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A B S T R A C T

This article presents a numerical framework to predict the mechanical behavior of knitted fabrics from their
discrete structure at the fabric yarn level, i.e., the mesostructure, utilizing the hierarchical multiscale method.
Due to the regular distribution of yarn loops in a knitted structure, the homogenization theory for periodic
materials can be employed. Thus, instead of considering the whole fabric sample under loading, a significantly
less computationally demanding analysis can be done on a repeated unit cell (RUC). This RUC is created based
on simple structural parameters of knitted yarn loops and its fabric yarns are assumed to behave transversely
isotropic. Nonlinear finite element analyses are performed to determine the stress fields in the RUC under tensile
and shear loading. During this analysis, contact friction among yarns is considered as well as the periodic
boundary conditions are employed. The macroscopic stresses then can be derived from the stress fields in the
RUC by means of the numerical homogenization scheme. The physical fidelity of the proposed framework is
shown by the good agreement between the predicted mechanical properties of knitted fabrics and corresponding
experimental data.

1. Introduction

There has been increasing interest in the mechanical behavior of
fabric materials, due to the wide range of applications they can be
utilized in. Especially textile composite materials, where fabric struc-
tures are utilized as preforms, are gaining more and more attention,
beyond the traditional textile industries, i.e., apparel and fashion.
Indeed, textile composite materials can now be found in domains such
as aerospace, automotive and submarines industries, as well as archi-
tecture and civil engineering, e.g., tension membrane structures [1].
Furthermore, so-called functional, technical or smart textiles are uti-
lized in biomedical applications, defense and flexible electronics [2].

In general, woven, non-woven, braided and knitted fabrics can be
distinguished according to their method of fabrication. Among them,
knitted fabrics, which are produced by intermeshing loops of yarns
using knitting needles, have so far the most modest percentage for
usage in technical applications [3], even though they are widely uti-
lized for outerwear, such as dresses and sportswear due to their ex-
cellent formability [4].

However, due to the advancement in knitting technology as well as
the availability of high performance fibers such as carbon, glass and
aramid, knitted fabrics are gaining more and more interest in different
innovative applications. For example, smart fibers are used as the base
material for active knitted actuators [5] or shape memory alloy (SMA)
fibers are knitted into garments to create the shape changing cloths [6].
In addition, knitted textiles are also the materials of choice in bioma-
terials because of their high flexibility and low tendency to fray [7].
Moreover, in the composite materials industry, the utilization of knitted
fabrics as preforms was considered skeptically because of their rela-
tively low stiffness and strength originating from their low fiber volume
fraction. Nevertheless, the curved nature of the knitted loops manifests
itself in the outstanding drapability of the resultant knitted fabrics,
which catches the attention of composite materials engineers. This
special property enables knitted fabric to be utilized in forming com-
plex and deeply curved composite components [8].

Additionally, changing fiber/yarn materials and knitting pattern of
preforms will vary the mechanical properties of the knitted fabric
composites. Therefore, with the currently available fiber materials and

https://doi.org/10.1016/j.compositesb.2018.04.052
Received 21 January 2018; Received in revised form 12 April 2018; Accepted 24 April 2018

∗ Corresponding author. Singapore University of Technology and Design, SUTD Digital Manufacturing and Design Center, 8 Somapah Road, Singapore, 487372, Singapore.
∗∗ Corresponding author.
E-mail addresses: Tiendung.Dinh@UGent.be (T.D. Dinh), Oliver_Weeger@sutd.edu.sg (O. Weeger).

Composites Part B 148 (2018) 81–92

Available online 28 April 2018
1359-8368/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13598368
https://www.elsevier.com/locate/compositesb
https://doi.org/10.1016/j.compositesb.2018.04.052
https://doi.org/10.1016/j.compositesb.2018.04.052
mailto:Tiendung.Dinh@UGent.be
mailto:Oliver_Weeger@sutd.edu.sg
https://doi.org/10.1016/j.compositesb.2018.04.052
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compositesb.2018.04.052&domain=pdf


various knitting patterns, which can be formed from modern knitting
machines, composite engineers indeed have more options to tailor the
mechanical properties of knitted composites in such a way that they can
fit a particular application. Especially, knitted fabrics can be utilized to
create 3D preforms with several types of fiber and various local knitting
patterns. As a consequence, various local thicknesses and properties
preforms can be achieved [8]. This advantage has for instance been
exploited to create auxetic fabrics and auxetic composites, which have
negative Poisson's ratio [9].

From production point of view, compared to other kinds of fabrics,
knitted fabrics do have several advantages such as mass productivity,
low fabrication cost and quick set-up of the knitting machines [3,8]. It
is noteworthy that the stiffness and strength of knitted fabrics can be
improved by introducing straight yarns as described in Ref. [10].

