, the
existing methods about combining classifiers are roughly divided
into three categories: (a) simple vote strategy [8,11]: It combines all
individual classifiers’ outputs with same probability. In other
words, all individual classifier are given a same weight coefficient
in simple vote strategy. Especially, it is equivalent to majority vote
[8,15] as a most popularly used rule; (b) weighted classifier
ensemble (WCE) [8,16,17,39–44]: It combines individual classifiers
with different weight coefficients, and the value of each weight
coefficient is not equal to zero. In WCE, it indicates that each
individual classifier is supposed to have a different contribution for
improving the performance; (c) selective or pruning classifier
ensemble [18–20,45–48]. It combines individual classifiers with a
weight vector including a zero coefficient at least, which indicates
that some individual classifiers have negative or insignificant
effects on boosting the performance. According to Zhou et al.
[21], it demonstrates that an ensemble of partial individual
classifiers is better than all. In particular, our work focuses on
designing a weighted classifier ensemble method in this paper.

In general, the ensemble generalization error is decided by
diversity among individual classifiers and accuracy of them in
an ensemble system [22,14,7]. On this basis, many ensemble
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algorithms [9,19,38] have been proposed based on accuracy of
individuals themselves or diversity among individuals. It illus-
trates that a good ensemble method depends on not only high
accuracy of individual classifiers but also high diversity between a
pair of individual classifiers. However, according to Krogh and
Vedelsby [22], Zhou et al. [23] and Zhang et al. [18], it is known
that the more individual classifiers are of high accuracy rates, the
less the diversity among them becomes, because the class label of
the target sample is uniform. In other words, enhancing diversity
among individual classifiers is at the expense of decreasing their
accuracy. Thus constructing a good ensemble is difficult based on
diversity and accuracy.

On the other hand, some ensemble algorithms increase diver-
sity among individual classifiers by producing different training
subsets. Yet perhaps it may be resulted in an unexpected problem
that individual classifiers corresponding to different training sub-
sets gain the same outputs. It means that diversity is not always
enhanced while creating classifiers by different training subsets.
Moreover, the paper [24] illustrates that accuracy of individual
classifiers is the leading factor in improving the ensemble perfor-
mance compared against diversity among individuals. It means
that some classifiers with the better performance are more helpful
than ones with the higher diversity but poor performance in an
ensemble. In brief, it is tough and inconclusive to design an
ensemble method via balancing and analyzing diversity and
accuracy. In fact, the initial intention of an ensemble of classifiers
is the improvement of the classification performance, and the
analysis of diversity and accuracy is also to boost the performance
of an ensemble system. Consequently, it is fascinating to see
whether or not we construct a method by the explicit analysis
on the performance of classifier ensemble rather than facing a
dilemma of balancing diversity and accuracy.

In this paper, we propose a novel weighted classifier ensemble
method based on quadratic forms, which is also named by QFWEC
method. In the proposed method, the ensemble error is directly
utilized to seek the optimal weight vector of classifiers instead of
analyzing diversity and accuracy, whereas it is difficult to obtain
the optimal solution via the minimization of the ensemble error,
especially for a binary classification problem. Thereby the QFWEC
method converts the minimization of the ensemble error into a
new optimization problem that contains an approximation form
and two constraints. The approximation form is considered as the
target function of seeking the optimal weight vector of the
classifiers. Furthermore, the approximation form is decomposed
into two parts by introducing a given weight vector. The first part
is the ensemble error gained by the introduced weight vector, and
the second part is a quadratic form. The value of the approxima-
tion form is equal to the one by subtracting the second part from
the first part. Specifically, the first part is independent of the
solving weight vector. Consequently, the process of minimizing the
approximation form is transformed into maximizing the quadratic
form. Finally, an optimal weight vector is sought by maximizing
the quadratic form in the QFWEC method. In addition, it is found
that when the value of the quadratic form is larger, the ensemble
error gained by the sought weight vector is lower than the one
gained by the introduced weight vector. In addition, the experi-
mental results demonstrate that the proposed method obtains a
better performance against other ensemble methods.

The organization of this manuscript is as follows. Section 2
introduces several proposed weighted classifier ensemble algo-
rithms. Section 3 introduces the proposed method in detail,
including how to change the minimization of the ensemble error
into maximizing a real quadratic form and how to seek the optimal
weight vector based on three different optimizations. In Section 4,
the experimental results of an artificial dataset, UCI datasets and
PolSAR image data are shown to illustrate that the proposed

method improves the classification performance. Lastly, Section 5
concludes our work and proposes some future works.

2. Related works

As the latter part of classifier ensemble, combining individual
classifiers is actually equal to assemble the predictions obtained by
individual classifiers, as important as constructing individual
classifiers. Suppose a given training sample set X with N � d,
X¼ ðx1; y1Þ;…; ðxN ; yNÞ

� �
, where yn is the true label of xn (xnAℝd),

ynA ω1;…;ωCf g, ωj expresses the jth class, and C is the number of
classes. In an ensemble system, Ψ denotes a set of individual
classifiers, Ψ ¼ ℒ1;…;ℒLf g, where ℒi (i¼ 1; :::; L) expresses an
individual classifier and L is the number of individual classifiers.
Then a general form of combining individual classifiers is given as
follows:

HðxT Þ ¼ arg max
ωj A fω1 ;…;ωC g

∑L
i ¼ 1pijðxT Þnwi

� �
ð1Þ

where HðxT Þ expresses the predictive label of an unlabeled sample
xT (xT Aℝd) given by an ensemble, pijðxT Þ is the probability of xT

classified to ωj by an individual classifier ℒi, and wi denotes the
weight coefficient of ℒi. When the processed problem is a two-
class classification problem ynAf�1; þ1g� �

; Eq. (1) is also pre-
sented in the following formula:

HðxT Þ ¼ sgn ∑L
i ¼ 1f iðxT Þnwi

� � ð2Þ

where f iðxT Þ expresses the predictive label of xT given by ℒi.

2.1. Simple vote rule

Simple vote rule [8,11] has been widely used to combine the
outputs of individual classifiers in many ensemble strategies
which focus on constructing different individual classifiers, such
as bagging [2], random subspace method [28], rotation forest [9],
and so on. In general, each individual classifier is considered to be
of an effect as same as others in simple voting rule. In fact, it is
equivalent to giving a same coefficient to all individuals in an
ensemble system, such as wi ¼ 1 (i¼ 1; :::; L) in Eq.(1). In other
words, each individual is important for improving ensemble
performance as same as others while simple voting rule is
employed to combine classifiers. Particularly, the ensemble pre-
dictive label of an unlabeled sample xT is given by the formula
HðxT Þ ¼ sgn ∑L

i ¼ 1f iðxT Þ
� �

for a two-class classification problem.

2.2. Weighted majority vote

Weighted majority vote [8] achieves the final decision of
classifier ensemble by giving more power to more individual
classifiers. It indicates that an individual has a different effect
from others in an ensemble when it is not of the identical
classification performance. According to Kuncheva [8] and
Rodriguez [15], the probability that a sample is classified into
each class is computed by weighted majority vote, shown as
follows:

pwmv
j ðxT Þ ¼∑L

i ¼ 1widij; jAf1;…;Cg ð3Þ

where pwmv
j ðxT Þ expresses the probability that xT is classified into

ωj by weighted majority vote, wi is the weight coefficient of a
classifier ℒi and satisfies for the condition ∑L

i ¼ 1wi ¼ 1, and if xT is
classified into ωj by ℒi, dij ¼ 1, otherwise, dij ¼ 0. Finally, the label

S. Mao et al. / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: S. Mao, et al., Weighted classifier ensemble based on quadratic form, Pattern Recognition (2014), http://dx.doi.
org/10.1016/j.patcog.2014.10.017i

http://dx.doi.org/10.1016/j.patcog.2014.10.017
http://dx.doi.org/10.1016/j.patcog.2014.10.017
http://dx.doi.org/10.1016/j.patcog.2014.10.017
http://dx.doi.org/10.1016/j.patcog.2014.10.017


ωj with the maximum probability (pwmv
j ðxT Þ) is as the final

ensemble predictive class label of xT . Additionally, the weight
coefficients of individual classifiers are given in [8]

wi ¼ log
Acci

1�Acci
ð4Þ

where Acci is the accuracy rate that the training samples are
correctly classified by ℒi.

