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Abstract

Recent advances in deep learning for 3D point clouds
have shown great promises in scene understanding tasks
thanks to the introduction of convolution operators to con-
sume 3D point clouds directly in a neural network. Point
cloud data, however, could have arbitrary rotations, espe-
cially those acquired from 3D scanning. Recent works show
that it is possible to design point cloud convolutions with
rotation invariance property, but such methods generally
do not perform as well as translation-invariant only con-
volution. We found that a key reason is that compared to
point coordinates, rotation-invariant features consumed by
point cloud convolution are not as distinctive. To address
this problem, we propose a novel convolution operator that
enhances feature distinction by integrating global context
information from the input point cloud to the convolution.
To this end, a globally weighted local reference frame is
constructed in each point neighborhood in which the local
point set is decomposed into bins. Anchor points are gener-
ated in each bin to represent global shape features. A con-
volution can then be performed to transform the points and
anchor features into final rotation-invariant features. We
conduct several experiments on point cloud classification,
part segmentation, shape retrieval, and normals estimation
to evaluate our convolution, which achieves state-of-the-art
accuracy under challenging rotations.

1. Introduction
Scene understanding has long been a challenging prob-

lem in computer vision. Recently, there have been signifi-
cant advances in applying deep learning [19] to train neu-
ral networks for numerous tasks such as object classifica-
tion and semantic segmentation. With the wide availabil-
ity of consumer-grade depth sensors, acquiring 3D data has
become more intuitive and robust with many 3D datasets
available publicly [40, 4, 14, 7, 2, 43, 36]. This leads to in-
creased interests in tackling scene understanding in the 3D
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domain.

Among the representations for 3D data, a promising di-
rection is to let neural networks consume point cloud data
directly since point cloud data is the common data format
acquired from depth sensors such as RGB-D or LiDAR
cameras. However, since a point cloud is a mathematical
set and so it fundamentally differs from an image, passing a
point cloud to a traditional neural network like those in the
image domain does not work. In principle, it is necessary to
design a convolution-equivalent operator in the 3D domain
that can take a point cloud as input and output its per-point
features. Several attempts have been made with promising
results [27, 29, 15, 20, 42, 47].

Despite such research efforts, a problem often over-
looked in point cloud convolution is that the operator does
not exhibit rotation invariance. A viable solution in 2D deep
learning is to augment training data with random rotations.
However, in 3D, such data augmentation becomes less ef-
fective due to the additional degree of freedom in represent-
ing 3D rotations, which can make training prohibitively ex-
pensive. A few works turn to learn rotation-invariant fea-
tures [46, 30, 26, 8, 5], which allows consistent predictions
given arbitrarily rotated point clouds.

Unfortunately, a limitation from previous works is that
rotation-invariant convolution does not yield features that
are as distinctive as translation-invariant convolution. This
makes performing object classification with aligned data
more accurate than performing the same task with data with
arbitrary rotations. For exact rotation invariance, it is ex-
pected that the rotation-invariant convolution is as accurate
as its translation-invariant sibling.

In this paper, we propose a novel approach for perform-
ing rotation-invariant convolution for point clouds. Our key
observation is that when rotation invariance is added, it in-
troduces some ambiguities and thus reduces feature distinc-
tiveness. To address this problem, we propose to integrate
global context information from the input point cloud to the
convolution, resulting in a global context aware convolution
for 3D point clouds. The main contributions of this work
are:
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• GCAConv, a novel rotation-invariant convolution op-
erator that output features from local point sets and
global anchors. Each anchor is built from subdivided
spaces using a globally-weighted local reference frame
at each keypoint. By explicit encoding the relation be-
tween local point sets and the global anchors, GCA-
Conv can capture both local and global context;
• GCANet, a neural network architecture that uses

GCAConv for learning rotation-invariant features for
3D point clouds. The network allows consistent
performance across training/testing scenarios that in-
volves different rotation modes;
• Applications of GCANet on object classification, ob-

ject part segmentation, shape retrieval, and normals es-
timation that achieve the state-of-the-art performance
under challenging rotations.

2. Related Works
Deep learning in the 2D domain has witnessed great

success in solving scene understanding tasks such as ob-
ject classification, semantic segmentation, normal estima-
tion, etc. Drawing from this inspiration, techniques for deep
learning in the 3D domain has recently been developed with
promising results. In this section, we review the state-of-
the-art research in deep learning with 3D data, and then
focus on techniques that enable feature learning on point
clouds for scene understanding tasks.

Early research in 3D deep learning focus on regular and
structured representations of 3D scenes such as multiple 2D
images [33, 28, 10], 3D volumes [28, 21], hierarchical data
structures like octree [31] or kd-trees [18, 38]. Such rep-
resentations yield good performance. However, they face
challenges from a practical point of view due to memory
consumption, imprecise representation, or lack of scalabil-
ity when high-resolution data is employed.

Many recent works in 3D deep learning switched to in-
vestigate how to learn with 3D point cloud, a more compact
and intuitive representation compared to volumes and im-
age sets. However, performing deep learning with 3D point
clouds is not as straightforward as extending 2D image con-
volution to 3D because mathematically, a point cloud is a
set. To define a valid convolution for a point cloud, it is nec-
essary to ensure that the output features from a convolution
is invariant to the permutation of the point set. PointNet [27]
pioneered such a solution to output global features by max-
pooling per-point features from MLPs. Several follow-up
works focus on designing convolutions that can learn local
features for a point cloud efficiently [15, 29, 20, 42, 39, 47].
Please also refer to the technical report by Guo et al. [13]
for further summary of many deep learning techniques for
3D point clouds.

