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Abstract

We present a novel method for the mechanical simulation of slender, elastic, spatial rods and rod structures
subject to large deformation and rotation. We develop an isogeometric collocation method for the geomet-
rically exact, nonlinear Cosserat rod theory. The rod centerlines are represented as spatial NURBS curves
and cross-section orientations are parameterized in terms of unit quaternions as 4-dimensional NURBS
curves. Within the isogeometric framework, the strong forms of the equilibrium equations of forces and
moments of the discretized Cosserat model are collocated, leading to an efficient method for higher-order
discretizations. For rod structures consisting of multiple, connected rods we introduce a formulation with
rigid, quasi-G1-coupling. It is based on the strong enforcement of continuity of displacement and change of
cross-section orientation at interfaces. We also develop a mixed isogeometric formulation, which is based
on an independent discretization of internal forces and moments and alleviates shear locking for thin rods.
The novel rod simulation methods are verified by numerical convergence studies. Further computational
examples include realistic applications with large deformations and rotations, as well as a large-scale rod
structure with several hundreds of coupled rods and complex buckling behavior.

Keywords: Isogeometric analysis, Collocation method, NURBS basis functions, Cosserat rod model, Rod
structures, Locking-free methods

1. Introduction

Isogeometric analysis is a novel concept in computational simulation, which aims at bridging the gap
between the two domains of computer-aided design (CAD) and computational analysis. The main idea
behind isogeometric analysis (IGA) is to employ spline-based geometry descriptions, which are typically
used in CAD, also within numerical discretization methods. IGA was first introduced by Hughes et al. in
2005 [1] and has since attracted increasing interest in both communities [2].

Applications of isogeometric methods in computational mechanics include, to name a few, incompressible
elasticity and plasticity [3–6], mechanical contact formulations [7, 8], nonlinear vibration analysis [9], shape
optimization [10, 11], and fluid-structure interaction [12]. In particular, it has been shown analytically
[13–16] and in many of these applications that isogeometric Galerkin methods provide a higher per degree
of freedom (DOF) accuracy than conventional finite element methods (FEM). However, especially for 3-
dimensional simulations, the application of isogeometric methods still requires special modeling approaches,
such as T-Splines [17], or 3D segmentation methods [18]. Thus isogeometric analysis is most beneficial,
when it is applied to slender structures such as beams and rods [19–23], as well as plates and shells [24–26],
which allow a more straight-forward integration of design and analysis.
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More recently, isogeometric collocation methods have been proposed as an alternative to conventional
Galerkin methods [27, 28]. In contrast to FEM, collocation methods are based on the strong form of the
partial differential equation to be discretized, and thus require a higher continuity of the employed discrete
function spaces – which can be achieved by higher-order spline spaces in isogeometric methods. It has
already been shown that collocation methods are computationally more efficient than Galerkin methods
[29]. Isogeometric collocation schemes have been successfully developed for a wide range of applications,
such as elastostatics and dynamics [30], contact problems [31], various beam and rod formulations [32–35],
as well as plates and shells [35, 36].

Due to the advantages of isogeometric collocation methods for slender structures, we develop an iso-
geometric collocation method for the Cosserat rod model in this paper. The geometrically exact Cosserat
rod model can be used to simulate mechanical large deformation and rotation behavior of 3-dimensional,
slender, elastic rods [37–39]. Applications therefore include curved structures in architecture, design and
engineering, such as cables, fibers, hair, and lattices. While previous numerical methods proposed from the
fields of computational mechanics [40–44], computer graphics [45–47], or multibody dynamics [48, 49] are
typically based on finite element or piecewise linear discretizations of the Cosserat rod, we employ for the
first time a higher-order NURBS parameterization in combination with the collocation approach.

The outline of this paper is as follows. In Section 2 we introduce the Cosserat model for the mechanics
of 3-dimensional, slender, elastic rods. We present the strong form of the governing equations, i.e. the
equilibria of linear and angular momentum, in terms of the centerline and rotation quaternions, which
define the configuration of the Cosserat rod. Then we describe the isogeometric parameterization of the
rods in Section 3. First we give a brief introduction to B-Splines and NURBS curves, and then we outline
the parameterization of centerline curve and rotation quaternions using NURBS. In Section 4 we apply
the principle of isogeometric collocation to the strong form of the Cosserat rod equilibrium equations. We
outline the numerical discretization and its linearization in detail. For the simulation of rod structures, we
introduce a rod coupling method in Section 5, which enforces continuous centerline deformations and changes
of rotation at the interfaces. To address the phenomenon of shear locking of thin rods, we furthermore
develop a mixed isogeometric collocation scheme in Section 6, which is based on an independent NURBS
discretization of internal forces and moments. In Section 7 we validate the presented methods using numerical
benchmark examples and show the application to complex problems with large deformations and rotations,
as well as rod structures. Finally, a summary and conclusions are given in 8.

2. Cosserat rod model

A rod is a long and thin deformable body, with its length being significantly longer than the cross-section
diameter. The Cosserat rod theory is an approach to the modeling of slender elastic rods, which assumes
that the cross-sections themselves remain undeformed under loading. It can be interpreted as a nonlinear
extension of 3-dimensional Timoshenko beam theory [38, 49]. In the Euler-Bernoulli beam and Kirchhoff
rod theory cross-sections have to remain normal to the centerline deformation. Thus shear deformation is
neglected and the theory is only valid for thin beams. On the contrary, the Cosserat rod and Timoshenko
beam theories also assume that the cross-sections remain straight, but not necessarily normal to the tangent
of the centerline curve, thus accounting also for shear deformation. In the following we outline Cosserat rod
theory in more detail based on [37, 39].

2.1. Configuration of the rod

The Cosserat theory is based on the description of the configuration of the rod as a framed curve. The
rod is represented by the line of its mass centroids, or simply its centerline, which is a spatial curve:

r : [0, L]→ R3. (1)

This curve is assumed to be arc-length parameterized in the initial configuration, which means that

‖t(s)‖ = 1 ∀s ∈ [0, L], (2)
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Figure 1: Configuration of a Cosserat rod, which is represented by its centerline r(s) and orthonormal frames R(s) =
(d1(s),d2(s),d3(s)), which define the cross-section orientations

where

t(s) = r′(s) =
dr

ds
. (3)

is its tangent vector at parameter value s and

L =

∫ L

0

‖r′(s)‖ds (4)

is the length of the curve.
Furthermore, a frame, i.e. a local orthonormal basis field, is needed to describe the evolution of the

orientation of the cross-sections along the rod:

R : [0, L]→ SO(3). (5)

SO(3) is the group of rotations in the 3-dimensional Euclidean space R3 and thus these local frames can be
associated with 3D rotation matrices:

R(s) = (d1(s),d2(s),d3(s)) ∈ R3×3 : R>R = I, detR = 1 ∀s ∈ [0, L]. (6)

The representation of a rod using its centerline curve and frames completely determines its configuration
and is illustrated in Fig. 1.