2.3. Naive Bayes ensemble rule

Naive Bayes ensemble rule [8,11,15] assumes that each indivi-
dual classifier is mutually independent with others for giving a
class label, and thus it is also named for ‘independence model’
[25], ‘simple Bayes’ [26]. According to Kuncheva [8], a confusion
matrix CMi with C � C is produced based on the true labels of the
training samples and their prediction labels given by a classifier
ℒi, therefore, it represents the information of a classifier ℒi. In
CMi, its element cmi

j:k ðj; k¼ 1;…;CÞ denotes the number of all
samples which belong to the class label ωj but are classified into ωk

by ℒi. Based on CMi, the prediction label HðxT Þ of a sample xT is
obtained by the following formula:

HðxT Þ ¼ arg max
j ¼ 1;…;C

1

NN�1
j

Π
L

i ¼ 1
cmi

j;ki

 !
ð5Þ

where Nj is the number of all samples with the true class label ωj

in a training set X. Additionally, Titterington et al. [25] gave the
modification of the formula of Naive Bayes ensemble rule in order
to account for the possible zero occurred in Eq.(5), shown as
follows:

HðxT Þ ¼ arg max
j ¼ 1;…;C

Nj

N
Π
L

i ¼ 1

cmi
j;ki

þ1=J

Njþ1

 !
ð6Þ

3. Weighted classifier ensemble based on three quadratic
forms

In this section, we introduce a new weighted ensemble method
based on the real quadratic form, which seeks an optimal weight
vector of individual classifiers by minimizing the ensemble error
rate directly. Classifier ensemble aims at improving the classifica-
tion performance of a single classifier algorithm, which means that
the final classification performance will determine the merit of an
ensemble algorithm. In supervised learning, the error rate of
classification is generally the probability that samples are incor-
rectly classified. Similarly, the classification error of an ensemble
system is equal to the probability of samples whose predictive
labels are not the same as their true labels. It is calculated based on
the true labels of samples and their prediction labels given by an
ensemble.

Suppose a two-class classification problem (classes:[�1,þ1])
has a training set X with class labels (X¼ ðx1; y1Þ;…; ðxN ; yNÞ

� �
)

and a testing set Xt without labels (Xt ¼ x1;…; xMf g), where xn

(xnAℝd, n¼ 1;…;N) expresses a training sample, yn is the true
class label of xn, and xm (xmAℝd, m¼ 1; :::;M) expresses a testing
sample. Then L individual classifiers are produced based on the
training subsets from X in an ensemble system, shown by a set
Ψ ¼ ℒ1;…;ℒLf g. In general, the error rate of an ensemble is
calculated based on the difference between the final predictive

labels and the true labels:

Renc ¼
1
4N

∑
N

n ¼ 1
‖HencðxnÞ�yn‖2 ð7Þ

where Renc expresses the error rate of an ensemble, HencðxnÞ
denotes the predictive label of a sample xn gained by an ensemble,
and N is the number of all samples. According to Eq.(2), Eq.(7) is
also presented by the following formula:

Renc ¼ 1
4N

∑
N

n ¼ 1
sgn ∑L

i ¼ 1f ninwi
� ��yn

� 	2 ¼ 1
4N

‖sgnðFwÞ�y‖2 ð8Þ

where w denotes a weight vector of individual classifiers, w¼ w1;½
…;wL�T , y is a vector of the true labels, y¼ y1;…; yN

� 	T , f ni
(f niA ½�1; þ1�) expresses a predictive label of xn given by ℒi,
and F is a matrix with N � L elements consisting of f ni (f ni is the
element in the nth row and the ith column of the matrix F). In fact,
F is a set of predictive labels of all individual classifiers,
F¼ ½f1;…; fL�, where f i expresses a vector of predictive labels
gained by ℒi, f i ¼ ½f 1i;…; f Ni�T , i¼ 1;…; L. According to Eq. (8), it
indicates that constructing a good algorithm should seek an
optimal weight vector w with which the error rate Renc is
minimized, specifically shown in the following formula:

min
1
4N

‖sgnðFwÞ�y‖2: ð9Þ

However, it is tough to gain the optimal solution from the
above formula directly because of the sign function in Eq. (9).
Hence, an approximation form is constructed in this paper in order
to handle this problem, shown as follows:

min
1
4N

‖Fw�y‖2

s:t: ∑L
i ¼ 1wi ¼ 1

�1o wio1

ð10Þ

Compared with Eq. (9), two constraints (∑wi ¼ 1 and
�1o wio1) are added in Eq. (10). In fact, we can show that Fw
is equivalent to an approximation of sgnðFwÞ based on two con-
straints. Because it is easy to make the range of Fnw with ∑wi ¼ 1
and �1o wio1, �1rFnwr1, where Fn expresses a set of all
predictive labels of a sample xn obtained by all individual classifiers,

Fn ¼ ½f n1;…; f nL�, additionally, F¼ FT1;…; FTN
h iT

. Therefore, Eq. (10) is

utilized to seek the optimal weight vector instead of Eq. (9), and an
approximated error Rn

enc is used instead of Renc , where Rn

enc ¼
‖Fw�y‖2=4N. Especially, Rn

enc is considered as the target function
of the optimization. From Eq. (10), it is obviously seen that ‖Fw�y‖2
represents the squared error between Fw and y. Thus a function S is
given to represent the mean squared error, S¼ ‖Fw�y‖2=N, and
minimizing Rn

enc is actually equal to minimizing S, as shown in the
follows:

min S
s:t: ∑L

i ¼ 1wi ¼ 1
�1o wio1

ð11Þ

Specifically, a weight vector w0 is introduced and adopted in
the function S, and then a special formula is made based on w0:

S¼ 1
N
‖Fw�y‖2 ¼ 1

N
‖Fw�yþFw0�Fw0‖2

¼ 1
N

‖Fw�Fw0‖2þ2 Fw�Fw0ð ÞT Fw0�yð Þ
h i

þ 1
N
‖Fw0�y‖2 ð12Þ

In Eq. (12), it is obvious that Fw0 denotes a set of predictive
labels of an ensemble with the weight vector w0 of individual
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classifiers. In fact, the weight vector w0 can be considered as the
initial weight vector of the proposed method here. On the one
hand, we give the weight vector w0 by artificial initialization, such

as w0 ¼ 1=L;…;1=L
� 	T . On the other hand, the weight vector w0

also comes from the weight vectors obtained by other ensemble
algorithms. But it is worth notice that the weight vector w0 must
satisfy for two constraints ∑w0i ¼ 1 and �1o w0io1, i¼ 1;…; L.
Similar to the function S, a function S0 is given based on w0 from
Eq. (12), S0 ¼ ‖Fw0�y‖2=N, and its value represents the mean
squared error between Fw0 and y. In other words, the value of S0
actually indicates the error rate of an ensemble with the weight
vector w0, naturally, which is independent of the weight vector w.
Consequently, an equation is gained by Eq. (12), shown as follows:

S¼ S0�ΦðwÞ ð13Þ

According to Eqs. (12) and (13), ΦðwÞ is given by the following
formula:

ΦðwÞ ¼ 1
N

�‖Fw�Fw0‖2�2 Fw�Fw0ð ÞT Fw0�yð Þ
h i

¼ 1
N

�wTFTFwþ2wTFTy�2w0
TFTyþw0

TFTFw0

� �
ð14Þ

In fact, the initial motivation of introducing a weight vector w0

is to seek a weight vector w, and it is made that an ensemble
equipped the weight vector w can obtain a lower classification
error than the weight vector w0. Therefore it is expected that ΦðwÞ
is more than zero. According to Eq. (13), it is easily seen that SoS0
is given when ΦðwÞ40, and S4S0 when ΦðwÞo0. Obviously, it
illustrates that the mean squared error gained based on w is
smaller than the one based on w0 when ΦðwÞ40. Similarly, it also
indicates that the error Rn

enc given byw will be lower than the error
Rn

0 given by w0 if ΦðwÞ40. Hence, maximizing the function ΦðwÞ
is crucial for seeking a better weight vector than the initial weight
vector w0. Then the process of minimizing the approximation
form Rn

enc is transformed into maximizing the function ΦðwÞ. As
follows, three different quadratic forms are respectively con-
structed to achieve the maximization of ΦðwÞ for gaining the
optimal weight vector w, and the detailed descriptions are shown
in following sections. The algorithms constructed based on the
three quadratic forms are named by QFWEC1, QFWEC2 and
QFWEC3 methods, respectively.