A fundamental missing feature in the previously men-
tioned convolution for point clouds is that rotation invari-

ance is not supported. A common solution is to augment
the training data with arbitrary rotations, but a limitation of
doing so is that generalizing the predictions to unseen rota-
tions is challenging, not mentioning that the training time
becomes longer due to the increased amount of training
data. Instead, it is desirable to have a point cloud convo-
lution with rotation-invariant features.

To this end, Rao et al. [30] map a point cloud to a
spherical domain to define a rotation-invariant convolution.
Zhang et al. [46] proposed a convolution that operates on
features built from Euclidean distances and angles. Poule-
nard et al. [26] proposed to integrate spherical harmon-
ics to a convolution. You et al. [44] transform the point
cloud onto spherical voxel grids and apply convolution in
the transformed domain. A great benefit of such techniques
is that it allows consistent predictions across training/testing
scenarios with or without rotations being applied to the
data, and they can generalize robustly to inputs with un-
seen rotations. Despite that, so far these techniques share a
common limitation: their performance is inferior to that in
translation-invariant point cloud convolution. A typical ex-
ample is the accuracy in object classification task on Mod-
elNet40 dataset [40]. State-of-the-art techniques such as
PointNet [27], PointNet++ [29], PointCNN [20], or Shell-
Net [47] report between 89% to 93% of accuracy while
techniques with rotation-invariant convolution only report
up to 86% of accuracy [46, 26]. Our work in this paper is
dedicated to analyze and address this problem.

3. Background
Let us first analyze the performance of existing point

cloud convolutions and their rotation-invariant counterparts.
We select object classification task as the key task for our
analysis. An observation is that the classification accuracy
drops when rotation-invariant convolution is applied. We
further dissect this phenomenon by visualizing the latent
space learnt by the neural networks using t-SNE [37]. The
results are shown in Figure 1.

In this figure, we follow Esteves et al. [9] and Zhang
et al. [46] to evaluate three scenarios for object classifica-
tion: z/z, SO3/SO3, and z/SO3. In case z/z, we use data
augmented with rotation about gravity axis for training and
testing. In case SO3/SO3, we use data augmented with ar-
bitrary rotations for training and testing. In case z/SO3, we
train with data by z-rotations and test with data by SO3 ro-
tations. The first scenario has been extensively evaluated by
previous point cloud convolution methods. The second and
third scenario is specially designed to evaluate rotation in-
variance. The third scenario is the most challenging as it is
designed to test whether a convolution can generalize well
to unseen rotations.

As can be seen, latent space learnt by rotation-invariant
convolution such as RIConv by Zhang et al. [46] does



Figure 1. t-SNE comparisons of the latent features for Point-
Net++ [29], RIConv [46], and our method under three different
rotation settings. The clusters in the t-SNEs show that to make
good decisions in object classification, it is desirable to have the
cluster boundaries as separated as possible.

not exhibit good discrimination among classes. The main
difference between such convolution and traditional point
cloud convolution is that it no longer works with point coor-
dinates at start. In the case of RIConv, the points are trans-
formed into Euclidean based features including distances
and angles, which are not as unique as point coordinates
since many points can share the same distance and angles.
This is well reflected into the t-SNE in the first column (z/z)
in Figure 1. PointNet++ [29] has a good separation among
the clusters while RIConv [46] has more condensed clusters
in the center, resulting in more ambiguities during classifi-
cation.

Similarly, in the second column (SO3/SO3), PointNet++
and RIConv has similar clustering, which explains their
similar performance in the classification (see more quan-
titative comparisons in Table 1). Finally, the third column
(z/SO3) highlights the strength of rotation-invariant convo-
lutions as they can still maintain consistent predictions and
generalize well to unseen conditions. In this case, the t-
SNEs show that PointNet++ cannot generalize effectively.

The goal of our work is to devise a convolution that can
output highly distinctive rotation-invariant features. Here
we achieve this by introducing features from a global con-
text to design a new rotation-invariant convolution. We are
inspired by the fact that for each point in a point cloud,
its 3D coordinates encode global information. Such global
information is lost when one converts the coordinates into
some rotation-invariant features such as distance and angles
as done by Zhang et al. [46].

4. Our Method
Our rotation-invariant convolution is built upon two key

concepts: a repeatable and robust local reference frame and
a global context using anchors. The idea of using local ref-
erence frames is related to spatial transformer [17] which
is also leveraged by PointNet [27]. However, as spatial
transformer is data-driven, it does not work well to unseen
conditions such as the z/SO3 test in Figure 1. To achieve
robustness, we build local reference frames (LRFs) at the
keypoints of the point cloud so that features can be learnt
in such local spaces. At a keypoint, not only points in its
local neighborhood can strongly affect the construction of
the reference frame, but non-neighboring points can also
contribute to such construction. It is well known that re-
peatable and robust LRFs are keys to traditional 3D point
descriptors [35].