It was experimentally validated that the mechanical properties of
dry fabric preforms have a strong effect on the mechanical properties of
the resultant textile composites [8,11]. In order to fully exploit the
advantages as well as to identify the limitation of knitted fabrics, a
better understanding of the mechanical properties of this kind of ma-
terials is needed, not only in composite industry but also in other in-
dustries, such as computer graphics [4], apparel and industrial appli-
cations [12]. Fibrous materials in general and knitted fabrics in
particular exhibit high level of anisotropy and nonlinearity in me-
chanical properties due to the heterogeneous nature of their meso/
micro structures [13]. The macroscopic mechanical behavior of knitted
fabrics is mainly governed by the properties of the constituent fibers
and the intricate interactions among fibers, i.e., intra-yarn contact as
well as among yarns, i.e., inter-yarn contract [14]. Thus, modeling and
simulation of knitted fabrics is a very challenging task.

The outline of this manuscript is as follows: in the next section, a
detailed literature review of knitted fabrics modeling is conducted,
including both geometrical and mechanical modeling aspects.
Afterward, the ingredients of our proposed model, viz., the geometrical
model of the plain knitted unit cell, as well as the mechanical material
properties of the fabric yarn are presented. Subsequently, the elements
of the Repeated Unit Cell (RUC)-based homogenization technique and
their implementation in ABAQUS/Standard are mentioned. This section
is followed by numerical results, including the successful validation of
our computational approach against experimental references. The
manuscript ends with some concluding remarks.

2. Literature study on knitted fabrics modeling

During last few decades, the research in textile composites and dry
fabric materials has been very active. However, most of the efforts have
been focusing on woven fabrics, while significantly less references exist
on the investigation of material behavior of knitted fabrics. As a whole,
mechanical properties of knitted fabrics are significantly different from
those of woven fabrics. The main reason is that woven fabrics are made
by interlacing slightly crimped fibers orthogonally. As a consequence,
they possess very little stretchability [15]. On the other hand, knitted
fabrics are produced by looping the yarn through itself to make a chain
of stitches that are subsequently connected together. The curvature of
the yarn in the knitting pattern is the source of stretchability of knitted
fabrics, even in case they are made of high modulus fibers [16]. In fact,
knitted fabrics possess a hierarchical multiscale nature. The fabric is
composed of the yarn and the yarn is composed of the fibers. Therefore,
modeling of knitted fabrics can be addressed at three different scales,
viz., macroscale or fabric scale, mesoscale or yarn scale, and microscale
or fiber scale. Hitherto, most of the works in modeling knitted fabrics
have been proposed at mesoscale [10,17–19]. To model knitted fabrics
at mesoscale level, we need to define a realistic geometry model of the
repeated unit cell (RUC), which is the smallest pattern used to represent
the whole fabric by several translations, a material constitutive law for
the fabric yarn, which can reflect its fibrous nature [17], as well as
frictional contact among the yarns, and appropriate boundary

conditions.

2.1. Geometrical models

In the literature, a couple of geometrical models were proposed for
knitted fabrics, mainly aiming at plain weft knitted fabrics. In a plain
weft knitted structure, rows are referred to as courses, which run across
the width of the fabric, and columns are referred to as wales, which run
along the length of fabric (cf. Fig. 1). According to Gravas et al. [20],
the first two-dimensional geometrical model for knitted fabrics was
proposed by Tompkins [21] more than a hundred years ago. A few
years later, Chamberlain [22] proposed another two-dimensional
model. That model presented a projection of the yarn loop of a plain
weft knitted fabric, which is composed of circular arcs and straight
lines. The first three-dimensional model for plain knitted fabric was
proposed by Peirce [23]. In that model, Peirce assumed that the heart
line of the course yarn is composed of circular arcs and straight lines.
Additionally, he assumed that this heart line lies on a circular cylind-
rical surface. It was pointed out in the paper of Leaf and Glaskin [24]
that the geometrical model of the fabric yarn of Peirce caused dis-
continuities in torsion that occur at material points in the loop. Thus,
they proposed another model [24] to fix that defect. In that proposed
model, Leaf and Glaskin assumed that the projection of the heart line of
the yarn is composed of only circular arcs. That model was later utilized
in Ref. [25] to model knitted fabric reinforced composites.

Recently, Vassiliadis [26] proposed a more complex geometrical
model for plain weft knitted fabrics using B-Splines. The inputs of this
model are the main structural parameters of a single jersey fabric, viz.,
the course space, the wale space and the thickness of the yarn. This
geometrical model was utilized in mesostructural analyses by the same
author [18]. Moreover, the model was also employed in the analyses
presented in Refs. [27,28]. Furthermore, based on that model Abghary
et al. [10] have proposed a novel geometrical model for ×1 1 rib
knitted fabrics. Recently, McKee et al. [15] have utilized trigonometric
functions to describe the heart line of the knitted yarn. The parameters
in that model were calibrated with X-ray tomographic images. It is
noteworthy that all of the geometrical models mentioned thus far were
aimed for relaxed knitted fabrics. Therefore, the residual stresses ori-
ginated from the knitting process mentioned in Ref. [29] can be ne-
glected.

2.2. Mechanical models

There have been various approaches to simulate the mechanical
behavior of knitted fabrics. As mentioned in Ref. [29], during the
course of loading the main deformation modes of knitted yarns are
inter-yarn slip, inter-yarn shear, yarn bending, yarn buckling, intra-
yarn slip, yarn stretching, yarn compression and yarn twist. These de-
formation mechanisms can indeed be captured at the yarn level, i.e., the

Fig. 1. Plain weft-knitted structure and its RUC bounded by the rectangle.
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mesoscale. Therefore, it is no surprise that most of the models for
knitted fabrics were proposed at that length scale.

