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Abstract— Topological map as an abstract representation of
the observed environment has the advantage in path plan-
ning and navigation. Here we proposed an online topological
mapping method, 360ST-Mapping, by making use of omni-
directional vision. The 360◦ field of view allows the agent
to obtain consistent observation and incrementally extract
topological environment information. Moreover, we leverage
semantic information to guide topological places recognition
further improving performance. The topological map possessing
semantic information has the potential to support semantics-
related advanced tasks. After combining the topological map-
ping module with the omnidirectional visual SLAM, we conduct
extensive experiments in several large-scale indoor scenes to
validate the effectiveness.

I. INTRODUCTION
The mapping module of SLAM (Simultaneous Local-

ization and Mapping) takes responsibility to incrementally
build a proper representation of the observed environment.
The representation directly reflects how the agents recognize
the world. With the development of SLAM [1], [2], [3],
accurate geometric maps of the world denoted as point
cloud, occupancy grid or truncated signed distance function
(TSDF) can be obtained. To facilitate path planning and
navigation, the geometric reconstruction is further abstracted
into the topological map. As a simplified representation,
the topological map is composed of an undirected graph.
Each node of the graph represents the location of a place
while edges represent the connected or navigable relationship
between nodes.

To build a topological map, it is important to correctly
identify all the relatively isolated places in the scene. In
general, a place with clear boundaries (e.g. wall and doors)
can be identified as a node. Minimizing the number of
unnecessary topological nodes allows the topological map to
do its job while kept as lightweight as possible. As it is tricky
for a purely visual system to determine node assignment, how
to properly segment the map and generate the nodes is still an
open problem. The exiting method, TopoMap [4], introduced
an offline approach that decomposes the recovered free space
into a larger number of clusters and then iteratively merges
the clusters. However, in practice, an online mapping module
supporting efficient scene abstraction is in demand.
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Fig. 1. The mapping results on the academic building. Our proposed
method 360ST-Mapping is integrated into an omnidirectional visual SLAM.
It can identify individual places (denoted as distinct colors) and generate
topological map online.

We note that 360-degree field-of-view has a great consis-
tency of observation [5] which theoretically allows for robust
visual landmarks tracking. Hence in this paper, we seek to
fill the gap by exploiting the stable landmark co-visibility
relationships between omnidirectional vision images.

When the landmarks change dramatically, the agent can
be considered having entered a new place such that a
new node is created. Consequently, We use the co-visibility
relationship as the first step to measure the extent of the scene
change. As it does not require prior knowledge, it can be
seamlessly carried out online with the operation of the SLAM
system. However, merely relying on geometric information
is vulnerable in the situation of geometric degradation.
Therefore, we also take advantage of an object detector to
extract semantic information of the scene. According to the
results of object detection, the semantic coefficient denoted
as the weighted Hamming distances among the incoming
and scene reference frames is calculated to guide topological
node assignment. In addition, we will store the extracted
semantic information into each node because it can provide
a higher-level understanding of scenes. Finally, we choose an
indirect SLAM system, OpenVSLAM [6], supporting 360◦

camera as the system framework to conduct experiments.
Although its reconstruction is sparse compared to 360VO [5],
OpenVSLAM supports loop-closure which is necessary for
topological mapping. We collect large-scale indoor scenes
to test our method. The results verify that our methods can
extract accurate topological relationships of the scenes, as the
Fig 1 shows. Basically, the main contribution of this paper



can be summarized as follows:
1) We proposed a simple yet effective method, 360ST-

Mapping, which is able to build topological maps online.
2) We introduced a weighted Hamming distance to measure

the semantic difference between images.
3) The method is seamlessly integrated into omnidirectional

visual SLAM with a low computational cost.

II. RELATED WORKS

Extracting topological characteristics of the observed en-
vironment and establishing a graph to represent the discrete
spaces are effective methods for localization, path planning,
and navigation [7]. According to different requirements of
the specific tasks, the definitions of the topological map are
various. Konolige et al. [8] defined a navigation graph on
the basis of a global pose graph constructed by SLAM in the
form of occupancy grids using the Ray Tracing method to do
the next navigation task. Rosa et al. [9] were inspired by the
behavior of bees in the construction of each honeycomb then
used multiple UAVs to build a honeycomb liked topological
map. Dall’Osto et al. [10] treated the tracked points in
the “repeat” phase in the “teach and repeat” problem as
topological nodes to guide the robot to move according to
the taught route. Wen et al. [11] defined the topological
node as the different semantic object in the scene, namely
a chair is a node and a sofa is another node, which is
not in the sense of place. Xue et al. [12] used traversed
points to create topological nodes which represent navigable
points, the topological edges are built between each pair
of nodes if there are no obstacle points between them. But
concerning large scale indoor scenes, the common definition
is that a topological map is an undirected graph reflecting the
relationship of spaces with relatively clear boundaries [13].