After the LRFs are constructed, theoretically we can sim-
ply proceed to learn features of the local point sets. How-
ever, as previously mentioned, global shape information are
also useful for feature learning. We also retain such global
information and integrate them into the convolution. Here
we achieve this through anchors. Each anchor is defined
as a representative point in each subspace formed by the
axes of the LRF. Given a LRF, it is possible to construct
eight subspaces. At each LRF, the anchors thus approx-
imate global features of the point cloud and we integrate
such features to define our convolution.

4.1. Globally Weighted Local Reference Frames

For an input point set, we use farthest point sampling to
select a set of keypoints which can fully cover the underly-
ing point cloud and denoted asQ. For each keypoint p ∈ Q,
we use it as a query to obtain local region Ωp centroid at p.
We wish to use deep learning to extract rotation invariant
features from the local region. To begin with local features
learning, it is necessary to construct a local reference frame
(LRF) such that the 3D coordinates can be transformed into
rotation invariant features. The unit vectors of the LRF at
p can be determined by normalizing the eigenvectors of the
covariance matrix

Σp =

Nsub∑
i=1

(xi − p)(xi − p)>, (1)

where Nsub is the number of points in the local region and
xi ∈ Ωp. However, the LRF via such computation is un-
stable and sensitive to noise. Slight point variations can af-
fect the LRF and make it not repeatable. Moreover, when
a local region Ωp undergoes some rotations, ambiguity can
arise, reducing the distinctiveness of the local features. For
example, it is hard to tell apart a corner region on a bed and
on a floor/wall/ceiling in the presence of arbitrary rotations.
To solve these problems, we establish more reliable LRFs



Figure 2. Global context aware convolution (GCAConv) for learning point cloud features comprises of two main steps: (1) Transform
into rotation-invariant feature space: for an input point cloud (the upper left plane model), the red dots indicate the keypoints extracted by
farthest point sampling. At each keypoint, we first establish a local reference frame (LRF) by employing weights from all other keypoints.
The 3D coordinates of the keypoint neighbors are projected to the local space spanned by the LRF to obtain rotation invariant features; and
(2) Global feature learning with anchors: eight anchors are constructed to represent eight bins that spans the half-spaces due to the LRF.
The local-global relation between the points in a neighborhood and the shape approximates in anchors are folded by a 1D convolution to
output final rotation-invariant features.

by utilizing all query points of Q in the construction:

Σq =

N∑
i=1

wi(qi − p)(qi − p)>, (2)

where wi is the weight that controls how a point in the point
set contributes to the matrix. The weight is defined by

wi =
m− ‖qi − p‖∑N
i=1m− ‖qi − p‖

, (3)

where m = maxi=1..N (‖qi − p‖). Intuitively, this weight
allows nearby points of p to have large contributions to the
covariance matrix, and thus greatly affect the LRF. Points
further away from p however can contribute globally to the
robustness of the LRF. Such weighted LRF construction is
a fundamental step in 3D hand-crafted features [35], which
can be easily integrated into our proposed convolution.

A typical problem in defining LRFs is the sign flip-
ping, i.e., the LRF signs should not vary for the same point
set [35]. There are multiple ways to resolve the ambigu-
ity; here we disambiguate the signs of the eigenvectors by
orienting them to the global vector O defined by

O =

N∑
i=1

wi(qi − p), (4)

which represents the main orientation of the whole model
from the perspective of point p.

4.2. Anchor Point Generation

Theoretically, it is possible to perform convolution on
the point set transformed into local coordinates using the
constructed LRF. However, it is wasteful to discard global
information from the original coordinates as such informa-
tion can further improve feature distinctiveness. Our idea
here is to use anchor points to retain such information in a
compact way.

Specifically, to establish the anchors, we divide the
whole input point cloud into eight bins, as shown in Fig-
ure 2. In each bin, we use the barycenter of the local point
set in that bin as the anchor point. Such anchors are crude
approximations to the global input shape, and therefore they
convey useful information for the convolution.

It is worth noting that there are many ways to define an-
chors in our case. For example, one can choose to use more
bins or all the original point coordinates as anchors, but
those will significantly increase computation time for the
convolution. We empirically use eight bins as it strikes a
balance between the amount of global information retained
and the running time.

4.3. Global Context Aware Convolution

With the LRFs and anchors points defined, we are now
ready to construct our Global Context Aware Convolution
(GCAConv) to learn the rotation invariant features. Let us
consider a point set P = {xi} where xi represents 3D co-
ordinates of the point i. Let Ωi be a local point set centered



at xi. A typical convolution to learn the features of Ωi can
be written as

f(Ωi) = σ(A({T (fxi
) : ∀i})) (5)

This formula indicates that features of each point in the
point set are first transformed before being aggregated by
the aggregation functionA and passed to an activation func-
tion σ. A popular choice of A is maxpooling, which sup-
ports permutation invariance in the orders of the input point
features [27]. There are a few ways to define the transfor-
mation function T . In PointNet [27], it is defined by

T (fxi
) = wi · fxi

(6)

where · indicates the element-wise product. This product
however ignores the contribution of features from neigh-
boring points xj to center xi. To further incorporate such
neighbor information, Liu et al. [22] proposed to define the
weights by a mapping from a relation vector hij between a
point xi and its neighbor xj .

Here our goal is to define the weights by using the local
point set and the anchors. We project both the local point set
and anchor points onto the LRF system such that the global
3D coordinates are transformed to a local frame:

x′i = LRF (xi), a′i = LRF (ai). (7)

where xi and ai represents the global point and anchor, and
x′i and a′i represents the local point and anchor, respectively.
From here, we aim to relate the weights to such coordinates.
Given a pair of a local point x′i and an anchor a′j , we define
their relation as

h(x′i, a
′
j) = (x′i − a′j , ‖x′i − a′j‖) (8)

which can be represented by a 1 × 4 vector. We stack the
features over eight anchors into an 8× 4 matrix.