There were some attempts to use the Euler-Bernoulli beam model to
investigate tensile mechanical properties of knitted yarns analytically,
among them are [19,30–33]. The most successful model in this ap-
proach is the one proposed by Hong et al. [19] for plain weft knitted
fabrics made of high performance fibers, such as glass, carbon and
aramid. In their model, they considered a two-dimensional loop struc-
ture, which represents the relaxed state of the knitted fabric. The yarn
to yarn contact was replaced by kinematic boundary conditions at
contact points. Then the static equilibrium conditions of the fabric
under uniaxial tests were established by using the Euler-Bernoulli beam
theory. The theoretical predictions are in good correlation with the
experimental data. That model was later utilized by Abel et al. [34] to
predict the actuation response of a shape memory alloy garter knitted
fabric and Dusserre et al. [32] to predict the elastic properties of knitted
composite reinforcement with inlaid yarns. However, there are several
strong assumptions in the model of Hong et al. [19]. Firstly, the change
of the yarn's cross section is neglected. This assumption can be accepted
in case of fabrics made of monofilament yarns, but it can lead to er-
roneous results for multifilament fabrics [2]. Additionally, the contact
friction between yarns is not considered in that model. As a con-
sequence, that model cannot be used to study the hysteresis effect of
knitted fabrics. In order to investigate this effect, Dusserre et al. [33]
improved the original model of Hong et al. [19] by introducing the
contact friction. However, visible discrepancies between theoretical
predictions and the experimental data can be seen from their results.
Moreover, the expansion of these analytical models becomes extremely
difficult for knitted fabrics that have complicated knitting patterns
because of the complexity of mathematical equations needed to de-
scribe the fabric behavior.

Ji et al. [35] proposed a mass-spring system to model plain knitted
fabrics. In their model, masses are connected to each other by massless
springs. These springs are used to resist the in-plane elongation or
compression, shearing, and bending deformations. The mechanical
properties of these springs were derived from the corresponding ex-
perimental tests. This approach is undeniable the method of choice to
visualize fabric and garment due to its attractive computational time.
However, validation of this model is missing in Ref. [35]. Another effort
from computer graphics community is the work of Wang et al. [4], who
employed a data-driven technique to model knitted fabrics with dif-
ferent kinds of knitting patterns. In their model, they used piecewise
linear elasticity model to approximate the nonlinear, anisotropic be-
havior of knitted fabrics. There are 39 parameters in their model and
they had to perform 105 tests for each cloth material, which make this
model become clumsy for practical utilization. Nevertheless, the ob-
tained results presented in that paper are very encouraging. The fabric's
deformation looks quite realistic since especially wrinkling patterns are
captured quite well.

Yeoman et al. [7] proposed a phenomenological model for knitted
fabrics at macroscale, i.e., fabric level, utilized in biomedical applica-
tions. Their model is indeed an expansion of the model proposed by
Chuong and Fung [36] for soft biological tissues by including shear and
increasing the number and order of coefficients in the strain energy
function. That model yields quite good results when compared with the
experimental data from uniaxial tensile tests, but its performance is
deteriorated when compared with the experimental data from a simple
shear test. Those authors also claimed that the performance of their
proposed model can be improved if more terms are added into the
strain energy function. However, to do so, it demands more experi-
mental data to calibrate the model parameters.

Recently, Fillep et al. [14] employed numerical homogenization
method to predict the mechanical behavior of dry plain knitted fabrics.
To the best knowledge of the authors, that is the first work in which the
numerical homogenization method was utilized for knitted fabrics.
However, in that paper the validation of the numerical results is

missing. Indeed, the numerical homogenization method is very versatile
and has been widely utilized to predict the mechanical properties of
woven fabrics [37], woven coated fabrics [13] and textile composites
[38–40]. However, thus far there have been very few works in which
the numerical homogenization method was used for simulating the
mechanical behaviors of knitted fabrics. By employing this method, we
can reduce the number of physical experiments, which can be very
extensive and expensive. Moreover, it can help to gain a better under-
standing of the deformation mechanisms of knitted fabrics during the
course of loading as well as to investigate the effects of different
parameters to the overall macroscopic behavior of knitted fabrics [41].
Because of these advantages, numerical homogenization is the method
of choice in the present article.