3.1. QFWEC1 method

According to the above analysis, it demonstrates that maximizing
the function ΦðwÞ is pivotal to seek an optimal weight vector w of
individual classifiers. Therefore, a quadratic form Q1ðvÞ is constructed
to represent the function ΦðwÞ, shown as follows:

Q1ðvÞ ¼ vTM1v¼ ∑
Lþ1

i ¼ 1
∑
Lþ1

j ¼ 1
mijvivj ð15Þ

where v is a vector with ðLþ1Þ � 1 and M1 is a matrix with
ðLþ1Þ � ðLþ1Þ. Specially, we give v1 ¼ 1, vkþ1 ¼wk(k¼ 1;…; L) and
a real symmetric matrix M1, shown as follows:

M1 ¼
1
N

w0
TFTFw0 � 2w0

TFTy yTF
FTy �FTF

" #
ð16Þ

Based on Eqs.(14)–(16), we obtain the following equation easily:

ΦðwÞ ¼Q1ðvÞ: ð17Þ

Thus the optimization problem is converted into maximizing the
quadratic form Q1ðvÞ

Q1ðvÞ ¼ vTM1v ¼ 1
w


 �T w0
TFTFw0 �2w0

TFTy
N

yTF
N

FTy
N �FTF

N

2
4

3
5 1

w


 �
ð18Þ

In particular, eigenvalue decomposition is employed to obtain
the optimal solution from the above formula, which is rewritten as

M1v¼ Q1ðvÞv: ð19Þ
According to Eq. (19), the optimal solution is actually equal to

the eigenvector corresponding to the largest eigenvalue of the
matrix M1. It is known that the eigenvector is satisfied for vTv¼ 1
in eigenvalue decomposition, and we can gain �1owio1 based
on vTv¼ 1 and vkþ1 ¼wk (k¼ 1;…; L), which illustrates that the
constraint �1owio1 of Eq. (10) is satisfied in Eq. (19). Never-
theless, the other equation is also given by vTv¼ 1 because of
v1 ¼ 1: 1þ∑L

i ¼ 1w
2
i ¼ 1, which indicates that ∑L

i ¼ 1w
2
i ¼ 0 is set up

in QFWEC1 method. Unfortunately, ∑L
i ¼ 1w

2
i ¼ 0 contradicts with a

constraint ∑L
i ¼ 1wi ¼ 0 of Eq. (10). It means that the optimal

weight vector gained by QFWEC1 method may satisfy only one
constraint (�1owio1) of Eq. (10), and QFWEC1 method neglects
the other constraint (∑L

i ¼ 1wi ¼ 1) in fact.

3.2. QFWEC2 method

According to Section 3.1, it illustrates that QFWEC1 method is
inadequate. Because a constraint of Eq. (10) is not satisfied in the
process of maximizing the quadratic form Q1ðvÞ. In order to
improve the QFWEC1 method, QFWEC2 method is introduced in
this part. In QFWEC2 method, a quadratic form Q2ðvÞ is given as
follows:

Q2ðvÞ ¼ vTM2v¼ σ

w


 �T w0
TFTFw0 �2w0

TFTy
Nσ2

yTF
Nσ

FTy
Nσ �FTF

N

2
4

3
5 σ

w


 �
; ð20Þ

where v¼ ½ σ wT �T , 0oσo1. In the quadratic form Q2ðvÞ, we
give v1 ¼ σ instead of v1 ¼ 1 of QFWEC1 method, and thus a
different symmetric matrix M2 is gained:

M2 ¼
1
N

w0
TFTFw0 �2w0

TFTy
σ2

yTF
σ

FTy
σ �FTF

2
4

3
5 ð21Þ

According to Eq. (20), it is obvious that ΦðwÞ ¼ Q2ðvÞ as well as
QFWEC1 method. Then the optimal weight vector of individual
classifiers is gained based on the following formula:

max vTM2v
s:t: σ2þ∑L

i ¼ 1w
2
i ¼ 1

ð22Þ

In fact, the maximization of Eq. (22) is also equivalent to
eigenvalue decomposition of the matrix M2 as similar as QFWEC1
method. The optimal solution is equal to the eigenvector corre-
sponding to the largest eigenvalue of M2 in QFWEC2 method. In
particular, when v1 ¼ σ (0oσo1), both ∑L

i ¼ 1wi ¼ 1 and
σ2þ∑L

i ¼ 1w
2
i ¼ 1 are potentially set up at the same time, and the

illustration about two constraint is shown in detail in Appendix A.

3.3. QFWEC3 method

From Section 3.2, QFWEC2 method has improved QFWEC1
method by giving v1 ¼ σ (0oσo1), and it also applies eigenvalue
decomposition of M2 to gain the optimal solution of Eq. (22).
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However, it is known that only one constraint (vTv¼ 1) needs to
be satisfied in eigenvalue decomposition essentially. It means that
only the constraint (�1owio1) is emphasized and utilized in
QFWEC2 method, and the constraint (∑L

i ¼ 1wi ¼ 1) is neglected.
Hence, in order to consider directly the constraint (∑wi ¼ 1) which
is not mentioned in optimization of QFWEC1 and QFWEC2, we add
∑wi ¼ 1 into Eq. (22) of QFWEC2, and then a new formula is given:

max vTM2v
s:t: σ2þ∑L

i ¼ 1w
2
i ¼ 1

∑L
i ¼ 1wi ¼ 1

ð23Þ

Specifically, Eq. (23) is recast into the below formula by adding a
regularization term:

max vTM2vþλðvT ê�1Þ
s:t: σ2þ∑L

i ¼ 1w
2
i ¼ 1

ð24Þ

where λ (λ40) is a constant that is given artificially, and e is a
vector with L� 1 in which each element is equal to 1, ê¼ ½0 e �T .
It is obvious that the term (vT ê�1) is viewed as the regularization
term in Eq. (24) and vT ê¼∑L

i ¼ 1wi. According to Eq. (24), Q3ðvÞ is
given by the below formula based on ΦðwÞ ¼Q3ðvÞ:

Q3ðvÞ ¼ vTM3v¼ σ

w


 �T w0
TFTFw0 �2w0

TFTy� λ
Nσ2

yTF
Nσ

FTyþ λe
Nσ �FTF

N

2
4

3
5 σ

w


 �
; ð25Þ

where v¼ ½ σ wT �T (0oσo1) , and the matrix M3 is shown:

M3 ¼
1
N

w0
TFTFw0 �2w0

TFTy� λ
σ2

yTF
σ

FTyþ λe
σ �FTF

2
4

3
5: ð26Þ

Similarly, an optimal weight vector w is sought based on
maximizing Q3ðvÞ, named by QFWEC3 method. Certainly, the
optimal solution of QFWEC3 method is also obtained by eigenva-
lue decomposition of M3 as well as QFWEC1 and QFWEC2
methods. Then the eigenvector corresponding to the largest
eigenvalue of M3 is equivalent to the optimal solution of QFWEC3
method. Finally, the detailed procedure of the proposed method is
shown in Algorithm 1.

Algorithm 1. Weighted classifiers ensemble based on quadratic
form (QFWEC method)

Input: A training set Xtrn with N samples, Xtrn ¼ ½x1;…; xN �T ,
xnAℝd (n¼ 1;…;N); y is a set of the true labels of training
samples, y¼ ½y1;…; yN �T ; a testing set Xtst with M samples without
true labels, Xtst ¼ ½x1;…; xM �T , xmAℝd (m¼ 1;…;M); L is the
number of individual classifiers; w0 is a given weight vector of
classifiers; two parameters of QFWEC, σ and λ.

Procedure:
for i¼ 1;…; L

1. Obtain a training subset Xi from Xtrn by an ensemble strategy;
2. Produce an individual classifier ℒi by a basic classifier algo-

rithm based on Xi;
3. Gain the predictive labels f i and fti by using ℒi to classify for

Xtrn and Xtst respectively, f iAℝN , fti AℝM;
end for

4. Give the set F of predictive labels, F¼ ½f1;…; fL�;
5. Compute the matrix M based on F, y, w0, σ and λ by Eqs. (16),

(21) or (25), and construct the quadratic form with the weight
vector of individual classifiers and the matrix M;

6. Obtain the optimal solution vopt by Eqs. (19), (22) or (24),
vopt ¼ ½vopt1;…; voptL�T ;

7. Compute the optimal weight vector wn based on vopt:
wn

i ¼ v1=vopt1
� �

voptðiþ1Þ (v1 ¼ 1 or σ);
8. Combine individual classifiers with the optimal vector wn:

fenc ¼ Fnwn;

Output: The final predictive label of a testing sample xm

obtained by a classifier ensemble:
HðxmÞ ¼ sgn ∑L

i ¼ 1f
t
miðxmÞnwn

i

� �
.

3.4. Computational complexity

In this section, we analyze and discuss the computational
complexity of the proposed methods. Normally, for an ensemble
system, its computational complexity is consisted of two parts.
One is corresponding to the process of producing individual
classifiers, and the other is corresponding to the process of
combining individual classifiers. Because QFWEC algorithms focus
on the latter, we give only the computational complexity about the
part of combining classifiers. We assume that the number of
training samples is N and the number of individual classifiers is
L, N4L. First, for the step 5 of Algorithm 1, the computational
complexity of computing the matrix M by Eqs. (16), (21) or (26) is
OðNL2þðLþ1Þ2Þ. Second, in the step 6, the complexity is equal
to the eigenvalue decomposition of the matrix M, OððLþ1Þ3Þ.
Finally, the complexity is OðLÞ in the step 7 and it is OðNLÞ in the
step 8. Thus the total computational complexity of the proposed
methods is OðNL2þðLþ1Þ3Þ in the part of combining individual
classifiers.