Our convolution can then be defined as a 1D convolution
K that transforms such matrix into a feature vector. The
kernel of the convolution is 1× 8.

T (fΩi) = wi · fxi = (K ? hi) · fxi (9)

Note that in this formula, we operate on local coordinates,
and we use the anchors a′i to approximate features from
neighboring points. This allows us to have two main ad-
vantages. First, our convolution only needs local features
to operate. Second, the LRFs allow that the learnt features
are rotation invariant by definition, without the need of data
augmentation during training. Our features can generalize
easily to unseen rotations, and we also save a lot of compu-
tation during training.

Airplane

...

...

Classification

GCA-Conv
GCA-Deconv
MLP

Segmentation

Normals
Point
cloud

Figure 3. Our network architecture with the proposed point cloud
convolution. We use three convolution layers to extract point cloud
features before fully connected layers for object classification. We
use the same encoder-decoder style architecture with skip connec-
tions for object part segmentation and normal estimation task.

4.4. Network Architecture

We use the proposed convolution to design three neural
networks for object classification, object part segmentation,
and normals estimation, respectively. The architecture is
shown in Figure 3. Our classification network has a stan-
dard architecture and uses three consecutive layers of con-
volution (with point downsampling) followed by fully con-
nected layers (256, 128) to output the probability map. In
three layers of convolutions, the output channels are set as
128, 256, 512 respectively, and the downsampling numbers
are set as 512, 128 and 32 respectively. The neural network
for object part segmentation and normal estimation has a de-
coder branch that includes skip connections and gradually
upsamples the point cloud to the original resolution. We
use MLP after a skip connection to unify and transform the
combined features to have a valid size before deconvolution.
Our deconvolution is defined similarly to GCAConv. The
minor difference is that it gradually outputs denser points
with fewer features.

5. Experimental Results
In this section, we evaluate our method on the 3D ob-

ject classification, object part segmentation, shape retrieval,
and normal estimation task. We implemented our method
in TensorFlow [1]. We use a batch size of 32 to train ob-
ject classification and 16 to train object part segmentation,
shape retrieval, and normal estimation. The training is per-
formed with Adam optimizer with an initial learning rate
set to 0.001. The experiments are conducted on a machine
with an Intel(R) Core(TM) i7-6900K CPU equipped with
an NVIDIA GTX TITAN X GPU.

5.1. Classification on ModelNet40

Object classification is the main task in our evaluation.
We train the classification network by using the Model-
Net40 variant of the ModelNet dataset [41]. ModelNet40



Method Format Input size Params. z/z SO3/SO3 z/SO3 Average acc. Acc. std.

VoxNet [16] voxel 303 0.9M 83.0 87.3 - 85.2 3.0
SubVolSup [28] voxel 303 17M 88.5 82.7 36.6 69.3 28.4
Spherical CNN [9] voxel 2× 642 0.5M 88.9 86.9 78.6 84.8 5.5
MVCNN 80x [33] view 80× 2242 99M 90.2 86.0 81.5 85.9 4.3
PointNet [27] xyz 1024× 3 3.5M 87.0 80.3 21.6 63.0 41.0
PointNet++ [29] xyz 1024× 3 1.4M 89.3 85.0 28.6 67.6 33.8
PointCNN [20] xyz 1024× 3 0.60M 91.3 84.5 41.2 72.3 27.2
RS-CNN [22] xyz 1024× 3 1.41M 90.3 82.6 48.7 73.9 22.1

RIConv [46] xyz 1024 ×3 0.70M 86.5 86.4 86.4 86.4 0.1
SPHNet [26] xyz 1024 ×3 2.9M 87.0 87.6 86.6 87.1 0.5
SFCNN [30] xyz 1024 ×3 - 91.4 90.1 84.8 88.8 3.5
ClusterNet [5] xyz 1024 ×3 - 87.1 87.1 87.1 87.1 0.0

Ours (w/o anchor) xyz 1024 ×3 0.21M 86.3 86.2 86.2 86.2 0.0
Ours xyz 1024 ×3 0.39M 89.0 89.2 89.1 89.1 0.0

Table 1. Comparisons of the classification accuracy (%) on the ModelNet40 dataset. On average, our method has the best accuracy and
lowest accuracy deviation in all cases.

contains CAD models from 40 categories such as airplane,
bottle, chair, dresser, vase, etc. We use the preprocessed
data from PointNet [27] that consists of 9, 843 models for
training and 2, 468 models for testing. We use point clouds
of size 1024 in this task. Each point is represented by
(x, y, z) coordinates in the Euclidean space. The training
takes approximately 11 hours to converge in 250 epochs.

Following Esteves et al. [9] and Zhang et al. [46], we
evaluate the performance of object classification with three
scenarios: (1) using data augmented with rotation about
gravity axis (z/z) for training and testing, (2) using data
augmented with arbitrary rotations (SO3/SO3) for training
and testing, and (3) training with data by z-rotations and
testing with data by SO3 rotations (z/SO3). It is expected
that rotation-invariant convolutions should work well in the
z/SO3 scenario.