2.2. Parameterization and initialization of rotations

Since 3× 3-rotation matrices have 9 components, but only 3 independent degrees of freedom, a number
of possibilities exists for their parameterization. Popular choices are Euler angles, rotation vectors or axis
and angle representation. Here we adopt the parameterization using unit quaternions, which is commonly
used in Cosserat rod literature [44, 49].

Unit quaternions are defined as normalized quadruples of real numbers, i.e.

q =


q1

q2

q3

q4

 ∈ R4 : ‖q‖ = 1, (7)

and parameterize rotation matrices as:

q→ R(q) ∈ SO(3) : R(q) =

q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 − q3q4) 2(q1q3 + q2q4)
2(q1q2 + q3q4) −q2

1 + q2
2 − q2

3 + q2
4 2(q2q3 − q1q4)

2(q1q3 − q2q4) 2(q2q3 + q1q4) −q2
1 − q2

2 + q2
3 + q2

4

 . (8)

Since in (6) the frames given by rotation matrices have to be parameterized in terms of the arc-length
parameter s, the quaternions have to be represented in that fashion:

q : [0, L]→ SO(3) ; R(s) = R(q(s)). (9)
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While in the Kirchhoff rod model d3 is and remains aligned with the tangent vector t of the curve, the
initial orientation of the cross-sections given by R(s) resp. q(s) is basically arbitrary in the Cosserat model.
However, it has to be fixed in order to define the initial configuration of the rod and given solely a centerline
curve r, a natural choice for the determination of the initial frame of the rod is the Darboux frame, which
forms an intrinsic orthonormal basis of cross-sections:

d3 = t = r′, d1 = n =
t′

‖t′‖
=

r′′

‖r′′‖
, d2 = b = d3 × d1. (10)

Another option, which gives in many cases a more desirable initialization of the orientations, is the torsion
free Bishop frame [50]. It is defined by the relations:

d3 = t = r′, κ3 = d′>1 d2 = −d′>2 d1 = 0. (11)

It can be determined for a fixed starting point rotation R(0) by enforcing the following conditions for
s ∈ (0, L]:

d>1 d3 = 0, d>2 d3 = 0, d′>1 d2 = 0. (12)

If the cross-sections are twisted around the tangent of the curve, i.e. the principal axes of inertia of the
cross-sections are not aligned with d1 and d2 as determined by the Darboux or Bishop frame, the frame
can still be represented by a rotation of the Darboux or Bishop frame around the tangent d3 by an angle
α ∈ [0, 2π).

2.3. Kinematics and constitutive equations

Based on the two kinds of kinematic unknowns that are needed to define the configuration of the rods, i.e.
the centerline curve r : [0, L] → R3 and the quaternion field q : [0, L] → SO(3) describing the orthonormal
frames, the strains in the spatial or current configuration can be formulated and evaluated at s ∈ [0, L]. The
translational strains are defined by the vector

ε = R>r′ − e3, (13)

where e3 denotes the Cartesian basis vector (0, 0, 1)>. The components ε1 and ε2 refer to the shear strains,
while ε3 is the axial or extensional strain. Furthermore, the rotational strains are given in terms of the
curvature vector of the rod:

κ =

d′>2 d3

d′>3 d1

d′>1 d2

 ⇔ [κ]× = R′>R. (14)

The latter expression corresponds to Frenet-Serret formulas R′> = [κ]×R
>, where [·]× represents the skew-

symmetric cross-product matrix for a 3-dimensional vector, i.e. for u,v ∈ R3:

u× v = [u]×v with [u]× =

 0 u3 −u2

−u3 0 u1

u2 −u1 0

 . (15)

The components κ1 and κ2 are bending curvatures or flexural strains, while κ3 corresponds to the torsional
curvature or strain.

Based on these two nonlinear strain vectors, which both refer to the rotated local coordinate frame at s,
the stresses in the current configuration are derived by linear elastic constitutive laws:

translational stresses: σ = C(ε− ε0),

rotational stresses: χ = D(κ− κ0).
(16)
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The terms ε0 and κ0 represent strains in the initial configuration (r0,R0), which might for instance result
from pre-stretching or misalignment of t and d3 in the case of ε0 6= 0 and curvature of initially curved rods
in the case of κ0 6= 0. Furthermore, in (16) the intrinsic material matrices are used:

C =

k1GA 0 0
0 k2GA 0
0 0 EA

 , D =

EI1 0 0
0 EI2 0
0 0 GJ

 . (17)

These are given solely in terms of cross-section parameters, i.e. material constants, namely elastic modulus
E and shear modulus G = E/(2 + 2ν) with Poisson’s ratio ν, and geometrical or shape constants, namely
cross section area A, second moments of area I1 and I2, torsion constant J (typically J = I1 +I2), and shear
correction factors k1 and k2 (typically k1,2 = 5/6).

2.4. Equilibrium equations

Before the balance equations of linear and angular momentum can be formulated, the stress vectors
introduced above in (16) have to be rotated into the global Euclidian coordinate frame. This transformation
from the spatial back to the material configuration results in the expressions for internal force and moment
vectors:

internal forces: n = Rσ = RC(ε− ε0),

internal moments: m = Rχ = RD(κ− κ0).
(18)

Then the equilibrium equations of linear and angular momentum in material/initial configuration can
be formulated as:

n′ + n̂ = 0 ∀s ∈ (0, L),

m′ + r′ × n + m̂ = 0 ∀s ∈ (0, L).
(19)

Here n̂ and m̂ are external distributed forces and moments applied on the rod. Furthermore, at the two
ends of the rod, s = 0 and s = L, boundary conditions either of Dirichlet- or Neumann-type have to be
applied. Dirichlet or displacement/rotation boundary conditions are of the form

r = r̄ ∧ q = q̄, s = 0, L, (20)

and Neumann or force/moment boundary conditions read

n = n̄ ∧ m = m̄, s = 0, L, (21)

where r̄, q̄, n̄, and m̄ refer to the prescribed endpoint displacement, rotation, force, or moment.
Since we are using quaternions for the parameterization of rotations, additionally a unit length constraint

for quaternions must hold to complete the equilibrium equations:

q>q− 1 = 0 ∀s ∈ [0, L]. (22)

Altogether, the equilibrium equations of linear and angular momentum (19), together with boundary
conditions (20) or (21) and the unit-length constraint for quaternions (22), form a nonlinear system of 7
equations in the 7 kinematic unknowns r and q, which must hold for all s ∈ [0, L].

For a better understanding and implementation purposes, we formulate the expressions in above-mentioned
equilibrium equations in more detail:

n′ = R′σ + Rσ′

= R′C(ε− ε0) + RC(ε′ − ε′0)

= R′C(R>r′ − e3 − ε0) + RC(R′>r′ + R>r′′ − ε′0),

m′ + r′ × n = R′χ+ Rχ′ + r′ × (Rσ)

= R′D(κ− κ0) + RD(κ′ − κ′0) + r′ × (RC(ε− ε0))

= R′D(κ− κ0) + RD(κ′ − κ′0) + r′ × (RC(R>r′ − e3 − ε0)).