4. Experiments and analysis

In order to validate the classification performance of the
proposed method, three experiments are performed on an artifi-
cial dataset, UCI datasets [27] and PolSAR image [32], respectively.
The detailed descriptions of experimental datasets are shown in
the following parts. In this section, all algorithms are implemented
by Matlab R2010b and all numerical experiments are performed
on a desktop with HP dc7700 1.86 GHz Intel Core2, 2G memory
with Windows XP 32bit operation system.

In the proposed method, it emphasizes on how to combining
individual classifiers can obtain better classification performance,
rather than how to produce individual classifiers. Consequently, a
simple and classical ensemble strategy is employed to construct
the training sample subset of each individual in our experiments
and it is bagging strategy [2]. But it does not mean that the
proposed method is unsuitable for other ensemble strategies, such
as random subspace strategy [28], rotation forest [9] and so on. In
fact, there are two advantages for using a simple ensemble
strategy. First, a simple ensemble strategy is easily implemented
and can obtain less computation complexity and space than some
complicated strategies. Second, the performance of the proposed
method can be better and more fairly exhibited by using a simple
ensemble strategy. If a specified excellent ensemble strategy is
employed to obtain individual classifiers, the performance’s
improvement may be attributed to the application of that specified
excellent strategy. In our case, decision tree C4.5 [29] with back-
pruning is applied as the basic classifier models of ensemble for
artificial and UCI datasets, and SVM classifier [30] is used in the
experiment of PolSAR image classification. For each dataset,
the optimal parameters of basic classifier algorithms are given by
10-fold cross validation in experiments.

Furthermore, in order to elucidate the performance of the
proposed method, we compare the classification performance of
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the weighted classifier ensemble methods based on QFWEC1,
QFWEC2 and QFWEC3 with the following methods:

1. Single classifier algorithm: The original training sample set is
learned by a single classifier, and ‘C4.5’ or ‘SVM’ denotes a
single classifier algorithm in experimental results;

2. Simple vote rule (SV) [8,11]: It combines actually individual
classifiers with a weight vector in which all elements are same.
In our experiments, each element of the weight vector is
assigned to wi ¼ 1 (i¼ 1;…; L);

3. Weighted majority vote (WMV) [8]: It gains the weight coefficients
of individual classifiers based on the probability of correct classi-
fication for training samples obtained by each individual.

4. AdaBoost strategy [14]: It produces an individual based on samples
classified incorrectly in an iteration, and it computes the weight
coefficients of individuals according to their classification error.

5. Evolutionary Ensemble classifiers (EVEN) [17]: It gains the weight
coefficients of classifiers by genetic algorithm. In experiments,
the parameters of EVEN algorithm are crossover probability
(cp), mutation probability (mp) and selection probability (sp),
and the values of three parameters are cp¼ 0:8, mp¼ 0:01 and
sp¼ 0:19, respectively. Additionally, EVEN is run for 1000
generations with a population size of 250 in experiments.

6. Naive Bayes combination method (NBC) [8]: It gives a sample a pre-
dictive class label with the maximum probability obtained accord-
ing to the classification probability of each individual for each class.

7. Combining classifiers by using correspondence analysis (SCANN)
[39]: It applies the strategies of stacking and correspondence
analysis to model the relationship between the learning sam-
ples and their predictions from the combination of learned
models, and then the final prediction of a testing sample is
given by a nearest neighbor method.

In the proposed methods, the values of parameters σ and λ are
decided based on each dataset in our experiments. Generally, we

give σAf0:1;0:2;0:3g and λ¼ τnN, where τAf0:1;0:3g and N is the
number of training samples. Moreover, we set a weight vector w0

as the introduced weight vector of QFWEC algorithms, where
w0i ¼ 1=L (i¼ 1;…; L), and it is obvious that the weight vectorw0 is
satisfied for∑L

i ¼ 1w0i ¼ 1 and �1ow0io1. The reason of adopting
it is just that it is simple and fair to compare the proposed method
against other weight ensemble methods. Whereas, it does not
mean that other weight vectors are not utilized in the proposed
method. But notice that the used weight vector must be satisfied
for two constraints (∑L

i ¼ 1w0i ¼ 1 and �1ow0io1). In addition,
combining individual classifiers with w0 (w0i ¼ 1=L) is equivalent
to combine classifiers by simple vote rule strategy, because simple
vote rule strategy combines individual classifiers with same
coefficients. Thus the results of SV are equivalent to the results
of combining classifiers with w0 (w0i ¼ 1=L).

4.1. Experiments on an artificial dataset

Because the low dimension dataset can be visualized, we
employ initially an artificial dataset to make an experiment, and
this experimental artificial dataset belongs to the hyperbolic
distribution. In this experiment, 1000 training samples and 1000
testing samples are produced randomly, and their distributions are
respectively shown in Fig. 1. In Fig. 1, the red points indicate
positive samples and the blue points indicate negative samples.
For training and testing sets, the number of samples that belong to
each class is a half of all samples. In the experiment, C4.5 classifier
is applied as the basic classifier model and bagging strategy is
adopted to obtain training subset of each classifier.

In Table 1, it is shown that the mean and standard deviation of
error rates of classification gained by nine ensemble algorithms,
which are the results of 50 times ensemble with 20 individual
classifiers. From the results, it is seen that QFWEC2 and QFWEC3
obtain the lowest error rates of classification for both training and
testing sets compared against other algorithms, and only NBC and

Fig. 1. Distributions of training set and testing set of Hyperbola Dataset. (a) Training set and (b) testing set. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

Table 1
Error rates (%) obtained by eight algorithms for Hyperbola Dataset.

Methods SV WMV AdaBoost NBC EVEN SCANN QFWEC1 QFWEC2 QFWEC3

Training 27.7876.47 27.6075.54 27.8075.31 18.8374.21 26.4576.04 18.9574.29 38.4777.69 16.9972.13 16.9872.13
Testing 29.2276.63 29.0075.33 29.1075.22 20.4273.98 27.7075.89 20.6774.08 38.5477.43 18.8771.87 18.8371.88
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SCANN obtain the better performance in all compared algorithms.
It indicates that the weight vector obtained by the proposed
method represents effects of individual classifiers better than
other algorithms. Statistically speaking, the boxplots are shown
in Fig. 2 in order to show the performance of nine algorithms. The
horizontal-axis expresses the ensemble algorithm and the
vertical-axis expresses the error rate of classification. In Fig. 2
(a) and (b) are results of the training set and the testing set,
respectively. From the results, it illustrates obviously that the
proposed methods obtain the best performance in all methods.

Because the artificial dataset has only two dimensions, the
distribution of samples is easily shown by a two-dimensional
picture. Hence, we give distribution diagrams of the testing set
with predictive labels obtained by nine algorithms in one ensem-
ble, shown in Fig. 3. In particular, the misclassified samples are
labeled in cyan. In Fig. 3, it is easily found that the points classified
incorrectly by QFWEC2 and QFWEC3 are less than other algo-
rithms. In addition, the error rates obtained by nine algorithms are
23.8% (SV), 32.6% (WMV), 32.6% (AdaBoost), 21.1% (NBC), 21.8%
(EVEN), 23% (SCANN), 38.6% (QFWEC1), 16.8% (QFWEC2) and 16.8%
(QFWEC3) in this ensemble, respectively. In summary, it demon-
strates that the proposed methods are superior to other algorithms
in the classification performance for the hyperbola dataset accord-
ing to all experimental results.

However, it is found that QFWEC1 obtains the worse perfor-
mance than others from the results. By the analysis of the
experimental results, it is the reason that some classifiers with
the poor performance are given higher weight coefficients by
QFWEC1. In addition, the sums of weight vectors obtained by three
proposed methods are shown in Fig. 4, and Fig. 4 shows the results
of 10 times ensemble. The horizontal-axis expresses each ensem-
ble and the vertical-axis expresses the sum of the weight vector

obtained by QFWEC algorithms in each ensemble. From the
results, it is obviously seen that QFWEC1 gains the large sum of
weight coefficients and the sum is far greater than one. But the
sums of weight vectors obtained by both QFWEC2 and QFWEC3
are almost close to 1, which indicates that two constraints
(�1rwir1 and ∑wi ¼ 1) are satisfied by QFWEC2 and QFWEC3.
Thus QFWEC2 and QFWEC3 make the better performance than
QFWEC1.