Table 1 details the results of this experiment, which con-
firms the effectiveness of the proposed rotation-invariant
convolution. As can be seen, on average, not only
our classification accuracy outperforms the state-of-the-
art translation-invariant point cloud convolution, the per-
formance is also consistent across three scenarios. For
rotation-invariant convolutions, our method outperforms the
accuracy of RIConv [46], SPHNet [26], and ClusterNet [5]
by a good margin. Our method is slightly more accurate
than SFCNN [30] but much more consistent.

5.1.1 Ablation Studies

Network Design. We conduct an ablation study on the
ModelNet40 dataset for the classification task (Table 2). We
examine four settings in our convolution: (1) the globally
weighted LRFs with main orientation (Weight), (2) the use

of main orientation to resolve the LRF sign ambiguity (O
vector), (3) the use of anchors for global context (Anchor),
and (4) the data augmentation with rotations used for the
training (Rot. Aug.). Five models (A-E) are used to study
the effects of these settings by turning them on/off.

Model A is our baseline setting with all settings on.
Model B tests the importance of the weights for computing
LRFs and the main orientation. It can be seen that without
such weights, the accuracy decreases to 87.1%. The main
reason is that the LRFs and the main orientation are more
noisy and less repeatable in such case. Next, in model C we
further turn off the O vector to test the stability of the LRFs
without sign correction. The accuracy further decreases to
86.7%. This verifies that constructing stable LRFs is key
to good network performance. In model D, we turn off the
global anchor. In this case, only the local points are used
for feature extraction. Thanks to the LRFs, the local fea-
tures are still effective despite of mild accuracy drop. In
model E, we test the performance without rotation augmen-
tation scheme during the training procedure. We find the

Model Weight O
Vector

Anchor Rot.
Aug.

Acc.

A
B
C
D
E

X

X
X

X
X

X
X

X
X
X

X

X
X
X
X

89.2
87.1
86.7
86.6
89.2

Table 2. An evaluation of our network design. It shows that
weighted LRF, resolving LRF sign ambiguity, and global anchor
play an important role for good performance.



Number of Anchors 1 2 4 8

Accuracy 87.3 87.8 88.5 89.2

Table 3. Classification accuracy (%) on ModelNet40 [41] with dif-
ferent number of anchors.

accuracy is not affected by data augmentation as GCAConv
already achieves exact rotation invariance.

Comparison to learned LRFs. It is generally tempting
to learn the LRFs to design rotation-invariant convolution.
Here we compare this method to our proposed LRFs. We
use a two-layer MLP to predict the LRFs and then use them
to transform the input point coordinates into a local coordi-
nates before proceeding for convolution as described in the
main paper. We found that predicting LRFs works well in
z/z and SO3/SO3 mode, with both scenarios achieved ac-
curacies of 89.3% and 89.2%, respectively. However, us-
ing data-driven LRFs makes the convolution only rotation-
aware, but not exactly rotation-invariant. Such convolution
fails to generalize to unseen rotations in the z/SO3 scenario
with the accuracy of 36.2%.

Number of Anchors. From the ablation studies, we see
that without global anchors, the performance is decreased.
Here, we further analyze the effects of the number of an-
chors by investigating the performance on ModelNet40 with
a different number of anchors. The qualitative results are
shown in Table 3. We can see that with only one anchor,
the accuracy decreases to 87.3%, but still higher than RI-
Conv which is around 86.4%. This shows the advantages
of global information. With the number goes on, the accu-
racy also increases. We empirically use eight anchors as it
strikes a balance between the amount of global information
retained and the running time.

5.2. Object Part Segmentation on ShapeNet

In addition to object classification, we evaluate our
method to output a label for each point in the point cloud,
resulting in object part segmentation. We use the 3D mod-
els in ShapeNet [4] to train our network with point size of
2048 in this task. It takes roughly 36 hours for the training
to complete 300 epochs.

The quantitative and qualitative results are shown in Ta-
ble 4 and Figure 4, respectively. In this task, we achieve
start-of-the-art results for both SO3/SO3 and z/SO3 scenar-
ios. Our method outperforms RIConv [46] by almost 2%
of accuracy. From Figure 4, we can clearly see that with
z/SO3 mode methods like PointNet++ and SpiderCNN can
not work well. This is easy to explain as these methods
use the raw xyz coordinates as input for training, thus can-
not well understand unknown rotations. RIConv [46] works

Method input SO3/SO3 z/SO3

PointNet [27] xyz 74.4 37.8
PointNet++ [29] xyz+normal 76.7 48.2
PointCNN [20] xyz 71.4 34.7
DGCNN [39] xyz 73.3 37.4
SpiderCNN [42] xyz+normal 72.3 42.9
RS-CNN [22] xyz 72.5 36.5
RIConv [46] xyz 75.5 75.3

Ours (w/o anchor) xyz 73.2 73.6
Ours xyz 77.3 77.2

Table 4. Comparisons of object part segmentation performed on
ShapeNet dataset [4]. The mean per-class IoU (mIoU, %) is used
to measure the accuracy under two challenging rotation modes:
SO3/SO3 and z/SO3.

Figure 4. Qualitative comparisons of part segmentation for GCA-
Conv, RIConv [46], PointNet++ [29], SpiderCNN [42] under the
z/SO3 rotation mode (from the left column to the right column).

better as it converts xyz coordinates into rotation invariant
format like distances and angles before training. However,
it still has difficulties in recognizing the boundaries while
our method can treat these regions well by incorporating
global context information (see column 2 and 3 in Figure 4).