(23)
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3. Isogeometric parameterization of the rod model

In this Section we apply the concept of isogeometric analysis to the Cosserat rod problem. The main
idea behind isogeometric methods, as introduced in [1], is that both the geometry and numerical solution
are discretized in terms of spline basis functions.

3.1. NURBS basis functions and curves

B-Splines and Non-Uniform Rational B-Splines (NURBS) are widely used for describing geometries in
computer-aided design and also for numerical discretizations in isogeometric analysis [1, 2]. Here we briefly
review their basic definitions and properties, which can be found in much more detail in [51].

B-Splines are piecewise polynomial functions, which are defined using a knot vector Ξ = {ξ1, . . . , ξm},
which is a non-decreasing sequence of knots ξi ∈ R (i = 1, . . . ,m) , ξi ≤ ξi+1 (i = 1, . . . ,m − 1) on the
parameter domain Ω0 = [ξ1, ξm] ⊂ R. For two distinct knots ξi 6= ξi+1, the half-open interval [ξi, ξi+1) is
called the i-th knot span or element. The total number of nonzero knot spans or elements in Ξ is denoted
by `. Here we only use open knot vectors, where the first and last knot have multiplicity p+ 1, with inner
knots of multiplicity 1 ≤ k ≤ p.

The B-Spline basis functions Bpi (ξ) : Ω0 → [0, 1] of degree p and order p + 1 on the knot vector Ξ are
defined for i = 1, . . . , n (n = m− p− 1) by the Cox-de Boor recursion:

B0
i (ξ) =

{
1 ξi ≤ ξ < ξi+1

0 else
, Bpi (ξ) =

ξ − ξi
ξi+p − ξi

Bp−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bp−1
i+1 (ξ). (24)

Here the quotient 0/0 is defined to be 0.

Non-Uniform Rational B-Spline (NURBS) basis functions Np
i are piecewise rational functions of degree

p, which are defined using B-Spline basis functions Bpi on a knot vector Ξ and additional weights wi > 0 (i =
1, . . . , n):

Np
i (ξ) =

Bpi (ξ) wi∑n
j=1B

p
j (ξ) wj

. (25)

For equal weights, i.e. wi = const. ∀i = 1, . . . , n, NURBS reduce to B-Spline basis functions and thus in
the following we are mainly using the term NURBS. Furthermore, we drop the superscript p and denote
NURBS basis functions only as Ni.

There are many useful properties of B-Spline and NURBS basis functions, such as compact support,
i.e. supp(Ni) = [ξi, ξi+p+1), non-negativity, i.e. Ni(ξ) ≥ 0 ∀ξ ∈ [ξ1, ξm], partition of unity for open knot
vectors, i.e.

∑n
i=1Ni(ξ) ≡ 1 ∀ξ ∈ [ξ1, ξm], and smoothness, i.e. they are p-times continuously differentiable

(Cp-continuous) inside a knot span and at inner knots of multiplicity k only Cp−k. Furthermore, we define
a spline function space as SΞ = span{Ni, i = 1, . . . , n}.

Univariate B-Splines and NURBS can then be used to define geometric entities such as curves. A spline
curve c : Ω0 → Rd is defined by a spline space SΞ and control points ci ∈ Rd (i = 1, . . . , n):

c(ξ) =

n∑
i=1

Ni(ξ) ci. (26)

Some important properties of spline curves on open knot vectors are the convex hull property, i.e. the curve is
completely contained in its control polygon, interpolation of start and end points, i.e. c(ξ1) = c1, c(ξm) = cn,
local control, i.e. a control point ci only influences the curve locally in the knot interval [ξi, ξi+p+1), and
that affine transformations of the curve can be performed directly on its control points. Furthermore, the
continuity properties of the curve correspond to the ones of NURBS functions.

6



0.0 0.25 0.5 0.75 1.0
Parameter  t 2 [0,1]

0.0

0.25

0.5

0.75

1.0

B
as

is
 f

un
ct

io
ns

  N
i(t

)

(a) B-Spline basis functions

centerline
control points & polygon
cross-section orientations
images of collocation points
cross-sections

*

*

(b) Isogeometric parameterization of rod with B-Spline curve

Figure 2: Isogeometric rod parameterization; cubic B-Spline basis functions as shown in (a) with p = 3,m = 11, n = 7,Ξ =
{0, 0, 0, 0, 1

4
, 1
2
, 3
4
, 1, 1, 1, 1} are used for the isogeometric parameterization of the Cosserat rod in (b) with centerline and rotation

quaternions as B-Spline curves

3.2. Parameterization of the rods

Having introduced NURBS basis functions and NURBS curves, we now derive the isogeometric parame-
terization of the Cosserat rod model. This means that both kinematic unknowns, the centerline curve of the
rod and the quaternion field defining the cross-section orientations, are parameterized as NURBS curves.

Using n basis functions {Ni}i=1,...,n of degree p, defined on a knot vector Ξ = {ξ1, . . . , ξm}, ξi ∈
[0, 1], m = n+ p+ 1, and control points {r0,i}i=1,...,n, r0,i ∈ R3, we write the initial, undeformed centerline
curve r0 of a rod as a 3-dimensional spline curve:

r0 : [0, 1]→ R3, r0(t) =

n∑
i=1

Ni(t) r0,i. (27)

Furthermore, the quaternion field q0 for the representation of the initial cross-section orientations R0 are
parameterized as a 4-dimensional spline curves with control points {q0,i}i=1,...,n, q0,i ∈ R4:

q0 : [0, 1]→ R4, q0(t) =

n∑
i=1

Ni(t) q0,i. (28)

Without loss of generality we are assuming here that Ω0 = [0, 1]. Furthermore, the same spline space SΞ

is used for both centerline and quaternions, but in general it would be possible to parameterize both using
two different spline spaces, see also [33].

As an example, in Fig. 2 a rod is parameterized using cubic B-Spline basis functions (p = 3) with n = 7
control points and ` = 4 elements in the knot vector Ξ = {0, 0, 0, 0, 1

4 ,
1
2 ,

3
4 , 1, 1, 1, 1}. Figure 2a shows the

basis functions and Fig. 2b the rod, which is given in terms of its centerline curve and rotation quaternion
curve, which defines the orientation of the rectangular cross-section.

Remark (spline parameterization of quaternions):
In equations (7)–(9) unit quaternions are used to define the rotations R(q) as a map [0, L] → SO(3),
but above in (28) we have parameterized the quaternions for the initial rotations R0 as a spline curve
[0, L] → R4. Thus we need the additional condition ‖q(s)‖ = 1 from (22), which ensures that the 4-
dimensional vectors are actually unit quaternions and thus R(q) ∈ SO(3). In the setting of the isogeometric
collocation method introduced in Section 4.1, we enforce this condition numerically only at the collocation
points τi, see (34)3 and (35)3. Alternatively, a consistent parameterization could be achieved using an
extension of B-Splines on the quaternion vector space, so-called quaternion splines [52]. However, for
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arbitrary degrees their implementation and derivation is very complex and computationally inefficient. The
parameterization presented in this work can be interpreted as a simplification of quaternion splines, which
is valid for small incremental changes of rotation, i.e. when the number of control points used for the
parameterization of q0 is sufficiently large. As the later numerical studies will show, this assumption is
justified in most applications and leads to the expected convergence behavior of the method. The authors
think that a formulation based on quaternion splines could probably add more robustness to the method, e.g.
enable a faster convergence and larger steps of Newton’s method for very large displacements and changes
of rotation.