4.2. Experiments on UCI datasets

In this section, we use 16 UCI datasets in our experiment and
the detailed descriptions of the datasets are shown in Table 2.
Table 2 presents some attributes of 16 UCI datasets, where N is the
sample number of a dataset, Feature is the feature number of a
dataset, and class is the class number of a dataset. In this
experiment, C4.5 classifier is used as the basic classifier model
and bagging is employed to obtain the training subsets, as similar
as Section 4.1. In Tables 2, ‘C4.5’ indicates the error rate of
classification of each dataset gained by a single C4.5 classifier
based on 10-fold cross validation. In addition, we implement the
experiments with 20, 50 and 200 individual classifiers ensemble,
and the experimental results are shown in Tables 3–5, respectively.
Because the proposed methods are introduced for the classifica-
tion problem with two classes, we employ the one-against-one
rule [31] to deal with the multiclass datasets.

4.2.1. Classification performance
In this section, the experimental results of 16 UCI datasets are

averaged over 10-fold cross validation performed 10 times. Table 3
shows the experimental results of ensemble 20 classifiers by the
proposed methods and several compared ensemble algorithms,
Table 4 shows the results of ensemble 50 classifiers, and Table 5
shows the results of ensemble 200 individuals. The result of each
dataset is shown by the mean and standard deviation of classifica-
tion error rates (%) on the test sets. In tables, QFWEC1, QFWEC2
and QFWEC3 are three proposed algorithms, respectively, and SV,
WMV, AdaBoost, NBC, EVEN and SCANN are six comparing
ensemble algorithms. Additionally, a result is bolded in each
column of the table when it is the lowest error rate in results of
nine algorithms.

From the results of Tables 3–5, it is seen easily that QFWEC2
and QFWEC3 outperform other ensemble algorithms at the classi-
fication performance, and they can gain the lowest error rate for
most datasets in 16 datasets. In detail, it is found that the proposed
methods gain the lowest error rate for 10, 12 and 14 datasets for
combining 20, 50 and 200 individual classifiers, respectively. In
Table 3, we see that the comparing algorithms WMV, AdaBoost
and NBC are respectively superior to the proposed method only on
one datasets, and only SCANN algorithm outperforms for two
datasets. Unfortunately, SV and EVEN algorithms are inferior to the
proposed methods for all datasets. Similarly to Table 3, the results
of Table 4 show that AdaBoost, EVEN and SCANN algorithm
outperform for only one datasets, respectively, and none of SV,
WMV and NBC algorithms win for any datasets. For Table 5, only
AdaBoost and SCANN gains two better results than the proposed
method, and other algorithms are inferior to our method. In short,
according to the experimental results of classification error, it
illustrates the proposed method which obtains the optimal weight
vector of individual classifiers based on minimizing the ensemble
error can improve effectively the classification performance of an
ensemble than other ensemble algorithms. Specially, it also
indicates that our methods performed a better performance when
more individuals are combined in an ensemble system according
to all results shown in three tables. In addition, the average values

Fig. 2. Error rates of classification obtained by nine ensemble algorithms.
(a) Training set and (b) testing set.
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of error rates of 16 datasets obtained by nine algorithms are
shown in Fig. 5. From Fig. 5, it is also obvious that QFWEC2 and
QFWEC3 gain the lowest errors compared with other methods.

In order to demonstrate statistically the performance of nine
algorithms, we use the t-test method to make a comparison with
the proposed methods and others. In Table 6, it is shown that the
win/tie/loss results based on t-test, computed at the 5% signifi-
cance level. According to the results, we find that QFWEC2 exceeds
SV, WMV, AdaBoost, NBC, EVEN and SCANN on 14, 14, 12, 14, 14
and 9 datasets, respectively, and QFWEC3 exceeds SV, WMV,
AdaBoost, NBC, EVEN and SCANN on 13, 15, 12, 13, 14 and
9 datasets, respectively. Hence, the results demonstrate that our
algorithms are superior to other compared algorithms.

In Tables 3–5, they show only the mean and standard deviation
of error rates of 10 times ensemble. Hence, in order to show
statistically the results of the proposed method, Fig. 6 shows the
boxplot diagrams of error rates of 10 times ensemble with 200
individuals obtained by nine algorithms for eight datasets, and
eight datasets are Australian, Breast, Dna, Glass, Heart, Liver, Pima
and Wdbc, respectively. In Fig. 6, the horizontal-axis expresses the
ensemble algorithm and the vertical-axis is the error rate of
classification. From the results of Fig. 6, it is obviously seen that
the boxplots of QFWEC2 and QFWEC3 are located below other
methods, which indicates the proposed methods outperform

Fig. 3. Classification results of nine ensemble algorithms for Hyperbola Dataset in one ensemble. (a) SV, (b) WMV, (c) AdaBoost, (d) NBC, (e) EVEN, (f) SCANN, (g) QFWEC1,
(h) QFWEC2, and (i) QFWEC3. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 4. Sum of weight vectors obtained by three proposed methods.
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others. According to the points of both minimum and median of
error rates, it illustrates that QFWEC2 or QFWEC3 has the lowest
error rate in nine methods. In brief, it demonstrates the proposed

method can obtain the better classification performance compared
with other algorithms according to all experimental results of
classification performance.

4.2.2. Weight vector of individual classifiers
In order to illustrate visually the performance of the proposed

method, we make an experiment to observe the weight vector
obtained by several ensemble methods. In this experiment, we use
breast, heart and pima datasets as the observation datasets.
Because the training and testing sets are changed in each group
in 10-fold cross validation, it is difficult to decide that the result of
which group is selected to show. Consequently, the training set
and the testing set are separated with a half of all samples for each
dataset in this experiment. The parameters of all algorithms are
similar to the previous experiments, and the number of individual
classifiers is 20.

In Fig. 7, it shows weight coefficients of individual classifiers
obtained by five algorithms for three datasets in one ensemble,
respectively. In (a)–(c) of Fig. 7, the left-upper sub-graph is the
accuracy rate obtained by each individual classifier for training
samples, and the rest of sub-graphs are the weight vectors
obtained by WMV, EVEN and three QFWEC algorithms, respec-
tively. From Fig. 7, it is seen that the left-upper sub-graphs which

Table 3
Error rates (%) of classification on test sets of 16 UCI datasets by 20 classifiers ensemble.

Datasets SV WMV AdaBoost NBC EVEN SCANN QFWEC1 QFWEC2 QFWEC3

Air 16.9471.05 16.3770.92 8.7370.67 16.2171.24 17.3671.18 16.2471.30 16.7871.09 13.2170.92 13.4671.14
Australian 15.8470.31 15.2470.32 15.2470.50 15.0670.33 15.3470.53 15.1070.44 15.0970.38 15.0170.36 15.0370.30
Breast 30.5670.91 30.0470.93 30.1571.06 32.1171.18 29.7070.97 29.5971.46 30.2671.21 28.3071.17 27.9671.60
Dna 7.1170.08 7.1170.08 9.7870.21 7.1170.10 7.1470.11 7.1570.07 7.1370.06 6.0070.25 5.9870.25
Glass 34.7871.51 35.9471.46 34.2272.39 37.5071.96 35.5072.30 41.2875.49 36.7271.54 34.0072.17 34.1772.08
Heart 23.3070.95 22.5970.91 23.0471.28 22.6770.90 22.0070.93 21.5970.94 22.7071.00 20.9371.34 20.8171.37
HeartC 21.0771.88 20.3871.44 21.6971.84 20.6271.26 20.3471.50 19.9771.42 20.3871.71 20.3471.79 20.2471.21
Ionosphere 6.8270.43 6.5670.28 6.4770.34 6.5670.48 6.5970.35 6.5670.31 6.5970.28 6.4470.32 6.3870.31
Iris 3.9370.66 3.4770.28 4.6070.21 3.8070.45 4.1370.69 3.8770.61 3.7370.47 3.6070.47 3.6070.47
Liver 38.1870.27 38.0370.14 37.8570.39 37.7970.35 37.9770.22 35.9770.57 38.0370.24 37.8270.32 37.2470.35
Pima 27.2170.42 26.5570.43 26.6170.30 25.8270.44 26.7670.31 25.7170.32 26.8770.52 25.6270.45 25.6270.43
Sonar 30.0071.00 28.2571.36 28.5571.54 27.7071.78 27.8070.95 27.9071.52 28.2571.59 27.3571.13 27.3571.29
Vehicle 29.1170.63 29.1270.64 28.6170.49 29.1370.59 29.2870.70 29.1270.62 29.2970.53 28.6070.69 28.5970.65
Vote 4.5270.00 4.5270.00 4.5270.00 4.5270.00 4.5270.00 4.5270.00 4.5270.00 4.5270.00 4.5270.00
Wdbc 7.3970.41 7.0770.46 7.4870.30 7.2370.27 7.0070.38 7.0470.33 7.1470.42 6.8470.40 7.0070.43
Wine 9.0672.38 10.8171.06 8.3172.78 7.5671.04 8.8172.37 8.6972.13 8.8172.27 8.8771.17 8.8771.17

Note that the result is shown by (A7B), A and B express the mean of classification error rate (%) and the standard deviation of classification error rate (%) on the test set of
each dataset, respectively.