To establish a topological map, most vision-based methods
are based on visual features and descriptors, either global
descriptors or local descriptors. Goedemé et al.[14] used a
combination of two different kinds of wide baseline features
to help detect loop closure and based on Dempster-Shafer
theory to decide whether merge or separate topological
nodes. Liu et al.[15] proposed a lightweight adaptive de-
scriptor named FAST to describe the scene and judge the
scene changes. Such kinds of methods are always limited
by the simplicity of information used so that they are easily
influenced by great scene changes such as illumination or the
layout of objects. Garcia-Fidalgo et al.[16] used both global
description features and local description features to detect
loop closures, based on which determined whether to create a
new node or not. To enhance robustness, Bayesian inference
used in [17] is to find the topological structure while [18]
used mutual information graph to segment the topological
regions. We first explore the omnidirectional co-visibility of
360◦ images for topological mapping.

Compared to online methods, most of the offline methods
rely on reconstructed models and cannot be integrated into
SLAM system. Blochliger et al.[4] extracts discrete approxi-
mate free space information from sparse landmarks by using
voxel-based Truncated Signed Distance Fields. Oleynikova

et al. [19] extracted sparse 3D Topological graph based
on ESDF map. He et al.[20] built three-level topological
graph(storey-region-volume) from a complete 3D point cloud
map of the scene. Rosinol et al.[21] and Ravichandran et
al.[22] did great jobs on the multi-hierarchical map which
will be a great help for all kinds of robot tasks, this kind of
map relied on the pre-constructed large scale mesh map of
the environment. The performance of these methods depends
on the quality of the basic map to some extent. [23] and [24]
used also co-visibility of landmarks as a judgment basis. But
what the biggest difference here is their method only begins
after collecting all the images of the scene, and distinguishes
all independent node clusters based on similarity in the post-
processing stage. Our method does not rely on a prior map
while can distinguish scenes and build the topological graph
during tracking.

Different from pure vision-based methods. Vale and
Ribeiro[25] used a set of features acquired from laser and
sonars to represent the state of the topological place. Islam
et al.[26] classify the topological nodes according to the free
space shape feature to build the topological map with various
sensors including camera, sonar sensor, etc. Shin et al.[27]
used WI-FI fingerprint as a base to build the topological
map. Wen et al.[11] based on stereo Visual-Inertial Odometry
to build the semi-dense topological map of the scene. The
online approach [13] exploits range information from laser
and depth cameras to determine the gaps and doors which
are the landmarks for new node creation.

III. METHODOLOGY

In terms of large-scale indoor scenes, each node of the
corresponding topological map represents a relatively in-
dependent place, such as rooms and corridors. To extract
a proper topological map, we propose a module 360ST-
Mapping taking advantage of omnidirectional co-visibility
and semantic information provided by an object detector to
accurately identify distinct spaces. 360ST-Mapping module
works on the basis of visual SLAM, shown in the Fig. 2.

Right after a new keyframe is created in the 360ST-
Mapping Module, the system selects a proper scene reference
frame. Then according to the co-visibility ratio and object
detection results, the system compares the two keyframes to
judge whether the new keyframe belongs to a new scene.
If yes, a new topological node will be created. Then the
system will refine the whole topological map online by
culling redundant nodes. At the same time, the loop closure
module of the SLAM system will also cooperate with 360ST-
Mapping module to correct the topological relation where the
loop closure occurs.

A. Scene Reference Keyframe

Our system decides whether to create a new topology
node based on the comparison between a reference keyframe,
which we call scene reference keyframe, and the current
keyframe. If we simply select the latest keyframe as the
scene reference frame, the feature correspondings between
consecutive keyframes are always strong. It means that we
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Fig. 2. A schematic diagram of the omnidirectional visual SLAM system after combining our proposed method, 360ST-Mapping.
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Fig. 3. Scene reference frame selection trap. If the previous frame has been
determined to be a new topological node, and the scene reference frame
the current frame compared with still belongs to the previous topological
node according to the distance selection rule, then two consecutive new
topological nodes will be generated.

cannot rely on the variance of consecutive keyframes to
determine the assignment of topological nodes. Conversely,
we need to select a representative keyframe of each place
as the scene reference keyframe. Therefore, We designed
a practical scene reference keyframe selection mechanism.
Firstly, the scene reference keyframe should have enough
translation from the current location. The threshold is set as
1 experimentally. Further, we check whether there has been
a new topological node existed between the scene reference
keyframe and the current keyframe. If there has been a
new topological node, we should adjust the scene reference
keyframe to the first keyframe of the latest topological
node. This is because sometimes after comparing the current
keyframe with the scene reference keyframe, it is found that
the current keyframe belongs to a new topological node.
However, the following keyframe is still compared with
the keyframe of the previous topological node so it is also
considered to lead to a new topological node. Fig. 3 depicts
the problem scenario. Algorithm 1 describes the selection
process in details.