3.3. Arc-length parameterization

For the introduction of the Cosserat rod theory in Section 2 we have assumed that the initial centerline
curve of the rod is arc-length parameterized. However, above we have defined the centerline as a spline
curve r0(t) : [0, 1]→ R3, which is general not an arc-length parameterization.

Thus we need to describe how to compute the derivatives of a vector field defined as t→ y(t) : [0, 1]→ Rd
(this could be for instance y ≡ r with d = 3 or y ≡ q with d = 4) with respect to the arc-length parameter
s of the initial curve r0(t). Since the current arc-length is defined as

s(t) =

∫ t

0

‖ṙ0(τ)‖dτ ;
ds

dt
(t) = ‖ṙ0(t)‖ =: J(t), (29)

it follows for y′:

y′ =
dy

ds
=
dy

dt

dt

ds
= ẏ

(
ds

dt

)−1

= ẏ
1

‖ṙ0(t)‖
=

1

J
ẏ. (30)

Here and in the following the conventions ẏ = dy
dt for the parametric and y′ = dy

ds for the arc-length
derivative are used. Since the arc-length derivative has to be defined for all t ∈ [0, 1], it is required that
J > 0 ∀t ∈ [0, 1], i.e. the parametric derivative of the initial centerline curve must not vanish. Furthermore,
for second derivatives w.r.t. s it follows:

y′′(t) =
d2y

ds2
(t) =

d

ds

[
1

‖ṙ0(t)‖
ẏ(t)

]
=

d

dt

[
1

J(t)
ẏ(t)

](
ds

dt

)−1

=

(
1

J
ÿ− ṙT0 r̈0

J3
ẏ

)
1

‖ṙ0(t)‖
=

1

J2
ÿ− ṙT0 r̈0

J4
ẏ.

(31)

For instance, it follows for the tangent and normal vectors of the current centerline curve:

t(t) = r′(t) =
1

‖ṙ0(t)‖
ṙ(t) =

1

J
ṙ, n(t) = t′(t) = r′′(t) =

1

J2
r̈− ṙT0 r̈0

J4
ṙ. (32)

3.4. Interpolation of initial rotations

As we have already outlined in Sect. 2.2, in the Cosserat theory the initial orientation of cross-sections
given by rotation matrices R0 resp. the quaternion field q0 is an input design parameter, just as the centerline
curve r0.

However, in practical applications the quaternion field q(s) may not be given directly as a spline curve
with control points {q0,i}i=1,...,n. Instead, we assume that a rotation matrix field R0(s) is given, either
directly or it has to be determined from the centerline curve r0(s), for instance as its Darboux frame (10)
or Bishop frame (11). In this case the unit quaternion field q0(s) resp. its control points q0,i have to be
fitted such that R(q0(s)) approximates or interpolates the given R0(s). In the context of an isogeometric
collocation method, we chose to fit the q0,i’s such that q0(s) interpolates the unit quaternions computed
from an input rotation matrix field q(R0(s)) at the n collocation points (see Sect. 4.1).
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4. Isogeometric collocation method

Having described the Cosserat rod model in Section 2 and introduced its parameterizations using spline
curves in Section 3, we now propose the application of the isogeometric collocation method [27, 28] for the
numerical discretization of the balance equations of the Cosserat rod.

4.1. Collocation of strong equilibrium equations

Following the isoparametric concept, the unknown centerline position r and orientation quaternion q in
the current/deformed configuration are also discretized as spline curves, just as their initial counterparts r0

and q0 in (27) and (28):

rh :[0, 1]→ R3, rh(t) =

n∑
i=1

Ni(t) ri,

qh :[0, 1]→ R4, qh(t) =

n∑
i=1

Ni(t) qi.

(33)

Here the Ni’s may be the either same basis functions as in (27) or refined versions thereof. Refinement refers
to so-called p-/h-/k-refinement, which means increasing the degree of spline functions, subdividing the knot
vectors into more elements and the combination of both respectively [1].

To determine the unknown control points of the displaced centerline and the quaternions from (33),
we apply collocation of the strong form of the equilibrium equations of the Cosserat rod, which means
that the equations have to be evaluated at a set of points {τi}i=1,...,n. For internal collocation points
τi, i = 2, . . . , n− 1 this means according to (19) and (22):

fn(τi) = n′(τi) + n̂(τi) = 0,

fm(τi) = m′(τi) + r′h(τi)× n(τi) + m̂(τi) = 0,

fq(τi) = qh(τi)
>qh(τi)− 1 = 0.

(34)

At the boundaries for τ1 = 0 and τn = 1 either centerline position r and rotation quaternion q are a priori
imposed according to (20), or for Neumann conditions (21) and (22) have to be collocated as well:

fn(τi) = n(τi)− n̄(τi) = 0,

fm(τi) = m(τi)− m̄(τi) = 0,

fq(τi) = qh(τi)
>qh(τi)− 1 = 0.

(35)

Altogether, (34) and (35) define a set of 7 · n nonlinear equations for the 3 · n unknown control points of rh
and 4 · n unknowns of qh, which can be formulated in terms of a residual vector f as:

f : R3·n × R4·n → R7·n : f(~r, ~q) =

fn(τi)
fm(τi)
fq(τi)


i=1,...,n

(~r, ~q) = 0, (36)

where the control points of rh are combined into a large vector ~r = (ri)i=1,...,n ∈ R3·n and likewise for qh
as ~q = (qi)i=1,...,n ∈ R4·n.

The collocation points have to be carefully chosen in order to guarantee the stability of the method [27].
A common choice are the Greville abscissae of the spline knot vector, which are defined for 0 ≤ k < p as:

τi =
ξi+1+k + . . .+ ξi+p

p− k
, i = 1, . . . , n− k. (37)

Since we have n − 2 internal and 2 boundary collocation points, we use the n Greville abscissae of order
k = 0 here.
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4.2. Linearization

To determine the deformed configuration of the rod for given distributed and boundary forces and
moments, the solution (~r, ~q) of the nonlinear system (36) has to be computed. This is done by using a
Newton’s method, which requires the linearization of (36), i.e. the derivatives of f w.r.t. ~r and ~q:

K(~r, ~q) :=
df

d(~r, ~q)
=


dfn(τi)
drj

dfn(τi)
dqj

dfm(τi)
drj

dfm(τi)
dqj

dfq(τi)
drj

dfq(τi)
dqj


i,j=1,...,n

. (38)

We derive the individual components of the tangential stiffness matrix K in detail, since they are required
for the implementation of the method. For internal collocation points i = 2, . . . , n− 1 they are:

dfn(τi)

drj
= (R′CR> + RCR′>)N ′j + RCR> N ′′j ,

dfn(τi)

dqj
=
dR′

dqj
(σ) +

dR

dqj
(σ′) + R′C

dR>

dqj
(r′h) + RC

(
dR′>

dqj
(r′h) +

dR>

dqj
(r′′h)

)
,

dfm(τi)

drj
= [n]× N

′
j − [r′h]× RCR> N ′j ,

dfm(τi)

dqj
=
dR′

dqj
(χ) +

dR

dqj
(χ′) + R′D

dκ

dqj
+ RD

dκ′

dqj
− [r′h]×

(
dR

dqj
(σ) + RC

dR>

dqj
(r′h)

)
,

dfq(τi)

drj
= 01×3,

dfq(τi)

dqj
= 2 q>h Nj .