Table 4
Error rates (%) of classification on test sets of 16 UCI datasets by 50 classifiers ensemble.

Datasets SV WMV AdaBoost NBC EVEN SCANN QFWEC1 QFWEC2 QFWEC3

Air 16.7870.85 16.1470.82 7.9670.46 15.8870.73 16.8570.60 15.8170.79 16.8070.79 11.4570.75 11.8070.73
Australian 15.9070.47 15.5470.49 15.5670.32 15.6870.46 15.5170.42 15.5770.46 15.5470.43 14.9070.67 14.9370.71
Breast 30.4070.76 30.1570.78 29.8171.47 31.0770.44 30.2671.10 30.3370.96 30.3070.90 28.6771.06 28.0770.85
Dna 7.0770.03 7.0770.03 9.7370.23 7.0770.03 7.0870.04 7.0470.04 7.0870.03 5.8170.20 5.8170.20
Glass 33.2271.30 32.9471.14 36.5070.95 34.9471.77 33.3971.00 35.6171.15 33.4471.25 32.3971.36 32.3371.41
Heart 21.9070.41 21.8170.48 21.8970.69 21.7070.63 21.6370.43 20.8970.68 22.1170.61 20.1971.52 19.8571.65
HeartC 20.8070.89 20.4871.06 21.3470.90 20.4571.35 20.1071.12 20.8671.93 20.5270.88 18.9371.48 19.1071.02
Ionosphere 6.4770.34 6.3870.24 6.3270.21 6.2670.31 6.4470.35 6.3570.32 6.4170.27 6.1870.28 6.1570.32
Iris 3.7370.56 3.6770.57 4.6770.00 4.1370.53 3.8070.55 3.7370.56 3.8070.71 3.3370.00 3.3370.00
Liver 38.2070.24 38.0670.21 38.0370.14 37.7970.49 38.0370.20 36.1570.45 38.0370.24 37.6570.24 37.7470.24
Pima 27.1070.34 26.6770.35 26.7270.40 25.6670.16 26.9970.25 25.3970.42 27.0070.40 25.1670.40 25.0570.36
Sonar 29.5070.85 29.1570.91 29.8571.31 29.1571.03 28.1571.03 28.5070.78 28.7571.27 28.4571.77 28.2071.14
Vehicle 29.0470.70 29.0170.74 28.1170.49 29.2070.81 29.0570.44 29.0070.61 29.0570.88 28.0170.88 27.9770.82
Vote 4.5270.00 4.5270.00 4.5570.08 4.5270.00 4.5270.00 4.5270.00 4.5270.00 4.5270.00 4.5070.00
Wdbc 7.7370.49 7.5770.53 7.6670.34 7.7970.36 7.6670.43 7.54770.43 7.5770.49 7.0770.36 7.0970.38
Wine 8.1971.49 11.3171.27 8.4472.72 10.1971.29 7.5070.88 8.0671.60 8.0071.55 7.5071.02 7.5571.02

Note that the result is shown by (A7B), A and B express the mean of classification error rate (%) and the standard deviation of classification error rate (%) on the test set of
each dataset, respectively.

Table 2
Descriptions of UCI datasets used in experiments.

Datasets N Feature Class Error rate (%)
C4.5

Air 1089 64 3 17.17
Australian 690 14 2 16.91
Breast 699 9 2 31.48
Dna 3186 180 3 9.81
Glass 214 9 7 40.00
Heart 270 13 2 23.70
HeartC 303 13 2 24.14
Ionosphere 351 32 2 6.18
Iris 150 4 3 4.67
Liver 345 6 2 38.24
Pima 768 8 2 27.37
Sonar 208 60 2 30.50
Vehicle 864 18 4 33.17
Vote 435 16 2 4.52
Wdbc 569 30 2 7.68
Wine 178 13 3 10.00
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Fig. 5. Average of classification error rates (%) on 16 UCI datasets by ten algorithms.

Table 6
Win/tie/loss counts of nine combination rules with 200 individuals based on t-test.

Methods SV WMV AdaBoost NBC EVEN SCANN QFWEC1 QFWEC2 QFWEC3

SV – – – – – – – – –

WMV 4/10/2 – – – – – – – –

AdaBoost 3/7/6 3/8/5 – – – – – – –

NBC 4/7/5 2/10/4 5/5/6 – – – – – –

EVEN 2/13/1 2/10/4 6/7/3 6/6/4 – – – – –

SCANN 7/8/1 7/6/3 8/4/4 8/7/1 6/7/3 – – – –

QFWEC1 2/12/2 1/11/4 7/5/4 5/6/5 1/11/4 1/7/8 – – –

QFWEC2 14/1/1 14/2/0 12/3/1 14/2/0 14/1/1 9/6/1 14/1/1 – –

QFWEC3 13/2/1 15/1/0 12/3/1 13/3/0 14/1/1 9/6/1 14/1/1 1/12/3 –

Table 5
Error rates (%) of classification on test sets of 16 UCI datasets by 200 classifiers ensemble.

Datasets SV WMV AdaBoost NBC EVEN SCANN QFWEC1 QFWEC2 QFWEC3

Air 16.4470.43 15.7070.42 7.6470.46 15.3370.47 16.4070.52 15.1270.43 16.3870.42 8.8270.39 9.1770.48
Australian 15.6670.37 15.5770.34 15.5470.29 15.7270.40 15.6970.44 15.4170.28 15.5770.36 14.9070.72 14.8570.56
Breast 29.6770.62 29.6370.70 29.7871.04 31.0770.44 29.3370.78 30.0470.51 30.0470.48 28.0070.61 28.0070.74
Dna 7.1570.02 7.1570.02 9.7170.09 7.1570.02 7.1670.02 7.1370.03 7.1570.02 5.2870.10 5.2770.12
Glass 33.8971.05 33.8371.18 35.1170.35 37.6771.83 33.6770.84 38.2272.01 33.7871.01 31.6771.01 31.6770.98
Heart 21.8170.48 21.8970.41 21.7470.50 21.8570.60 21.7470.63 20.3370.66 22.0070.40 19.9670.71 19.6371.05
HeartC 19.3870.72 20.4870.54 21.5972.16 19.6970.77 18.9070.67 19.5971.85 20.3170.57 18.4870.92 19.1770.98
Ionosphere 6.3870.14 6.3570.15 6.4770.20 6.0370.21 6.3570.21 6.3270.16 6.3570.15 6.0370.16 6.0670.21
Iris 3.8070.55 3.3370.00 4.6770.00 4.2070.32 3.7370.56 4.0770.66 3.8070.55 3.3370.00 3.3370.00
Liver 37.9470.00 37.9470.00 37.9470.00 37.7670.46 37.9770.09 36.5070.61 37.9470.00 36.3870.28 36.5070.26
Pima 26.8770.22 26.5370.26 26.5470.26 25.6670.16 26.8070.22 25.2470.28 26.9670.25 24.4770.63 24.3070.47
Sonar 29.3070.42 29.2070.82 29.7570.82 29.3071.48 28.9070.77 27.6570.82 29.1570.78 27.6071.02 27.0571.26
Vehicle 29.2770.31 29.1270.36 28.0670.34 29.2070.51 28.9870.45 29.0970.23 29.0570.53 28.0270.81 28.1270.65
Vote 4.5270.00 4.5270.00 4.5270.00 4.5270.00 4.5270.00 4.5270.00 4.5270.00 4.5270.00 4.4870.15
Wdbc 7.8070.28 7.7770.27 7.7770.19 7.6270.28 7.8470.23 7.7170.18 7.77770.27 7.1270.46 7.0570.48
Wine 7.0670.51 11.3871.38 8.3871.56 13.3770.60 7.0070.40 6.9470.46 7.0070.57 7.9470.30 7.8170.44