3. Modeling inputs

3.1. Geometrical parameters

Since the experimental data utilized to validate the numerical si-
mulations in this work are extracted from Ref. [18], we also employed
the geometrical model proposed in Ref. [26] by the same authors for
the sake of consistency. Fig. 2 presents the idealized 3D unit cell of a
plain knitted fabric proposed in Ref. [26]. The inputs of this model are
the course distance c, the wale distance w and the yarn diameter D.
Other parameters are derived directly from these three parameters,
except for the parameter t. This parameter is determined in such a way
that the length of the yarn loop is minimal. Because of the symmetry of
the model, the whole unit cell can be derived once a quarter of the yarn
loop, i.e., EMKA in the front view in Fig. 2, is determined. This path can
be divided into three parts and their mathematical descriptions are as
follows:

• Part EM < <y c(0 /2):

= −x y D
c
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1
2 . Additionally, x z( , )1 1 and x z( , )2 2 are the

coordinates of two points in part MK with = + −y c R/2 0.0011 and
= +y c R/22 .
In this work, eqs. (1)–(6) are implemented in Wolfram Mathema-

tica, then the length of the loop is calculated symbolically as a function
of the parameter t. Subsequently, the function FindMinimum is em-
ployed to find the value of t that yields the minimum length of the yarn
loop. For this article, we consider a plain weft knitted fabric studied in
Ref. [18] that has the course space =c 0.4857 mm, the wale space
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=w 0.8327 mm, and the yarn diameter =D 0.1845 mm. The optimum
value of t is equal to 0.072mm, corresponding to the length of the loop
of 2.742mm (cf. Fig. 3).

3.2. Material parameters

For multifilament fabrics, the fabric yarn is considered as a trans-
versely isotropic material, i.e., mechanical material behaviors are the
same in the directions that are perpendicular to the fiber axis, but
different along the fiber axis. To implement this model in ABAQUS, a
local axis is defined along the heart line of the yarn as shown in Fig. 4.
Herein, the direction 3 is defined along the heart line of the yarn, while
the direction 1 is the direction normal to the heart line and the direction
2 is defined so that it can comply with the other directions to create a
right-handed, orthogonal coordinate system. The elastic parameters of
the yarn utilized in this work are extracted from Ref. [18] and pre-
sented in Table 1. It is worth mentioning here that in case of large
deformation, hyperelasticity models, e.g., the hyperelasticity model
proposed by Charmetant et al. [42], should be utilized for modeling the
fabric yarn.

4. Numerical homogenization method for knitted fabrics

As mentioned in section2, the macroscopic mechanical behavior of
knitted fabrics is mainly governed by their constituents at meso and
microscale. Therefore, it is quite cumbersome to phenomenologically
model knitted fabrics. On the other hand, if we consider the fibers or
yarns, i.e., the local heterogeneities, explicitly in the structural analysis,
it will result in an extremely computationally demanding simulation.
Multiscale modeling is an eligible solution for this case.

In general, multiscale methods can be divided into three categories,
viz., hierarchical, semi-concurrent and concurrent methods [43].
Among them hierarchical multiscale method has been successfully
utilized to extract material properties of dry fabrics [39], coated fabrics
[13] and textile composites [40]. The core of this multiscale method is
the RUC-based homogenization technique. Using this technique, the
strain from macroscale (i.e., the fabric or component level) can be
transferred to the fine scale (i.e., the mesoscale or the yarn level in this
study) as boundary conditions. In return, the stress of the coarse scale
can be obtained from the stress fields in the fine scale by using a certain
homogenization scheme (cf. Fig. 5).

In the present work, we use periodic boundary conditions (PBCs)
and the numerical homogenization method to exchange the information
between the macro and meso scales. For the sake of completeness, here
we recall the basic, yet general theory of the RUC-based homogeniza-
tion technique. Subsequently, their implementation in ABAQUS will be
elaborately presented.

4.1. Theoretical background of the hierarchical multiscale method

Let � � �× →u{ : }3 denote the displacement field at a material
point �∈x of the mesostructure � �⊂ 3. The (quasi-)static equili-
brium equation at the mesoscale can be stated as follows:

∂
∂

=
σ
x

0ij

i (7)

Herein, we assume there is no body force in the system. In this
study, the symmetric stress σ is related to the strain ε by the elastic
constitutive relation

=σ C εij ijkl kl (8)

where Cijkl is the fourth-order stiffness tensor and the strain ε is defined
as

⎜ ⎟= ⎛
⎝

∂
∂

+ ∂
∂

⎞
⎠

ε u
x

u
x

1
2kl

k

l

l

k (9)

Fig. 2. Different views of the idealized plain weft knitted fabric RUC proposed
by Vassiliadis et al. [26] (from top to bottom: top view, front view and side
view).

Fig. 3. Relationship between the parameter t and the fabric yarn loop.
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At the mesoscale of knitted fabrics, contact among the yarns are also
involved. As a consequence, the following conditions are imposed [14].

• Non-penetration conditions in the normal direction:

≤ ≤ − =u g σ σ u g[ ] , 0, ([ ] ) 0n n n n (10)

• Frictional stick and slip conditions in the tangential surface:

< ⇒ =
= ⇒ = −

σ
σ σ

G
G λ

u
u

, [ ] 0,
, [ ]

t t

t t t (11)

Herein, = ⋅u u nn , u[ ]n is the relative displacement in the direction of
the outward normal to the contact surface, g is the initial gap function
between contacting surfaces, = ⋅ ⋅σσ n n( )n , = ⋅ −σ σ σn nt n , G is the
Tresca friction traction, = − uu u nt n , u[ ]t is the relative displacements
in the tangential direction to the contact surface, λ is the frictional
coefficient and n is the unit outward normal vector to �∂ . In ABAQUS,
to impose these contact conditions we utilize the commands *Surface
Behavior, pressure-overclosure = HARD and *Friction [44].