(39)

For boundary collocation points i = 1, n they are:

dfn(τi)

drj
= RCR> N ′j ,

dfn(τi)

dqj
=
dR

dqj
(σ) + RC

dR>

dqj
(r′h),

dfm(τi)

drj
= 03×3,

dfm(τi)

dqj
=
dR

dqj
(χ) + RD

dκ

dqj
,

dfq(τi)

drj
= 01×3,

dfq(τi)

dqj
= 2 q>h Nj .

(40)

Above all quantities refer to their evaluations at τi, e.g. rh represents rh(τi), n stands for n(τi), Nj for
Nj(τi) etc.

Defining the matrices

D1(q) =
dd1(q)

dq
= 2

q1 −q2 −q3 q4

q2 q1 q4 q3

q3 −q4 q1 −q2

 ,

D2(q) =
dd2(q)

dq
= 2

 q2 q1 −q4 −q3

−q1 q2 −q3 q4

q4 q3 q2 q1

 ,

D3(q) =
dd3(q)

dq
= 2

 q3 q4 q1 q2

−q4 q3 q2 −q1

−q1 −q2 q3 q4

 .

(41)
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as the derivatives of the column vector representation R = (d1,d2,d3) as defined in (6) and (8) w.r.t. q, we
can evaluate the arc-length derivatives of R as:

R′(q) =
dR(q)

ds
=

(
d′1,d

′
2,d
′
3

)
(q) with d′k = Dk(q)q′, k = 1, 2, 3,

R′′(q) =
d2R(q)

ds2
=

(
d′′1 ,d

′′
2 ,d
′′
3

)
(q) with d′′k = Dk(q′)q′ + Dk(q)q′′, k = 1, 2, 3.

(42)

Since dR/dqj , dR
′/dqj and dR′′/dqj are 3× 4× 3-tensors, we provide their derivatives now in terms of the

column vectors dk, k = 1, 2, 3:

ddk
dqj

(τi) = Dk(q(τi))Nj ,
dd′k
dqj

(τi) = Dk(q′(τi))Nj + Dk(q(τi))N
′
j ,

dd′′k
dqj

(τi) = Dk(q′′(τi))Nj + 2 Dk(q′(τi))N
′
j + Dk(q(τi))N

′′
j .

(43)

Thus, multiplication of for instance dR/dqj on a vector y ∈ R3, as used in (39), results in:

dR

dqj
(y) =

dd1

dqj
y1 +

dd2

dqj
y2 +

dd3

dqj
y3. (44)

Furthermore, we still need to specify the derivatives of κ and κ′ w.r.t. qj :

dκ

dqj
=


d′>2

dd3

dqj
+ d>3

dd2

dqj

d′>3
dd1

dqj
+ d>1

dd3

dqj

d′>1
dd2

dqj
+ d>2

dd1

dqj

 ,
dκ′

dqj
=


d′′>2

dd3

dq + d′>2
dd′

3

dqj
+ d>3

dd′′
2

dqj
+ d′>3

dd′
2

dqj

d′′>3
dd1

dq + d′>3
dd′

1

dqj
+ d>1

dd′′
3

dqj
+ d′>1

dd′
3

dqj

d′′>1
dd2

dq + d′>1
dd′

2

dqj
+ d>2

dd′′
1

dqj
+ d′>2

dd′
1

dqj

 . (45)

5. Coupling of rods and rod structures

Having introduced the Cosserat model and isogeometric collocation method for the modeling and simu-
lation of a single rod, we now want to extend the framework to rod structures, i.e. meshes of interconnected,
coupled rods. Therefore we need to define constraints for the continuity of displacements and rotations, and
the transfer of forces and moments at the coupling points or interfaces. Similar to [53], we are going to
derive a rigid, quasi-G1-continuous coupling of the rods. In [30] it is already described how the collocation
equations have to be adapted for coupling of multiple patches in 2D and 3D isogeometric collocation of
linear elasticity, and here we transfer the approach to the collocation of Cosserat rods.

Without loss of generality we can assume that rods can only be connected to other rods at their end
points, since otherwise a single rod could simply be split into two parts. Furthermore, we assume that
k ≥ 2 rods (r(i),R(i)), i = 1, . . . , k intersect in a given interface and that for each rod the end control
point at the interface is denoted by index ei ∈ {1, n(i)} and the end collocation parameter of the NURBS
parameterization by τ̃i ∈ {0, 1}.

The rods have to remain connected under deformation, which means that the centerlines must be con-
tinuous at the interface:

r
(1)
h (τ̃1) = . . . = r

(k)
h (τ̃k). (46)

Due to the endpoint interpolation property of B-Spline and NURBS curves with open knot vectors, it follows
that the end centerline control points must be equal:

r(1)
e1 = . . . = r(k)

ek
. (47)

Furthermore, for a rigid coupling it is necessary that the change of orientation of the frames from the initial
to the deformed configuration must be the same for all rods at the interface. In terms of the rotation
matrices this can be formulated as

R(1)(τ̃1) R
(1)
0 (τ̃1)

−1
= . . . = R(k)(τ̃k) R

(k)
0 (τ̃k)

−1
, (48)
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d
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h (s)

d
(3)
3

d
(3)
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d
(3)
1

r(1)
e1 = r(2)

e2 = r(3)
e3∆q(1)

e1
= ∆q(2)

e2
= ∆q(3)

e3

R(q(1)
e1

) = (d(1)
1 ,d(1)

2 ,d(1)
3 )

R(q(2)
e2

) = (d(2)
1 ,d(2)

2 ,d(2)
3 )

R(q(3)
e3

) = (d(3)
1 ,d(3)

2 ,d(3)
3 )

Constraint equations:

f (1)

n (τ̃1) + f (2)

n (τ̃2) + f (3)

n (τ̃3) = 0,

r(1)
e1 − r(3)

e3 = 0,

r(1)
e1 − r(2)

e2 = 0,

f (1)

m (τ̃1) + f (2)

m (τ̃2) + f (3)

m (τ̃3) = 0,

q(1)
e1 q̄

(1)

0,e1
− q(2)

e2 q̄
(2)

0,e2
= 0,

q(1)
e1 q̄

(1)

0,e1
− q(3)

e3 q̄
(3)

0,e3
= 0.