5.3. Shape Retrieval

A popular evaluation of rotation invariance on 3D shape
is the shape retrieval task [32]. Here we conducted ex-
periments on ShapeNet Core [41], following the perturbed
protocol of the SHREC17 3D shape retrieval contest [32]
and the experiment setting of SFCNN [30]. We use the
same output features from the bottleneck layer in the net-
work (similar to features used in the classification task;
see Figure 3). We compare with methods proposed in
SHREC17 [11, 34, 3] and two recent methods on rotation-
invariant convolution [9, 30]. The results are shown in Ta-
ble 5. It can be seen that our method achieves the state-of-
the-art accuracy, outperforming previous methods for most
evaluation metrics.



micro macro
Method PN R@N F1@N mAP NDCG PN R@N F1@N mAP NDCG Score

Furuya [11] 81.4 68.3 70.6 65.6 75.4 60.7 53.9 50.3 47.6 56.0 56.6
Tatsuma [34] 70.5 76.9 71.9 69.6 78.3 42.4 56.3 43.4 41.8 47.9 55.7
Zhou [3] 66.0 65.0 64.3 56.7 70.1 44.3 50.8 43.7 40.6 51.3 48.7

Spherical CNN [9] 71.7 73.7 - 68.5 - 45.0 55.0 - 44.4 - 56.5
SFCNN [30] 77.8 75.1 75.2 70.5 81.3 65.6 53.9 53.6 48.3 58.0 59.4

Ours 82.9 76.3 74.8 70.8 81.3 66.8 55.9 51.2 49.0 58.2 61.2
Table 5. Comparisons of 3D shape retrieval on the ShapeNet Core [41]. The accuracy (%) is reported based on the standard evaluation
metrics including precision, recall, f-score, mean average precision (mAP) and normalized discounted cumulative gain (NDCG).

Method z/z SO3/SO3 z/SO3 Err. std.

PointNet++ [29] 0.34 0.55 0.81 0.24
RS-CNN [22] 0.26 0.50 0.83 0.29
RIConv [46] 1.33 1.30 1.30 0.02

Ours 0.42 0.42 0.44 0.01
Table 6. Comparisons of the normal estimation on ModelNet40.
The accuracy is reported on three test cases: training and testing
with z/z, SO3/SO3 and z/SO3 rotation, respectively. Our method
has good accuracy and lowest accuracy deviation in all cases.

Figure 5. Qualitative comparisons of normal estimation for GCA-
Conv, RIConv [46], RS-CNN [22], and PointNet++ [29] under the
z/SO3 rotation mode (from the left column to the right column).

5.4. Normals Estimation

Normals estimation for point clouds is instrumental in
many applications such as point cloud rendering, feature
extraction, and surface reconstruction. Here we conduct
normals estimation on point clouds using the ModelNet40
dataset. For each model, we uniformly sample 1024 points
from the original data for training. We compute a loss based
on the cosines between the predicted unit vectors and the
ground truth normals to guide the training. Our results are
shown in Table 6.

In this table, our method achieves the best consistency in

predicting normals across three test scenarios. In SO3/SO3
and z/SO3 case, our method is the most accurate. It out-
performs other methods by a wide margin. The predicted
normals are depicted in Figure 5. We quantize the errors
by calculating the angles between the predicted and ground
truth normals. In Figure 5, the blue and red vectors depict
normals with less than 30◦ and greater than 90◦ of error. It
can be seen that our method is the most accurate visually.
It is worth noting that RIConv [46] performs poorly in the
normals estimation task because it uses rotation-invariant
features that discard the reference coordinate frames, and
so the normals of RIConv is not globally consistent.

6. Conclusion

In this work, we introduced a novel approach to de-
sign rotation-invariant convolution for 3D point clouds. We
show that building robust and repeatable local reference
frames is critical to boosting the performance of rotation-
invariant object classification. In this task, our newly pro-
posed convolution can match the performance of state-of-
the-art translation-invariant convolutions. Our work opens
up opportunities to narrow down the performance gap be-
tween rotation-invariant and translation-invariant convolu-
tion in general 3D deep learning, making robust convolu-
tions for 3D point clouds feasible.

Here we detail a few potential ideas for future research.
First, while our proposed method achieves good perfor-
mance, it is not clear whether local reference frames can be
set robustly by a neural network. There is a recent work [48]
that attempts to solve this problem, but the performance on
object classification needs further investigation. Second,
generalizing point cloud convolutions and object classifi-
cation to support non-rigid transformations and deformable
objects could further improve overall robustness. Finally,
more thorough benchmarking rotation-invariant convolu-
tions with real-world data [36] is necessary to understand
the impact of such data on the learning of rotation-invariant
features.
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Supplementary Materials

A. Learning based LRFs
A.1. Baseline 1: Predicting LRFs

As mentioned in the main text, it could be tempting to
learn the LRFs to design rotation-aware convolution. For
completeness, here we discuss this baseline again. We use
a two-layer MLP to predict the LRFs and then use them to
transform the input point coordinates into a local coordi-
nates before proceeding for convolution as described in the
main paper. We found that predicting LRFs works well in
z/z and SO3/SO3 mode, with both scenarios achieved ac-
curacies of 89.3% and 89.2%, respectively. However, us-
ing data-driven LRFs makes the convolution only rotation-
aware, but not exactly rotation-invariant. Such convolution
fails to generalize to unseen rotations in the z/SO3 scenario
with accuracy 36.2%.