These system of equations cannot be solved without certain
boundary conditions. In RUC-based homogenization, these boundary
conditions have to be formulated consistently with an averaging the-
orem [45]. In this work, we use the averaging theorem formulated by
Hill [46].

LetV �⊂ 3 designate the RUC associated with the mesostructure � .
We define the overall macrostress σ and the overall macrostrain ε of the
mesostructure � as follows:

V
V

V
∫=

∈
σ σ x1 ( )d

x (12)

V
V

V
∫=

∈
xε 1 ε( )d

x (13)

where V is the volume of the RUC. The averaging theorem formulated
by Hill requires that the average of the mesoscopic stress power to be
equal to the macroscopic stress power. It leads to the following equa-
tion:

V
V

V
∫⋅ =

∈
σ σ x x: ε 1 ( ): ε̇( )d

x (14)

As a whole, there are three different boundary conditions for which
eq. (14) is satisfied, viz., constant tractions, linear displacements and
periodic displacements in conjunction with antiperiodic tractions, i.e.,
periodic boundary conditions [47]. These boundary conditions indeed
manifest the macroscopic deformation modes with either prescribed
overall macrostress σ or prescribed overall macrostrain ε. In this work,
we employ the periodic boundary conditions in which we assume that
the overall macrostrain ε is prescribed. Subsequently, the obtained
stress fields in the deformed RUC will be utilized to calculate the overall
macrostress σ (cf. eq. (12)).

4.2. Periodic boundary conditions

In this study, only the in-plane mechanical properties of the knitted
fabric are considered. Thus, two-dimensional PBCs are imposed to the
three-dimensional mesoscale model, i.e., the displacement in the
thickness direction of the mesoscale model is left unassigned.

In practice, the PBCs are usually applied to the opposite surfaces of
the RUC in a pointwise fashion. Specifically, in the case of the con-
sidered knitted fabrics (cf. Fig. 6), the PBCs are imposed on the material
points in area A1 and their counterparts in area A3, which have the same
values of x1 and x3 . These conditions also apply for material points in
area A2 and their counterparts in area A4, and those in area A5 and area
A6.

We can express these PBCs for material points on each surface pair
as follows:

• Surfaces A1 and A3:

= + ⋅u u xε ΔA A
1 1 12 2

1 3 (15)

= + ⋅u u xε ΔA A
2 2 22 2

1 3 (16)

= + ⋅u u xε ΔA A
3 3 32 2

1 3 (17)

• Surfaces A2 and A4:

= + ⋅u u xε ΔA A
1 1 12 2

2 4 (18)

= + ⋅u u xε ΔA A
2 2 22 2

2 4 (19)

= + ⋅u u xε ΔA A
3 3 32 2

2 4 (20)

Fig. 4. Material directions in the fabric yarn: (a) direction 3 is defined along the heart line, (b) direction 1 is defined perpendicularly to the heart line, and (c)
direction 2 is defined in such a way that, together with other directions, it can form a right handed coordinate system.

Table 1
Elastic properties of the fabric yarn studied in this work.

=E N mm10 /1 2 =G N mm3.85 /12 2 =ν 0.312 =ν 0.003713

=E N mm10 /2 2 =G N mm5 /23 2 =ν 0.321 =ν 0.331

=E N mm800 /3 2 =G N mm5 /31 2 =ν 0.003713 =ν 0.003723

Fig. 5. Homogenization method for knitted fabrics.
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• Surfaces A6 and A5:

= + ⋅u u xε ΔA A
1 1 11 1

6 5 (21)

= + ⋅u u xε ΔA A
2 2 21 1

6 5 (22)

= + ⋅u u xε ΔA A
3 3 31 1

6 5 (23)

where u1, u2 and u3 are the displacements in x1-, x2- and x3-directions, xΔ 1
and xΔ 2 are respectively the distances from surfaces A1 to A3 and A6 to
A5 and εij are the components of the macroscopic strain tensor.
Equations (15)–(23) can be implemented in ABAQUS [44] by using the
linear equation constraint. The generic form of the linear equation
constraint in ABAQUS is as follows:

+ + ⋯+ =A u A u A u 0i
P

j
Q

N k
R

1 2 (24)

where ui
P is the nodal displacement at node P in the i direction, and ⋄A

are coefficients that define the relative motion of the nodes [44]. To
implement eqs. (15)–(23) in ABAQUS using this linear equation con-
straint, we introduce two reference points (cf. Fig. 6), then the values of
the last term in each equation are imposed as displacements on these
reference points. It is noteworthy that these reference points are not
connected to any material part, but deformation modes of the RUC are
controlled by the displacements imposed at these points.