Figure 3: Illustration of rod coupling, with three rods connected in a common interface

since the current rotation can be expressed as R = ∆R R0, where ∆R is the change of rotation resp.
orientation from the initial state R0. This change of rotation can be expressed as ∆q = qq̄0 and leads to
the following condition in terms of the end quaternion control points at the interface:

q(1)
e1 q̄

(1)
0,e1

= . . . = q(k)
ek

q̄
(k)
0,ek

, (49)

where ·̄ denotes conjugation of the quaternion.
Furthermore, the equilibria of linear and angular momentum need to be consistent at an interface as well.

As in [30], we thus have to sum up the contributions of each individual rod from (35) in a single collocation
equation:

k∑
i=1

I(ei) f
(i)
n (τ̃i) = 0,

k∑
i=1

I(ei) f
(i)
m (τ̃i) = 0. (50)

Here I(ek) ∈ {−1,+1} is an orientation factor which is +1 if ek is the first and -1 if ek is the last control
point of the rod – analogous to the concept of outer normals in [30].

Finally, a global force vector f can be assembled from the independent contributions of individual rods
f (i) from (35). Then the interface conditions derived above have to be applied. Thus for each interface of
k rods, the equations corresponding to collocation point τ̃1 are replaced by the accumulated contributions
from (50) and for τ̃2, . . . , τ̃k by the k − 1 linear conditions arising from (47) and (49), while the quaternion
normalization conditions from (35)3 remain unchanged and have to be enforced individually:

i = 1 :


f (1)
n (τ̃1) ←

∑k
j=1 I(ej) f

(j)
n (τ̃j),

f (1)
m (τ̃1) ←

∑k
j=1 I(ej) f

(j)
m (τ̃j),

f (1)
q (τ̃1) = qh(τ̃1)>qh(τ̃1)− 1,

i = 2, . . . , k :


f (i)
n (τ̃i) ← r

(1)
e1 − r

(i)
ei ,

f (i)
m (τ̃i) ← q

(1)
e1 q̄

(1)
0,e1
− q

(i)
ei q̄

(i)
0,ei

,

f (i)
q (τ̃i) = qh(τ̃i)

>qh(τ̃i)− 1.

(51)

The coupling of three rods in a common interface and associated collocation equations are also illustrated
in Fig. 3.

Of course, for the linearization of the global force vector the same procedure has to be applied also to
the affected rows of the global tangential stiffness matrix K, which has to be assembled from individual rod
contributions K(i) as given in (38).

Since we enforce the continuity of centerline positions resp. displacements and change of cross-sections
orientations in terms of the rotation quaternions, no deformation and relative change of rotation of the rods
with respect to each other is possible at the interface – which is why we refer to it as “rigid” coupling.
Furthermore, when the centerline tangents and cross-section orientations of two rods match in the initial
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configuration, they are initially G1-continuous at the interface. Since this property is preserved throughout
the deformation by the presented coupling method, i.e. the curvatures (which depend on the derivatives of
rotations) remain continuous at the interface, we also call the method “quasi-G1-continuous”.

6. Mixed isogeometric collocation method

It is a well-known phenomenon that beam or rod discretizations may suffer from shear locking, which
means that for decreasing thickness of a beam (cross-section diameter of a rod), the accuracy and conver-
gence of the numerical discretization method can deteriorate. This behavior was already observed for the
isogeometric collocation of the linear Timoshenko beam and rod models in [32, 33]. To alleviate the locking
phenomenon, a mixed collocation method was developed and investigated theoretically and numerically in
[32, 33]. In the following, we transfer the approach to the isogeometric collocation of Cosserat rods.

In addition to the independent field variables for centerline positions rh and rotation quaternions qh
(33), we now also discretize the internal forces and moments as independent NURBS curves:

nh :[0, 1]→ R3, nh(t) =

n∑
i=1

Ni(t) ni,

mh :[0, 1]→ R3, mh(t) =

n∑
i=1

Ni(t) mi.

(52)

In [33] it was shown that mixed collocation methods for linear Timoshenko rods are shear locking-free for
any combination of degrees of basis functions for the discretization spaces of independent fields. Based on
this analysis, we expect the same property to hold also in the present nonlinear Cosserat rod problem and
use the same basis functions Ni of degree p for all independent variables.

Furthermore, numerical discretizations for initially curved rods may also suffer from so-called membrane
locking. This phenomenon was intensively investigated for isogeometric finite element discretizations of the
Timoshenko beam problem in [20]. Since the mixed formulation presented here is based on an independent
discretization of both internal forces and moments, see (52), it should alleviate the shear locking problem
as well.

The collocated equilibrium equations can now be formulated in terms of the newly introduced indepen-
dent fields nh and mh. Furthermore, two additional equations have to be added to relate them to rh and qh.
Here these are the relations of the stresses to the internal forces and moments as given in (18). Altogether,
the new set of collocated equations at internal collocation points τi, i = 2, . . . , n− 1 reads:

fn(τi) = n′h(τi) + n̂(τi) = 0,

fm(τi) = m′h(τi) + r′h(τi)× nh(τi) + m̂(τi) = 0,

fq(τi) = qh(τi)
>qh(τi)− 1 = 0,

fu(τi) = nh(τi)− (Rσ)(τi) = 0,

fv(τi) = mh(τi)− (Rχ)(τi) = 0.

(53)

At the Neumann boundaries the collocated equations for τ1 = 0 and τn = 1 are consequently:

fn(τi) = nh(τi)− n̄(τi) = 0,

fm(τi) = mh(τi)− m̄(τi) = 0,

fq(τi) = qh(τi)
>qh(τi)− 1 = 0,

fu(τi) = nh(τi)− (Rσ)(τi) = 0,

fv(τi) = mh(τi)− (Rχ)(τi) = 0.

(54)
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(a) initially straight cantilever (b) deformed cantilever

Figure 4: Bending of straight cantilever; an end moment of magnitude m̄ = πEI is applied to the initially straight cantilever
beam of length L = 1 (a) and leads to bending into a semi-circle of radius 1/π (b)

For this mixed method, (53) and (54) define a set of 13 · n nonlinear equations for the 3 · n unknown
control points of rh, 4 · n unknowns of qh, and now additionally 3 · n unknowns of both nh and mh:

f : R3·n × R4·n × R3·n × R3·n → R13·n : f(~r, ~q, ~n, ~m) =


fn(τi)
fm(τi)
fq(τi)
fu(τi)
fv(τi)


i=1,...,n

(~r, ~q, ~n, ~m) = 0, (55)

where the control points of nh and mh are written as vectors ~n = (ni)i=1,...,n ∈ R3·n and ~m = (mi)i=1,...,n ∈
R3·n.

The solution of (55) using a Newton’s method and the evaluation of its derivatives is simpler than for
(36), since only first derivatives w.r.t. the unknown control point vectors are required. This also releases
regularity requirements on the basis functions Ni, which now only need to be in C1[0, 1] instead of C2[0, 1]
as before.