Note that the result is shown by (A7B), A and B express the mean of classification error rate (%) and the standard deviation of classification error rate (%) on the test set of
each dataset, respectively.
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Fig. 6. Error rates of classification obtained by nine ensemble algorithms combining 200 individuals for eight UCI datasets.
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Fig. 7. The curves of weight coefficients of individual classifiers obtained by six algorithms. (a) Breast dataset, (b) Heart dataset, and (c) Pima dataset.
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are the curves of accuracy rates of the training set are almost the
same as the curves of weight coefficients given by WMV algorithm
for three datasets. It is the reason that WMV algorithm obtains the
weight coefficient of each classifier based on the classification
performance of each classifier. Specially, the curve of QFWEC3 is
similar to QFWEC2, and only just there are difference in size of
coefficients. Thus we focus on the analysis of experimental results
of QFWEC2 algorithm in the following parts. In Fig. 7(a), we find
that two classifiers (3rd and 7th) are given weight coefficients
close to zero value in QFWEC2. In particular, the 3rd and 7th
classifiers obtained the worse performance than others according
to the curve of accuracy rate. But other methods do not give
special values to the 3rd and 7th classifiers. It indicates that
QFWEC2 obtains the weight vector which represents better the
effects of individual classifiers for the ensemble performance
compared against others. On the other hand, it also illustrates
that QFWEC2 and QFWEC3 obtain the lowest error according to
the shown error rate of each method in Table 7. In Fig. 7(b), we
find easily that three classifiers are also given weight coefficients
close to zero value by QFWEC2, but it is different from Fig. 7(a).
From the curve of accuracy rate of Fig. 7(b), it is found that three
classifiers (7th, 12th and 16th) have same accuracy rates as other
classifiers (6th, 5th and 15th), respectively, which indicates that
the diversity among classifiers is boosted by giving zero-
coefficients to some similar classifiers in the proposed methods,
and some classifiers are given negative coefficients in QFWEC2 in
addition. Similar to Fig. 7(a), it is seen in Fig. 7(c) that some
classifiers with the worse performance are given near-zero coeffi-
cients in the proposed methods. In summary, the results of the
curves of weight vectors illustrate that the proposed methods
obtain the weight coefficients which show the effects of classifiers

for improving the ensemble performance better and enhance the
diversity among classifiers.

Moreover, we give the error rates obtained by five methods for
three datasets in this experiment, shown in Table 7. From the
results of error rates, it is easily found that the proposed methods
gain the better performance based on the weight vectors shown in
Fig. 7 than other algorithms. Notice that AdaBoost, NBC and SCANN
methods are not shown in this experiment. Because individual
classifiers produced by AdaBoost method are different from these
classifiers shown in Fig. 7, NBC method obtains the weight
coefficients of individual classifiers based on the predictive labels
of each sample obtained by individual classifiers, which indicates
that the weight coefficients gained by NBC method are different for
different samples, similarly, and SCANN method obtains the pre-
dictive result of an ensemble based on every sample.

4.2.3. Performance analysis of QFWEC method based on different
initial weight vector

In the proposed method, the function S is equal to the
difference between S0 and a function FðwÞ by introducing a given
weight vector w0, detailedly shown in Eqs. (12)–(14), where w0 is

Fig. 7. (continued)

Table 7
Error rates (%) of classification by five ensemble methods.

Methods WMV EVEN QFWEC1 QFWEC2 QFWEC3

Breast 29.71 28.26 29.71 26.81 26.81
Heart 27.41 25.93 27.41 22.96 22.96
Pima 28.13 28.39 28.91 26.56 26.56
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considered as the initial weight vector of QFWEC method. In
particular, this initial weight vector w0 can be given by artificial
initialization with w0 ¼ ½1=L;…;1=L�T , random initialization or the
weight vector obtained by one kind of ensemble algorithms in our
experiments. Hence, in order to verify the effectiveness of QFWEC
method for other weight vectors, we implement an experiment
that 16 UCI datasets are classified by QFWEC method with three
different weight vectors in this section, where three weight
vectors are gained by two weighted ensemble methods (WMV
and EVEN algorithms) and produced randomly, respectively. The
experimental results are shown as follows, and all results are
averaged over 10-fold cross validation performed 10 times ensem-
ble, where the number of individual classifiers is 50.

In this experiment, it is noteworthy that the used weight vector
w0 must be satisfied for two constraints (∑L

i ¼ 1wi ¼ 1 and
�1owio1) . Therefore, in order to ensure that three weight
vectors are bound to satisfy two constraints, we make a simple
process for weight vectors: w0i ¼w0i

n=∑L
i ¼ 1w0i

n, where w0i
n

expresses the weight coefficient of ith individual classifier in three
given weight vectors. In fact, this process does not affect the
performance of combining individual classifiers with the weight
vectors obtained by WMV and EVEN and the randomly produced
weight vector, because an ensemble with the weight vector w0 is
equivalent to one with w0

n.
Table 8 shows the classification errors gained by QFWEC

algorithms with the three different initial weight vectors for the
testing set, shown by (mean (%)7standard deviation (%)) of the
error rate, where ‘RW’ expresses the method of combining
individual classifiers with a randomly produced weight vector. If
the proposed methods outperform the compared method (WMV,
EVEN or RW), its results are bolded and vice versa. From the
experimental results of Table 8, it is visibly seen that QFWEC2 and
QFWEC3 algorithms can obtain lower error than the compared
methods when three different weight vectors are respectively
employed as QFWEC method’s input (the initial weight vector w0).
It illustrates that QFWEC method improve effectively the perfor-
mance of an ensemble corresponding to the initial weight vector
w0, whatever this weight vector is given randomly or gained by
other ensemble methods. In fact, we also find that the proposed
methods are superior to SV algorithm corresponding to the weight
vector (w0 ¼ ½1=L;…;1=L�T ) according to the results of Section
4.2.1. In summary, according to results of Tables 3–5 and 8, it
demonstrates that QFWEC method can increase the performance
of other ensemble algorithms corresponding to its initial weight
vector w0 by maximizing the quadratic form.

4.2.4. Analysis of parameters σ and λ
In QFWEC algorithms, there are two important parameters

(σ and λ). Thus, an experiment about using different parameters is
implemented in this section. In the experiment, two datasets
(Breast and Heart) are classified by QFWEC2 and QFWEC3 with
different parameters. The parameter σ is given {0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9} and τ is {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, λ¼ τN,
where N is the number of training samples of a dataset. All results
of various parameters are shown in Fig. 8. In Fig. 8, two left figures
express the trend of accuracy rates of classification obtained by
QFWEC2 over different values of σ, and the right ones express the
results obtained by QFWEC3 with different values of σ and τ.
Specially, each line is the trend based on a value of τ in right
figures, and each value of τ is marked near to each line.

From the results of Fig. 8, it is seen that there is a slight
fluctuation of performance based on the values of σ (0.3–0.9) for
breast dataset and (0.1–0.9) for heart dataset for QFWEC2, and
even the discrepancy is less than 0.004. But the curve of breast
dataset indicates that its accuracy rate is increased when the value Ta
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of σ becomes larger, on the contrary, the curve of heart dataset
indicates that its accuracy rate is decreased when the value of σ
becomes larger. The results of heart dataset illustrates obviously
that when the value of σ exceeds the upper bound of σ in the
analysis of Appendix A, Eq. (28) has not a feasible solution, and
thus its accuracy rate is decreased when σ becomes large. Note
that QFWEC2 algorithm degenerates to QFWEC1 algorithm when
σ ¼ 1. For QFWEC3 algorithm, the curves of breast and heart

datasets indicate that the performance corresponding to τ¼ 0:1,
0.2 or 0.3 is more stable and better than τ¼ 0:4, 0.5 and 0.6, and
the performance is reduced when the value of τ becomes larger. In
summary, there is a little difference in the error rates of QFWEC2
method while changing the value of the parameter σ. Never-
theless, as increasing the values of the parameter σ and λ, the
difference in the error rates of QFWEC3 is larger than that of
QFWEC2. Furthermore, QFWEC3 may obtain the more stable and
higher accuracy rate when the values of τ are 0.1, 0.2, and 0.3.

4.3. Experiments on PolSAR data

Synthetic aperture radar (SAR) imaging [32] is a well-
developed coherent and microwave remote sensing technique
for providing large-scaled two-dimensional (2D) high spatial
resolution images of the Earth’s surface reflectivity. The first fully
polarimetric radar system was the L-band AIRSAR [32] which was
started in 1980s by the Jet Propulsion Laboratory. Polarimetric SAR
(PolSAR) [32,33,34] implements the polarization measurement
and obtains more abundant information of targets. Recently,
PolSAR image classification [32,35,36] has been an important
research for SAR image processing. Hence, the NASA/JPL AIRSAR
L-band data of San Francisco2 is experimented as a real data in
order to illustrate the performance of QFWEC algorithms, and its
original image is shown in Fig. 9. The original data is four-look data
with 900�1024, and three classes are considered in our experi-
ments, including ocean, forest and city. Ocean areas are shown by
blue, forest areas are shown by green and the rests are city areas.