4.3. Numerical homogenization scheme

The homogenized macroscopic stress tensor σ can be calculated
from eq. (12). This integration can be done numerically with respect to
the utilized element type and element geometry. However, this ap-
proach is not numerically efficient. By using the divergence theorem
and exploiting the equilibrium condition, eq. (12) can be expressed as:

V V
∫=

∈∂
f x aσ 1 d

xij j i (25)

where f and x are respectively the traction and position vectors of
material points on the surfaces of the RUC. In Ref. [48], it was proved
that by using the PBCs eq. (23) can be simplified as follows:

V VV
∫ ∑= =

∈∂
=

f x a f xσ 1 d 1

p
xij j i

1

3

j
p

i
p

(26)

where f p and xp are respectively the traction and position vectors of the
reference points (cf. Fig. 6).

5. Numerical results

5.1. Uniaxial tensile tests

Physical uniaxial tensile tests in the wale and course directions of
the same knitted fabric sample were performed in Ref. [18] using the
Kawabata Evaluation System for Fabrics (KES-F). In these tests, the
samples have rectangular shapes with a width of 2.5 cm and a length of

20 cm and were cut along the course and wale directions. These samples
were then mounted between two rigid parallel bars. During the course
of deformation, 1 bar was clamped, while the other was moved in
parallel to the clamped one. The strain rate is constant and equal to
0.1 mm/s. This strain rate is quite slow, thus the inertial effect can be
omitted in the analysis. The imposed deformation was stopped when
the tensile load reached the value of 50 gf/cm. It is noteworthy that
during the course of tensile tests the change in thickness direction of
fabrics is assumed to be negligible that is why the load per unit length is
used instead of stresses.

5.2. Tensile test along the course direction

As mentioned in section 4.2, the deformation modes of the RUC are
imposed through the displacements of the reference points. For the
uniaxial test along the course direction, i.e., the coursewise uniaxial
test, the boundary conditions are set as follows:

• The strain =ε 0.1511 that results the displacement of 0.12mm in the
x1-direction (cf. Fig. 6) is imposed at reference point 1. Displace-
ments in other directions at reference point 1 are fixed.

• At reference point 2, displacement in the x1- and x3-direction are
fixed, while the displacement in the x2-direction is free. Thus, it
allows the lateral deformation of the RUC during the course of
loading. As a consequence, the RUC is subjected to uniaxial stress
state.

• Moreover, to avoid rigid body motions, the displacements of a node
located at the center of surface A5 are fixed.

The RUC is discretized by using three-dimensional brick elements,
i.e., the C3D8 element in ABAQUS/Standard [44]. A mesh sensitivity
study is performed to ensure that a converged solution is obtained for
successively refined meshes. Fig. 7 illustrates five meshes used for this
study containing 3,023, 15,165, 32,137, 110,180 and 249,893 ele-
ments. The corresponding load-strain curves obtained from these
models, viz, Model 1 to Model 5, are plotted in Fig. 8. Indeed, the load
in these curves are calculated by multiplying the overall macrostress σ
to the thickness of the RUC. As can be seen from this graph, the load-
strain curve shows no more visible change when the number of ele-
ments in the mesh is greater than 32,137, i.e., Model 3 (cf. Fig. 7c).
Therefore, in subsequent simulations, Model 3 will be utilized. More-
over, to efficiently exploit the parallel computing capacity of ABAQUS,
simulations of Model 3 with different number of CPUs are performed.
As can be seen from Fig. 9, the simulation can be done within 569 s
(wall clock time) when 8 CPUs (Intel Core i7-6900 K, 3.2 GHz) are
utilized. The calculation time does not reduce when the number of
utilized CPUs is further increased.

In Ref. [18], the value of the frictional coeffient is missing, therefore
we perform a parametric study to identify the value of frictional coef-
ficient that can yield a good correlation between the numerical simu-
lation and the experimental data from the coursewise tensile test. The

Fig. 6. Areas in the knitted fabric model in which the PBCs are applied and locations of reference points (Rp1 and Rp2 are respectively denoted for reference points 1
and 2), whose displacements control the deformation modes of the RUC.
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load-strain curves obtained from the parametric study when the fric-
tional coefficient is changed from 0.05 to 0.2 are plotted in Fig. 10.
From this graph, it can be seen that within the considered range of the
frictional coefficient, the homogenized load-strain curves are in good
correlation with the corresponding experimental data, but the homo-
genized load-strain curves in general are less nonlinear. At the

beginning of the load step, the discrepancies among them are quite
small. However, these discrepancies become more visible when the
strain reaches 5%. Among them, the difference between homogenized
result obtained using =μ 0.2 and the experimental data at this strain
level is the largest. When the strain passes 10%, the discrepancies be-
tween experimental data and the homogenized results obtained using

=μ 0.15 and =μ 0.2 are quite small. Therefore, considering the

Fig. 7. Different mesh densities are utilized to discretize the knitted fabric RUC: (a) Model 1: 3023 elements, (b) Model 2: 15,165 elements, (c) Model 3: 32,137
elements, (d) Model 4: 110,180 elements, and Model 5: 249,893 elements.

Fig. 8. Homogenized load-strain curves obtained from the coursewise tensile
test when different mesh densities (cf. Fig. 7) are utilized to discretize the RUC.

Fig. 9. Calculation time vs. the number of CPUs that are utilized for Model 3 to
simulate the uniaxial coursewise tensile test.
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correlation between the homogenized result and the experimental data
for the whole range of strain, the frictional coefficient of 0.15 is chosen.
This value is also utilized for the subsequent simulations in this study.