The coupling of Cosserat rods with mixed discretization is straight-forward and can be done exactly
as presented in Sect. 5, since consistent centerline deformation, change of rotation, as well as equilibria of
internal forces and moments are enforced by the described coupling conditions. This means that equations
(54)1 and (54)2 have to be modified in the same way as presented in (51), while (54)3, (54)4 and (54)5

remain unchanged and have to be enforced independently.

7. Numerical applications

With a number of numerical applications we now want to verify the isogeometric collocation method
for the Cosserat rod model, investigate its numerical properties and apply it to the simulation of complex
deformations of rods and rod structures.

7.1. Bending of straight cantilever

In our first numerical example we want to study the convergence properties of the proposed isogeometric
collocation methods for the Cosserat rod. We apply our method to the pure bending of a straight cantilever
beam by an end moment. This problem is a typical benchmark for nonlinear beam formulations and has
an analytical solution, since the application of an end moment m̄ = φEI1 to a straight cantilever beam of
unit length L = 1 results in a uniform bending into a circular arc of angle φ and radius 1/φ with constant
curvature κ1 = φ, see Fig. 4. Here we use a rod with quadratic cross-section of thickness t = b = h, Young’s
modulus E = 1 · 109, Poisson’s ratio ν = 0.5, and k1 = k2 = 5/6, see (17). The cross-section area is then
A = t2 and the 2nd moment of area is I1 = t4/12. For decreasing value of the thickness t, locking of the
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(a) t = 0.1: primal formulation (rh,qh)
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(b) t = 0.1: mixed formulation (rh,qh,nh,mh)
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(c) t = 0.01: primal formulation (rh,qh)
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(d) t = 0.01: mixed formulation (rh,qh,nh,mh)
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(e) t = 0.001: primal formulation (rh,qh)
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(f) t = 0.001: mixed formulation (rh,qh,nh,mh)

Figure 5: Bending of straight cantilever; investigation of locking for thickness parameter t = 0.1, 0.01, 0.001 by comparison of
convergence of L2-error of displacement of centerline ‖rh − re‖L2 for NURBS with degree p = (2, )3, . . . , 9 and ` = 1 − 64
elements for primal and mixed formulations
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(a) t = 0.1: primal formulation (rh,qh)
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(b) t = 0.1: mixed formulation (rh,qh,nh,mh)
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(c) t = 0.01: primal formulation (rh,qh)
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(d) t = 0.01: mixed formulation (rh,qh,nh,mh)
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(e) t = 0.001: primal formulation (rh,qh)
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(f) t = 0.001: mixed formulation (rh,qh,nh,mh)

Figure 6: Bending of straight cantilever; investigation of locking for thickness parameter t = 0.1, 0.01, 0.001 by comparison of
convergence of L2-error of curvature ‖κh −κe‖L2 for NURBS with degree p = (2, )3, . . . , 9 and ` = 1− 64 elements for primal
and mixed formulations
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(a) deformed cantilever
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(b) end point displacements

Figure 7: 45◦ bend cantilever; deformation of a 45◦ bend cantilever rod subject to an increasing end point force, discretized
with p = 8, ` = 16

displacement/rotation-based (primal) formulation is expected due to increasing numerical imbalance of the
orders of magnitude of the material parameters k1GA and EI1.

To study the convergence behavior of both formulations, primal and mixed, we compute the numerical
deformation for the bending into a semi-circle (φ = π), and evaluate the errors compared to the exact
solutions for the displaced centerline r and the curvature κ in the L2-norm. The results are given in Fig. 5
and Fig. 6, and show the error curves for basis function degree p = (2, )3, . . . , 8 for h/k-refinement from 1 to
64 elements (knot spans). In each row of plots we compare the primal (left) and mixed formulation (right)
for t = 0.1, 0.01, 0.001 (top, middle, and bottom row).

The results show that for t = 0.1 the convergence behavior of the primal method matches the expected
rates of convergence, which are of order 2bp/2c for degree p [27, 33]. This holds for both, the L2-errrors of
displacement and curvature. However, for decreasing the thickness from t = 0.1 to t = 0.01 and t = 0.001
locking becomes more severe. While the convergence rates can still be reached in the limit of very fine
discretizations, the error constants increase with a factor 1/t2. Also the convergence of the Newton’s
method used for the solution of the nonlinear system is affected. For smaller t typically more iterations are
need, the method diverges more easily, and the error bounds cannot be met. This is reflected by error values
larger than 1 in the convergence plots, which typically indicate that the solution did not converge.

In contrast, the accuracy and convergence of the mixed method are not affected by the parameter t and
the locking problem is resolved. The error constants are by a factor of t2 smaller than for the primal method,
and the rate of convergence is even improved to order 2dp/2e for degree p.

7.2. 45◦ bend cantilever

Next, we apply our methods to a reference example for an initially curved rod subject to large displace-
ment, which was studied before in [40, 41]. A 45◦ bend cantilever beam, i.e. 1/8 section of a full circular
arc, is subject to an out-of-plane force of fixed direction and increasing magnitude, which causes combined
extension, bending and shearing. The radius of the arc is 100 units, i.e. the length is L = 25π, it has a unit
rectangular cross-section, and material constants E = 1 · 107 and G = 5 · 106 (ν = 0). Note that the initial
centerline curve can be exactly parameterized by quadratic NURBS here.

Figure 7 shows the deformed cantilever arc for increasing force magnitude from 0 to 3,000. The isoge-
ometric collocation method was applied with NURBS of degree p = 8 with ` = 16 elements (knot spans)
and the results correspond very well with the ones presented in [41], see Fig. 7b. For generating a smooth
appearance of the load-displacement curves in Fig. 7b we have used 60 load steps with constant increments
of 50 units.
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Furthermore, we also use this example of an initially curved rod to study the convergence properties of
both isogeometric collocation methods for p- and h/k-refinement, as well as shear and membrane locking.
In Fig. 8 the relative L2-errors of the displacement of the centerline ‖rh − re‖L2/L and the L2-error of
curvatures ‖κh−κe‖L2 are given for a load factor of 600 and NURBS degree p = (2, )3, . . . , 9 with ` = 1−64
elements for the primal and the mixed method. As “exact” reference solutions re and κe we have used the
numerical results for p = 10, ` = 96. Again, we can observe the theoretical convergence rates of isogeometric
collocation methods, which were established in [27, 33]. For the displacement/rotation-based method we
have convergence rates of order 2bp/2c for degree p for both the displacements in Fig. 8a and the curvatures
in Fig. 8b. As before, we have convergence rates of order 2dp/2e for degree p for the mixed method for
both the displacements in Fig. 8c and the curvatures in Fig. 8d. Since the thickness to length ratio is
t/L = 1/(25π) ≈ 0.013 here, shear and membrane locking can be observed for the primal formulation, but
they are not as evident as the shear locking in the preceding numerical example, Sect. 7.1. The convergence
behavior of the mixed method shows that it also resolves the membrane locking problem.