Fig. 8. Diagrams of accuracy rates obtained by QFWEC2 and QFWEC3 with different parameters.

Fig. 9. NASA/JPL PolSAR image of San Francisco and entropy H [33], respectively,
shown in Table 9. Thus a pixel with ten features is considered as a sample of the
classification of PolSAR image in our experiment. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this
article.)

2 http://earth.eo.esa.int/polsarpro/default.html.
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Fig. 10. Classification results obtained by seven ensemble algorithms for Zone 1 (134�237). (a) Original image, (b) SV, (c) WMV, (d) NBC, (e) EVEN, (f) SCANN, (g) QFWEC1,
(h) QFWEC2, and (i) QFWEC3. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 11. Classification results obtained by seven ensemble algorithms for Zone 2 (122�95). (a) Original image, (b) SV, (c) WMV, (d) NBC, (e) EVEN, (f) SCANN, (g) QFWEC1,
(h) QFWEC2, and (i) QFWEC3. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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In this experiment, we choose 3000 pixels from original image
data randomly, and each class has 1000 pixels. For PolSAR data, a
pixel is represented by a coherency matrix T [32,34]. Then two areas
(Zone 1 and Zone 2) are selected from NASA/JPL PolSAR image as two
test sets in the experiment, labeled in a black box in Fig. 9. The sizes
of Zone 1 and Zone 2 are 134�237 and 122�95, respectively, and
their original images are shown in Fig. 10(a) and Fig. 11(a). In order to
cover more information of PolSAR data, we used ten features for each
pixel. Ten features are three diagonal elements of the coherency
matrix T , the real parts of the three complex upper triangular
elements of the coherency matrix T , three eigenvalues of the
coherency matrix T and entropy H [33], respectively, shown in
Table 9. Thus a pixel with ten features is considered as a sample of
the classification of PolSAR image in our experiment.

In experiments, SVM classifier is employed as a basic classifier
model. For SVM, the RBF kernel function is applied with the kernel
parameter (p¼ 0:5) and the penalty factor applies to C ¼ Inf . In
order to reduce the training computational complexity of indivi-
dual classifiers, the training subset of each individual classifier
contains 300 samples which are selected randomly from original
training samples, and the number of samples that belong to each
class is 100, respectively. In addition, the number of individual
classifiers is 15. In particular, AdaBoost algorithm is not experi-
mented in this section, because all training samples (3000 sam-
ples) are learned by a SVM classifier at first iteration when
AdaBoost algorithm is executed, and it means that AdaBoost
algorithm has very high computational complexity compared
against other methods. As follows, the results of classification for
Zones 1 and 2 are shown in Figs. 10 and 11.

In Fig. 10 and Fig. 11, (b)–(i) denote the classification results of
SV, WMV, NBC, EVEN, SCANN, QFWEC1, QFWEC2 and QFWEC3,
respectively. In figures, the samples belonged to the ocean area are
shown in blue, the samples belonged to the forest area are shown
in green and the ones belonged to the city area are shown in red.
From Fig. 10, it is seen that QFWEC2 and QFWEC3 algorithms
obtain better classification results than other algorithms. Espe-
cially, less samples located on the boundary of ocean and forest (or
ocean and city) are misclassified to city by the proposed methods
than others. In Fig. 11, it shows the classification results concen-
trating on two classes (forest and city). According to the results, it
is obvious that QFWEC2 and QFWEC3 algorithms gain larger areas
of forest, but other methods gain only a boundary of forest and
misclassify a lot of samples belonged to forest areas into city areas.
In addition, it is found that some samples are misclassified into
ocean according to results of Fig. 11, because we still employ all
training samples with three classes to classify for Zone 2.

5. Conclusions

In this paper, in order to avoid the dilemma problem generated by
constructing an ensemble algorithm based on diversity and accuracy,
a general form of the ensemble error is utilized to seek an optimal
weight vector of classifiers. Nevertheless, it is difficult to perform the
minimization of the general form of the ensemble error, directly.
Hence, the general form of the ensemble error is replaced by an
approximation form of the ensemble error with two constraints.
Moreover, by introducing a weight vector, the approximation form is
decomposed into two parts: a quadratic form and an error term

based on the introduced weight vector. Consequently, we propose a
new method to combine classifiers with an optimal weight vector
acquired by maximizing three different quadratic forms. Particularly,
a quadratic form is given from the approximation form based on the
introduced weight vector. According to the theoretical analysis, when
the value of the quadratic form is larger than zero, the ensemble
error gained by the weight vector corresponding to it is lower than
the one given by the introduced weight vector. Furthermore, the
experimental results demonstrate that QFWEC algorithms improve
the ensemble performance compared against other combination
methods. It is desired that QFWEC3 is superior to QFWEC2, whereas
we find that QFWEC3 almost ties QFWEC2 from our experimental
results. Therefore we will apply other methods to solve Eq. (23) in
our further work. The experimental results also illustrate our method
increases the classification performance based on different initial
weight vectors, thus we will expand this method into selective
ensemble or sparse ensemble. In addition, we will consider how to
seek the optimal weight vector directly from multi-class problems
and extend the proposed method in regression.
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Appendix A. The illustration of two constraint constraint

Based on two constraints ∑L
i ¼ 1wi ¼ 1 and σ2þ∑L

i ¼ 1 wi
2 ¼ 1,

we give the illustration about the range of the parameter σ, on
which there is a solution at least to satisfy two constraint mean-
while. Firstly, we give an analysis for L¼ 2, and then two
constraints are shown when L¼ 2:

w1þw2 ¼ 1
w1

2þw2
2 ¼ 1�σ2

(
ð27Þ

In fact, it is easy to gain the range of σ by Eq. (27). Based on Eq.
(27), the range is equal to 0rσr

ffiffiffi
2

p
=2� 0:7071, and it means

that Eq. (27) has the feasible solution when 0rσr0:7071. As
follows, we give the pictures corresponding to the maximum of σ,
the minimum of σ and no solution of Eq.(27) in Fig. 12. In Fig. 12,
the red curve denotes a quarter of the circle about w1

2þw2
2 ¼

1�σ2, the blue line denotes the line segment about w1þw2 ¼ 1,
and the black dotted line expresses the radius (r) of the circle.
From Fig. 12, it is obvious that Eq.(27) has two feasible solutions
when 0rσr0:7071 (shown in Fig. 12(a)), Eq.(27) has only one
solution when σ ¼ 0:7071 (shown in Fig. 12(b)), and there is no
solution for Eq.(27) when 0:7071oσo1 ( shown in Fig. 12(c)).

For L42, the problem is a high dimensional problems about
the weight vector w, shown as follows:

∑L
i ¼ 1wi ¼ 1

∑L
i ¼ 1wi

2 ¼ 1�σ2

(
ð28Þ

For high dimensional problems, the 3-dimensional picture can
be easily shown. Thus we make an analysis about the condition
L¼ 3. For L¼ 3, we gain a spherical surface S and a plane P based

Table 9
Ten features applied in the experiment.

Diagonal elements Upper triangular elements Eigenvalues Entropy

T11T22T33 T12T13T23 λ1λ2λ3 H
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on Eq. (28). The spherical surface S is depicted as ∑3
i ¼ 1wi

2 ¼ 1�σ2

and the plane P is indicated as ∑3
i ¼ 1wi ¼ 1. Then two special cases

are shown in Fig. 13, respectively corresponding to the minimum
and the maximum of σ. In Fig. 13, the area surrounded by three
purple lines expresses the plane P, the area surrounded by three
black curves expresses the spherical surface S, r denotes the radius
of the sphere, and ‘sigma’ expresses the parameter σ. When σ ¼ 0,
a spherical surface S with the largest radius is given and it
intersects P at three points, shown in Fig. 13(a). It indicates that
Eq. (28) has three feasible solutions for L¼ 3 when σ ¼ 0. When
σ ¼

ffiffiffiffiffiffiffiffi
6=4

p
� 0:6124, a spherical surface S with the smallest radius

is given and it is tangent to the plane P, shown in Fig. 13(b). It
illustrates that Eq. (28) has only one feasible solution when
σ ¼ 0:6124 for L¼ 3, and it means that Eq. (28) has no solution
when σ4 0:6124 for L¼ 3. Hence, Eq. (28) has the feasible
solution when 0rσr

ffiffiffiffiffiffiffiffi
6=4

p
for L¼ 3.

In summary, according to the analysis for L¼ 2 and 3, it is found
that the upper bound of σ for L¼ 2 is higher than L¼ 3, which
indicates that the upper bound of σ may decrease when the
number of individual classifiers increases. Additionally, it is easily
seen based on Fig. 12(a) and Fig. 13(a) that the number of feasible
solutions of Eq. (28) is relation to the number of individual
classifiers and it is equal to L.
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