A.2. Baseline 2: Pooling with Sign-Ambiguous
LRFs

Taking the insight from Baseline 1, we proceed to only
resolve the ambiguity in constructing the LRFs using learn-
ing while using the covariance matrices and their eigenvec-
tors to determine the LRF axes. Here the signs of the LRFs
axes are not determined, and instead of resolving this ambi-
guity as what described in the main paper, here we establish
all eight candidates of the LRFs and perform feature learn-
ing with all such candidates. The final output features are
pooled from the features of each individual candidate. We
call this convolution in this baseline the Pooling Convolu-
tion (PoolConv).

More illustrations can be found in Figure 6. In general,
PoolConv can produce the same accuracy (89.1%) as our
method but it has much higher computation. We measure
network complexity by the number of trainable parameters,
floating point operations (FLOPs), and running time to ana-
lyze the network efficiency. With batch size 16, point cloud
size 1024 from the ModelNet40 dataset, we report the statis-
tics in Table 7. Given the minor performance difference but
significantly more parameters and training time, PoolConv
is not as efficient as our proposed method.

B. Repeatability
We further clarify the repeatability of the LRFs as it

serves as the backbone for our feature learning. We follow
Guo et al. [12] to conduct this experiment (see their section
3.3). Noted that there are also methods that solve LRFs for
mesh such as MeshHog [45] and RoPS [12]. In this study
we assume no normal vectors or triangle faces so we omit
such methods in our comparison. We use six models from
the Stanford 3D Scanning Repository [6] (Figure 7). The

Method Params FLOPs Time
(Train / Infer) (Train / Infer)

PoolConv 0.40M 116.3B / 12.8B 0.66s / 0.38s
Ours 0.39M 11.0B / 1.3B 0.21s / 0.16s

Table 7. Comparisons to Baseline 2.

scenes are created by resampling the models down to 1/2
of their original mesh resolution with Gaussian noise added
(0.1 mesh resolution).

From each model, 1000 points are randomly selected and
their correspondences in the scene are obtained by search-
ing the closest point in the Euclidean space. Let’s denote
the pair of points as (psi, pmi) from scene and model re-
spectively. The LRFs for these two points are computed
as LRFsi and LRFmi

. To measure the similarity between
LRFsi and LRFmi

, we use the error evaluation metric pro-
vided by Mian et al. [23]:

ei = arccos

(
Tr(LRFsiLRFmi

)− 1

2

)
180

π
. (10)

Ideally, ei is zero when there is no error. We compare with
four existing methods: EM [24], Mian [23], SHOT [35], and
P [25]. The results are shown in Figure 8, where the hori-
zontal axis indicates the angular error range and the vertical
axis represents the percentage of points. The more points
fall into left lower error range, the better of the methods. As
can be seen, our proposed LRFs have much more low-range
angular errors than other methods, but has significantly less
high-range errors. This means that our LRFs varies more
slowly, and thus allows more consistent predictions.

C. Per-Class Accuracies
To further demonstrate the advantages of our proposed

convolution operator, we show the per-class accuracies for
both classification and part segmentation tasks in this sec-
tion.

C.1. Per-Class Accuracies for Object Classification
on ModelNet40

The per-class accuracies for object classification on
ModelNet40 under z/SO3 scenario is shown in Table 8. Our
method outperforms previous methods significantly (rank-
ing 1st in 32 out of 40 classes).

C.2. Per-Class Accuracies for Part Segmentation on
ShapeNet

Here, we also show the per-class accuracies for part seg-
mentation under the SO3/SO3 and z/SO3 scenarios in Ta-
ble 9 and Table 10 respectively.



Figure 6. Orientation Pooling Conv.

Figure 7. Six models from the Stanford 3D Scanning Repository [6].

Figure 8. Histogram comparisons of the LRF errors.



Network aero bathtub bed bench bookshelf bottle bowl car

PointNet [27] 12.0 2.0 8.0 10.0 15.0 14.0 5.0 12.0
PointNet++ [29] 53.0 2.0 18.0 10.0 29.0 22.0 20.0 13.0
PointCNN [20] 60.0 10.0 20.0 10.0 20.0 37.0 25.0 34.0
RIConv [46] 100.0 82.0 94.0 80.0 93.0 94.0 100.0 98.0
Ours 100.0 90.0 98.0 80.0 95.0 97.0 100.0 98.0

chair cone cup curtain desk door dresser flower
pot

PointNet[27] 9.0 15.0 0.0 0.0 16.3 5.0 8.1 0.0
PointNet++ [29] 32.0 20.0 15.0 45.0 2.3 30.0 9.3 15.0
PointCNN [20] 46.0 25.0 15.0 40.0 34.9 30.0 32.6 25.0
RIConv [46] 96.0 90.0 60.0 95.0 79.1 85.0 73.3 30.0
Ours 98.0 90.0 55.0 95.0 81.4 80.0 68.6 10.0