7.3. Roll-up of straight cantilever

In our next example we investigate the roll-up of an initially straight, very slender cantilever rod into a
helical spring. The rod has an initial length of L = 1 m and a circular cross-section with diameter 0.005 m.
As material parameterswe use E = 1 · 109 Pa, ν = 0.5, and k1 = k2 = 5/6. It is clamped at one end and at
the other end a moment m̄1 = 6πEI1 and a small, perpendicular force n̄2 = 0.36 N are applied in 24 load
steps.

Due to the slenderness of the rod (t/L = 0.005) we have used the mixed method with p = 8, ` = 32, n = 40
for the analysis. As can be seen in Fig. 9a, the applied loads lead to the roll-up of the cantilever into a helical
spring with 3 coils. Figure 9b shows the highly nonlinear evolution of the displacement of the free end point
of the cantilever rod over the 24 load steps. Though no reference solution is available here the results are
very reasonable and confirm the robustness of the method for a scenario with very large displacements and
rotations.

7.4. Compression of a helical spring

The next application deals with the compression of a helical spring. The spring has 8 coils with a radius
of 0.1 m and a height increment of 0.05 m per winding. The cross-section is circular with a radius of 0.005
m and material parameters are E = 1 · 109 Pa, ν = 0.5, k1,2 = 5/6. The helix is clamped at the bottom
end and a downward-directed force of magnitude 0.5 N is applied to the top end in 10 load steps, causing a
compression and sideward bending of the spring, see Fig. 10a.

The geometry of the spring is circular, and thus it can be parameterized exactly as a single NURBS curve
of degree 2. However, since this curve is only C0 at internal knots (which would be collocation points), we
cannot use this representation directly for the analysis. Alternatively, we have investigated two different
approaches: Either, the curve is interpolated by higher order B-Splines with Cp−1-continuity at internal
knots, or the curve is split at C0-knots, resulting in a “rod structure” with 32 = 8 · 4 curves of degree 2 with
knot vectors Ξ = {0, 0, 0, 1, 1, 1}, n = 3 control points and weights {1, 1/

√
2, 1}.

Due to the slenderness of the rods, we employ the mixed formulation for the analysis. For the former
approach, we use quartic B-Splines with 128 elements (knot spans) for the interpolation of the helical curve
without any further refinements for the analysis (p = 4, ` = 128, n = 132). For the latter approach, we have
k-refined the 32 individual curves for the analysis to p = 4, ` = 8, n = 12. The results for both cases are
provided in Fig. 10b and are visually hardly distinguishable. Comparison to further p/k-refinements shows
the correctness of this large deformation of the spring, which also validates the approach for coupling of
rods, which is G1-continuous here. However, using only p = 4, ` = 4, n = 8 in the latter approach gives
a different result, as can be seen in Fig. 10b, too. This shows that the nonlinear analysis is sensitive to
the usage of a too coarse discretization, but also highlights the advantage of higher continuity isogeometric
discretizations.
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(a) relative L2-error of centerline displacement (primal method)
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(b) L2-error of curvatures (primal method)
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(c) relative L2-error of centerline displacement (mixed method)
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(d) L2-error of curvatures (mixed method)

Figure 8: 45◦ bend cantilever; convergence of relative L2-error of displacement of centerline ‖rh − re‖L2/L and L2-error of
curvatures ‖κh − κe‖L2 for NURBS with degree p = (2, )3 − 9 and ` = 1 − 64 elements (knot spans) for primal method, (a)
and (b), and mixed formulation, (c) and (d)
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(a) initial configuration and roll-up
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(b) end point displacements

Figure 9: Helical spring; deformation of the helical spring with 8 windings when subject to an end force

(a) initial configuration and deformed spring
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Figure 10: Helical spring; deformation of the helical spring with 8 windings when subject to an end force

7.5. Buckling rod mesh structure

Finally, we want to introduce an example of a large-scale rod structure. The rod structure, which is
shown in Fig. 11a, consists of 304 rods with rectangular cross-sections, which are arranged in a 3-dimensional,
circular mesh structure. When clamping the structure at the bottom side and applying a uniform, downward-
directed displacement to the top, the structure buckles at the layers with curved rods.

For the analysis we use the primal formulation with p = 8, ` = 8, n = 16 for each rod, resulting in a total
of 4,864 control points. In order to capture the highly nonlinear buckling effect, we compress the structure
by 1/3 of its height, or two unit cell layers, in around 20 steps with displacement control and adaptively
controlled step size. As can be seen in Fig. 11, the vertical layers with curved rods buckle one after another
until the structure is fully buckled. The sudden drops of reaction force magnitudes in the compression/force
diagram in Fig. 12 indicate when the buckling occurs.

Since the thickness-to-length ratios of the individual rod components of the structure are quite large
in this example, we have used the primal method for the analysis. For verification purposes, we have also
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(a) initial configuration (b) compression 0.6 layers (c) compression 1.2 layers (d) compression 2.0 layers

Figure 11: Buckling mesh; snapshots of buckling mesh structure for increasing compression (coloring by rotational stress χ3

indicates rods which have buckled; for better visibility the back half of the structure is hidden in the bottom views)
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Figure 12: Buckling mesh; reaction forces at bottom side bearings for increasing compression, nonlinear behavior with sudden
drops of force indicates buckling

checked the mixed method with p = 8, ` = 8, n = 16 and the reaction forces in Fig. 12 correspond with
an accuracy of 5 digits. Overall, this example shows that our rod structure discretization method is also
capable of simulating large-scale structures with highly nonlinear deformation behavior, such as buckling.

8. Summary and conclusions

In this work we have presented a novel isogeometric collocation method for the Cosserat rod model. First,
we have introduced the nonlinear Cosserat rod model, which accounts for finite deformation and rotation
of slender elastic rods. The rod’s centerline positions and rotation quaternions, which define the cross-
section orientations, are parameterized as 3- resp. 4-dimensional NURBS curves. Applying the concept of
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isogeometric collocation to the strong form of the governing equations, i.e. the balance equations for internal
forces and moments, we obtain a nonlinear system in terms of the two unknown field variables.

For the simulation of rod structures we have introduced a rigid or quasi-G1-coupling approach, which
enforces the continuity of centerline positions and changes of rotations, as well as balance of forces and
moments at the interfaces. Furthermore, we have also enhanced the isogeometric collocation approach by a
mixed method, which is based on an independent discretization of internal forces and moments, and resolves
the issue of shear locking for very thin rods.

The presented methods have been carefully studied and validated in a number of numerical applications.
Comparison to analytical and numerical reference examples showed that the obtained convergence rates
match analytical and numerical rates, which were previously obtained for application of collocation methods
to linear models such as the Timoshenko beam and rod [32, 33].

Altogether, the presented methods and computational results propose isogeometric collocation as a
promising alternative to existing discretization methods for Cosserat rods. Since the isogeometric approach
allows a straight-forward integration into CAD systems, at least for slender structures such as rods and
shells, the method can be easily implemented for engineering applications.
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