The deformed configuration of the RUC at the end of the load step is
plotted in Fig. 11. As can be seen from Fig. 11a, the maximum stress
mainly occurs in part KM (cf. Fig. 2) of the yarns. This part is quite
straight, therefore, the material orientation, i.e., direction 3 in Fig. 4, is
almost in line with the loading direction. Additionally, the material
behavior in this direction is assumed linear, that is why the homo-
genized load-strain curves obtained in Fig. 10 are quite linear compared
to the corresponding experimental data. Moreover, it can be seen from
Fig. 11c that the strain in the transversal direction of the yarn, which
results from the contact between the yarn head and yarn legs, is quite
large compared to the strain in the fiber direction. Nevertheless, the
corresponding stress is quite small (cf. Fig. 11d). It is indeed expected in
this case because the Young's moduli in the transversal directions are
quite small compared to the counterpart in the fiber direction (cf.
Table 1). This result, however, emphasizes the importance of con-
sidering the anisotropic nature in mechanical behavior of the fabric

yarn. Moreover, it is noteworthy that by leaving the degree of freedom
in the x2-direction at reference point 2 free, contraction in the lateral
direction is allowed (cf. Fig. 11a). Thus, the uniaxial stress state can be
achieved in the RUC.

5.3. Tensile test along the wale direction

Similar to the tensile test in the course direction, the uniaxial stress
state in the wale direction can be achieved by using the following
boundary conditions:

• The strain =ε 0.1022 , which results in a displacement of 0.049mm in
the x2-direction (cf. Fig. 6), is imposed at reference point 2. Dis-
placements in other directions at reference point 2 are fixed.

• At reference point 1, displacements in the x2- and x3-directions are
fixed, while the displacement in the x1-direction is free. Thus, it
allows the lateral deformation of the RUC during the course of
loading. As a result, the RUC is subjected to uniaxial stress state.

• Moreover, to avoid rigid body motions, the displacements of a node
located at the center of surface A3 are fixed.

Additionally, it is worth repeating that during the course of simu-
lation, Model 3 (cf. Fig. 7) is utilized with the frictional coefficient of
0.15, as determined in the previous section. The stress distribution on
the deformed configuration of the RUC as well as its homogenized load-
strain curve in this test can be seen in Figs. 12a and 13, respectively. It
is clear from Fig. 13 that the model can capture well the nonlinear
behavior of the knitted fabric. It thus proves the validity of the frictional
coefficient chosen in the previous test. Compared to the previous test,
this time the effect of the inter-yarn interaction is more pronounced. It
manifests itself not only in a larger contact area in the fabric yarn (cf.
the non-zero contact-pressure bands in Figs. 12b and 11d), but also in
the homogenized load-strain curve plotted in Fig. 13. In this graph, it
can be seen that the homogenized load-strain curve is more nonlinear
compared to the counterpart in Fig. 10. This phenomenon originates
from the contact friction among the yarn as mentioned in Ref. [14].
Moreover, it is noteworthy that the behavior of the fabric in the wale
direction is stiffer than in the course direction. It is in fact in line with
the observation presented in Ref. [2], where the authors mentioned that
in plain weft knitted fabrics, the load can be transferred through wavy
paths that are defined by the fabrics' loops and connection points (cf.






Fig. 10. Effect of the frictional coefficient μ on the homogenized load-strain
curves obtained from the coursewise tensile test.

Fig. 11. Stress and strains distribution on the fabric yarns: (a) stress in the fiber direction, (b) strain in the fiber direction, i.e., direction 3 in Fig. 3, (c) strain in
direction 1, and (d) contact pressure between yarn head and yarn leg.
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Fig. 14). Indeed, the crimp level, i.e., the level of waviness, of the path
in wale direction is less than the counterpart in the course direction.
Eventually, it leads to the stiffer mechanical behavior of the knitted
fabric in the wale direction.

5.4. Shear test

As mentioned in intro, knitted fabrics can be used as preforms for
deeply curved composite components due to their excellent formability.
During the forming process, dry knitted fabrics can be subjected to a
very complicated deformation, which is a combination of biaxial ten-
sion, in-plane shear, transverse compaction and out-of-plane bending.
Among them, the in-plane shear deformation is significant and can

cause problems, such as the appearance of wrinkles [49]. Therefore, it
is vital to understand the fabric shear behavior to model forming pro-
cess with confidence.

In Ref. [18], a shear test of the same fabric studied in this work has
been done. The sample has dimensions of 20 cm× 5 cm. The sample was
mounted between two rigid bars, as it was in the tensile tests. Then one
bar was clamped and the other was moved parallel to the clamped one.
At first this bar was moved along the wale direction to impose a pre-
tension of 10 gf/cm. Then, it was moved along the course direction to
impart shear deformation on the sample. The shearing deformation is
stopped when the shear angle is equal to ∘8 . For this test, the boundary
conditions of the RUC are set as follows:

• At reference point 1, the displacements in the x1- and x3-directions
are fixed, while the displacement in the x2-direction is free.