B. Co-visibility

That two frames have a co-visibility relationship indicates
they can observe the same landmarks. We define the co-
visibility ratio as the ratio of the number of landmarks that
can be observed in common between two frames to the sum
of the total number of landmarks observed in the two frames,
that is, a kind of Intersection of Union. When the co-visibility

Algorithm 1: represent frame Selection
input : All past keyframes KF t−∗ in the database

and current keyframe KF t
output: The selected keyframe KF Ir

1 Acquire all the past keyframes{KF t−i,
i = 1,2,3...n};

2 for i← 1 to n do
3 Judge whether KF t−i is still valid;
4 if D(KF t−i,KF t)> 1 and

D(KF t−i,KF t)< min(D(KF t−∗,KF t)) then
5 min(D(KF t−∗,KF t)) = D(KF t−i,KF t)
6 Ir = t− i

7 for i← Ir +1 to t do
8 Judge whether KF i is still valid;
9 if KF i leads a new topological node then

10 Ir = i

11 return KF Ir

ratio between the scene reference keyframe and the current
keyframe is lower than a specific threshold, it means that
the landmarks observed in these two frames have changed
significantly. It is reasonable to believe that the current frame
is going into a different place from the scene reference frame.
Hence, the co-visibility ratio can be used as one of the judge
standards for the topological place change. The co-visibility
ratio can be calculated by,

RCo =
Nl

KFc,KFr

Nl
KFc,KFr

+Nl
KFr ,KFc

+Nl
KFc,KFr

(1)

where Nl
KFc,KFr

and Nl
KFr ,KFc

are the number of land-
marks observed only in the current keyframe and the scene
reference keyframe respectively. Nl

KFc,KFr
is the number of

landmarks that can be observed both in the two frames.
The probability that the current frame belongs to a different
topological node from the scene reference frame according
to the co-visibility ratio then can be calculated as,

PCo = 1−RCo (2)

The co-visibility ratio can be very low even when the



current frame is in the same topological place as the scene
reference frame by moving for a certain distance. Because
the landmarks observed in previous frames may not be
visible in the current frame. It is a double-edged sword.
The advantage is that we can use it to identify almost
all the topological places change while the disadvantage is
that we will construct a lot of redundant topological nodes.
Therefore, we need more judgment standards to make a
comprehensive judgment.

C. Object Detection

1) The model: A place has its own function so that the
classes of objects inside are usually unique. Hence naturally,
we think of using object detection to assist in judging scene
changes. Here in our system, we used YOLOv4[28] trained
on COCO data set with 80 types of objects as the object
detection support because of its high precision and efficiency.

2) Weighted Hamming distance: We express the result
of object detection as an 80 dimensional vector (related to
the total number of classes of object detection), and the
value of each element is the number of objects of that
class. To measure semantic variance between two images, we
introduce the weighted Hamming distance that balances the
effect of object class distribution and the number of objects
detected in the scene. First, we calculate the proportion
of detected objects in the two frames as weight ωc. The
larger the proportion, the more important the object is. When
calculating the object detection vector distance between two
frames, if the object appears only in one frame, the distance
increases the weight of the object. If it appears or does
not appear in both frames, the distance is not increased. In
general, the probability of scene change judged from the
object detection results POb can be formulated as,

POb = ∑
c∈C

ωcIc(KFc,KFr), (3)

ωc =
Nc

KFc
+Nc

KFr

∑c∈C Nc
KFc

+∑c∈C Nc
KFr

, (4)

Ic(KFc,KFr) =

{
0, if

(
Nc

KFr
− th

)(
Nc

KFc
− th

)
> 0

1, otherwise
. (5)

where Nc
KFc

and Nc
KFr

are the number of objects of class
c detected in the current and scene reference keyframe
respectively, C is the set of all the classes. th can take any
value between 0 and 1, just to distinguish whether there are
objects of class c in the scene.

D. The probability model

After calculating the place change probability based on
co-visibility and semantic coefficient respectively, we simply
combine the two results to calculate the final topological
place change probability,

Pchange =
PCo +POb

2
(6)

When the Pchange between the current frame and the
represent frame is over a certain threshold(in our paper,
we use 0.5) we will think that the topological scenario has

indeed changed so create a new topological node and update
the connection relationship between topological nodes.