glass
box

guitar keyboard lamp laptop mantel monitor night
stand

PointNet [27] 4.0 36.0 5.0 15.0 15.0 4.0 11.0 3.5
PointNet++ [29] 11.0 47.0 50.0 10.0 15.0 10.0 36.0 1.2
PointCNN [20] 35.0 46.0 50.0 20.0 20.0 38.0 35.0 40.7
RIConv [46] 96.0 99.0 95.0 80.0 95.0 91.9 97.0 77.9
Ours 97.0 100.0 95.0 85.0 100.0 93.0 98.0 73.3

person piano plant radio range hood sink sofa stairs

PointNet [27] 5.0 36.7 55.0 5.0 4.0 20.0 11.0 25.0
PointNet++ [29] 20.0 5.0 71.0 20.0 9.0 5.0 21.0 10.0
PointCNN [20] 15.0 34.0 26.0 10.0 28.0 20.0 32.0 30.0
RIConv [46] 85.0 90.8 83.0 55.0 87.0 75.0 92.0 85.0
Ours 90.0 91.0 93.0 65.0 86.0 70.0 93.0 80.0

stool table tent toilet tv stand vase wardrobe xbox

PointNet [27] 5.0 3.0 5.0 20.0 4.0 26.3 0.0 10.0
PointNet++ [29] 10.0 9.0 15.0 13.0 2.0 85.0 15.0 20.0
PointCNN [20] 20.0 36.0 15.0 33.0 29.0 70.0 40.0 15.0
RIConv [46] 60.0 80.0 70.0 95.0 78.0 76.8 70.0 65.0
Ours 75.0 84.0 95.0 99.0 81.0 77.0 70.0 75.0

Table 8. Per-class accuracy of object classification in z/SO3 scenario with the ModelNet40 dataset [41].



Network aero bag cap car chair earph. guitar knife

PointNet [27] 81.6 68.7 74.0 70.3 87.6 68.5 88.9 80.0
PointNet++ [29] 79.5 71.6 87.7 70.7 88.8 64.9 88.8 78.1
PointCNN [20] 78.0 80.1 78.2 68.2 81.2 70.2 82.0 70.6
DGCNN [39] 77.7 71.8 77.7 55.2 87.3 68.7 88.7 85.5
SpiderCNN [42] 74.3 72.4 72.6 58.4 82.0 68.5 87.8 81.3
RS-CNN [22] 71.8 76.4 78.9 68.1 80.2 62.5 82.6 76.6
RIConv [46] 80.6 80.2 70.7 68.8 86.8 70.4 87.2 84.3
Ours 81.2 82.6 81.6 70.2 88.6 70.6 86.2 86.6

Network lamp laptop motor mug pistol rocket skate table

PointNet [27] 74.9 83.6 56.5 77.6 75.2 53.9 69.4 79.9
PointNet++ [29] 79.2 94.9 54.3 92.0 76.4 50.3 68.4 81.0
PointCNN [20] 68.9 80.8 48.6 77.3 63.2 50.6 63.2 82.0
DGCNN [39] 81.8 81.3 36.2 86.0 77.3 51.6 65.3 80.2
SpiderCNN [42] 71.3 94.5 45.7 88.1 83.4 50.5 60.8 78.3
RS-CNN [22] 73.2 90.2 54.8 89.8 72.8 43.6 65.3 72.6
RIConv [46] 78.0 80.1 57.3 91.2 71.3 52.1 66.6 78.5
Ours 81.6 79.6 58.9 90.8 76.8 53.2 67.2 81.6

Table 9. Per-class accuracy of object part segmentation on the ShapeNet dataset in SO3/SO3 scenario. Our method works equally well to
previous methods in this scenario.

Network aero bag cap car chair earph. guitar knife

PointNet [27] 40.4 48.1 46.3 24.5 45.1 39.4 29.2 42.6
PointNet++ [29] 51.3 66.0 50.8 25.2 66.7 27.7 29.7 65.6
PointCNN [20] 21.8 52.0 52.1 23.6 29.4 18.2 40.7 36.9
DGCNN [39] 37.0 50.2 38.5 24.1 43.9 32.3 23.7 48.6
SpiderCNN [42] 48.8 47.9 41.0 25.1 59.8 23.0 28.5 49.5
RS-CNN [22] 26.9 49.7 44.7 25.3 36.5 30.0 33.3 39.4
RIConv [46] 80.6 80.0 70.8 68.8 86.8 70.3 87.3 84.7
Ours 80.9 82.6 81.0 70.2 88.4 70.6 87.1 87.2

Network lamp laptop motor mug pistol rocket skate table

PointNet [27] 52.7 36.7 21.2 55.0 29.7 26.6 32.1 35.8
PointNet++ [29] 59.7 70.1 17.2 67.3 49.9 23.4 43.8 57.6
PointCNN [20] 51.1 33.1 18.9 48.0 23.0 27.7 38.6 39.9
DGCNN [39] 54.8 28.7 17.8 74.4 25.2 24.1 43.1 32.3
SpiderCNN [42] 45.0 83.6 20.9 55.1 41.7 36.5 39.2 41.2
RS-CNN [22] 54.9 36.1 20.6 53.3 29.0 29.4 32.3 42.6
RIConv [46] 77.8 80.6 57.4 91.2 71.5 52.3 66.5 78.4
Ours 81.8 78.9 58.7 91.0 77.9 52.3 66.8 80.3

Table 10. Per-class accuracy of object part segmentation on the ShapeNet dataset in z/SO3 scenario. Our method significantly outperforms
previous methods thanks to the rotation invariance features from our convolution operators.