• At reference point 2, the displacement in the x3-direction is fixed. A
force of 0.00476 N, which is equivalent to the pretension of 10 gf/
cm, is applied in the x1-direction. Subsequently, the induced dis-
placement in the x1-direction was retained. Afterward, a strain ε12 of
0.14, which results in a displacement of 0.116mm in the x2-direc-
tion, is imposed at reference point 2.

• Moreover, to avoid rigid body motion, displacements of a node lo-
cated at the center of area A5 are fixed.

The deformed configuration and the stress distribution on the RUC
is visualized in Fig. 15. It can be seen from this figure that the value of
the von Mises stress in this test is quite small compared to the previous
tests. In Fig. 16, the homogenized load-shear angle curve is plotted
together with the corresponding experimental data. Generally, the
prediction values are monotonically lower than the experimental data,
but the discrepancy between them is quite small in this case. The rea-
sons for this discrepancy can be as follows:

• The value of load in this test is ca. 10 times smaller than those in the

Fig. 12. Stress distribution in the fiber direction on the fabric yarns and contact pressure, which results from the frictional contact between the fabric yarns in the
walewise tensile test.

Fig. 13. The homogenized load-strain curve obtained from the RUC and the
corresponding experimental data in the walewise tensile test.

Fig. 14. The load transfer paths in plain weft knitted fabrics defined in Ref. [2].

Fig. 15. Stress distribution in the fiber direction on the fabric yarns in the shear
test.
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walewise and coursewise uniaxial tests (the maximum value is ca.
0.0588 N). With this range of load, it can be rather challenging to
measure the force precisely. This problem manifests itself in a quite
noisy curve in Fig. 16.

• Moreover, the value of pretension force, which is very small (ca.
0.00476 N) to measure precisely, can also affect the homogenized
load-shear angle curve.

5.5. Virtual biaxial tensile tests

As a whole, the interaction between fabric yarns can affect

significantly the mechanical behavior of knitted fabrics. Thus, biaxial
tensile tests are essential to capture this effect. In literature, the beha-
vior of fabrics is investigated on a cruciform sample [50]. During the
course of the experiment, the strains at the center of the cruciform is
recorded, while the stresses are derived from the forces applied at the
arms of the cruciform. Indeed, these derived stresses are different from
the stresses at the center of the cruciform. Thus, the obtained stress-
strain curves do not reflect the constitutive behavior of the considered
fabrics [13]. As a consequence, it can lead to some difficulties to in-
terpret these data and utilize them to develop a macroscopic material
model for fabrics. Moreover, the number of biaxial tensile tests need to
characterize the mechanical behavior of fabrics can be extensive and
expensive. To overcome these difficulties in this section we utilize the
proposed model to perform biaxial tensile tests for different course-wale
strain ratios. The homogenized load-strain curves for different strain
ratios, viz., 1:0, 2:1, 1:2 and 0:1, in the course and wale directions are
shown in Fig. 17. From the figure, it can be seen that the knitted fabrics
behavior is highly anisotropic. These data can be useful for developing
macroscopic constitutive models of knitted fabrics, which can be uti-
lized for structural analyses.

6. Conclusions

The ultimate target of this article is to propose a numerical frame-
work to predict the mechanical properties of knitted fabrics based on
their mesostructure, the properties of their constituents, i.e., the fabric
yarns, and the interaction among the fabric yarns. This has been
achieved by using the hierarchical multiscale method. The core of our
proposed framework is the nonlinear finite element analysis of the
fabric RUC. As a starting point, the basic structural parameters of
knitted fabrics, viz., the course space, the wale space, and the diameter
of the fabric yarn, are utilized to create the geometry of the RUC. To
capture the fibrous nature of the fabric yarns, the transversed isotropic
material model is employed to model the fabric yarns. During the

Fig. 16. The homogenized load-shear angle and its corresponding experimental
data in the shear test.

Fig. 17. The homogenized load-strain curves in biaxial tests with different course-wale strain ratios: (a) Walewise strip biaxial test, i.e., =ε ε: 1: 011 22 , (b) =ε ε: 2: 111 22 ,
(c) =ε ε: 1: 211 22 , and =ε ε: 0: 111 22 , i.e., coursewise strip biaxial test.
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course of the analysis, PBCs are imposed on the RUC, which allows the
macroscopic deformation to be transferred to the RUC. Additionally,
the frictional contact interaction among the fabric yarns is also con-
sidered. Afterward, the numerical homogenization scheme is utilized to
extract the macroscopic stresses from the stresses in the deformed RUC.
In several numerical studies considering uniaxial tension, shear, and
biaxial tension, it has been shown that the predicted mechanical be-
havior of knitted fabrics are in good agreement with the corresponding
experimental data. Furthermore, the nonlinear finite element simula-
tions could be done in a reasonable time. Further research will apply
this numerical framework for different knitted fabrics that have more
sophisticated mesostructures to predict their mechanical properties in
small or moderate strain regimes, as we have done in this work, and
later expand it to finite deformation regime. Moreover, employing the
second order homogenization method to simulate the nonlinear out-of-
plane deformation mode is also an intriguing extension.
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