E. Extreme Case Handling

We need to deal with some algorithm exceptions that may
be led by the failure of the base SLAM algorithm during
the operation of the system to enhance the robustness of
the topological mapping. Tracking lost happens from time
to time due to the failure of extracting or matching fea-
ture points between keyframes. The omnidirectional visual
SLAM is no exception. When tracking is resumed from
the lost state, we will create a new topological node if the
current frame is farther than a certain distance from the scene
reference frame. The reason for such a handling strategy
is: if the tracking fails, it indicates that the environment
features change greatly, otherwise the tracking will not be
lost. When the distance is too large, we deem the agent has
exceeded the range of a topological place. And we will not
build a connection relationship between the new topological
node and the last one, because we cannot determine whether
there is a passable connection relationship between the two
topological nodes during the loss of tracking.

F. Topological Node Culling

To reduce the redundant topological nodes in the map,
we use some post-processing steps to refine the topological
places recognition results.

1) Local consistency filtering mechanism: The algorithm
generates redundant topological nodes in some frames due to
the change of view angle and occlusion of the camera’s field
of view. However, we find that sometimes these keyframes
still maintain the co-visibility relationship with surrounding
keyframes. We use this relation to detect the consistency
of the local topological map. When a large number of co-
visibility relationships which satisfy the co-visibility ratio is
over a certain threshold t(we call them vital frames) exist
between the current frame and other surrounding frames, we
will start the local consistency correction. We use the mode
voting result of all the vital frames’ topological node ID
to determine which topological node the current frame and
those frames belonging to the same topological node with
the current frame should be re-assigned to.

2) Global topological nodes merge: Some topological
nodes consist of just a few keyframes, some topological
nodes are very close to their neighboring topological nodes.
In such cases, there may be significant changes of viewpoint
or the range of the topological place is very small. How-
ever, for navigation tasks and human-computer interaction
demands, two topological nodes that are too close do not
need to exist at the same time and the topological place with
too small range is not so meaningful. Therefore, topological
nodes that contain too few keyframes or are too close to
other topological nodes will be merged with surrounding
topological nodes.

3) Global loop closure: Thanks to the loop closure detec-
tion function supported by OpenVSLAM [6], we can further
refine the topological map. When loop closure is detected, it



means that the current frame and the candidate frame belong
to the same node, then the node to which the current frame
belongs needs to be merged with the topology node to which
the candidate frame belongs, and the adjacent relationship
between nodes should be migrated accordingly.

IV. EXPERIMENT

In order to prove our method is fully feasible and efficient,
we tested our method in two real scenarios. In the following
part, firstly we will introduce our two test scenarios. Then
we will show the overall performance of the algorithm,
including the established scene topological map and the
quantitative indicators mentioned above. Next, we will show
the robustness of our algorithm in the challenging scenarios.
Finally, we conduct ablation studies to verify the effect of
each component.

A. Test Scenarios

The first scene is an indoor laboratory. There are meeting
rooms, offices, corridors, different work areas, and other
topological locations in the laboratory. The objects in the
laboratory are placed irregularly and relatively disorderly,
and the objects are easy to block each other, which is a
challenge to judge the scene change. The second scene is
the first floor of the academic building. The scene contains
long corridors, multiple office areas, offices, open spaces,
and so on. The scale of this scene is large, and there are no
representative objects such as doors in many places.

B. Overall Performance

1) Result topological map: We ran our system to recon-
struct the topological structure of both scenes. The final
result of the landmark map and corresponding topological
map of the laboratory are shown in Fig. 4(a) and Fig. 4(b),
respectively. The result maps of the academic building are
shown in Fig. 1 with the same expression. To clarify, the
corridor from the top to the right in the laboratory is consid-
ered to be the same topological node, so the location of the
topological node will make the structure of the topological
map look slightly distorted and puzzling. The colorful points
in the landmark map represent the landmarks observed by
the keyframes which are represented by spheres. The color
of landmarks and keyframes corresponds to the color of the
topological node in the topological map. Whenever the agent
enters a new region, the algorithm can recognize it is a new
node in the sense of topology and establish the connection
relationship with adjacent topological nodes. In our academic
building, the correspondence between the new topological
node identified by the algorithm (as can be seen from the
color change of the landmark map) and the new location in
the actual scene is shown in Fig. 1.

During the process, there are many times the agent returns
to a place that it has visited before. The system can accurately
identify the same place, namely the same topological node.
Fig. 6 gives an example of how the system identified the
same place. The red arrow curve marks the test route
direction. The red circle marks the location where multiple

(a) The landmark map

(b) The topological map with parts of scene reference keyframes

Fig. 4. The results on the laboratory scene. The topological characteristics
are represented by different colors, best viewed in color.

(a) w/o using object detection (b) w/o using object detection

Fig. 5. The results on the laboratory scene are the maps built by 360ST-
Mapping without object detection module. It generates lot of redundant
topological nodes. The total number of nodes generated is about half of the
version without object detection.

visits to the same place occurred. The picture in the top
right corner is the landmark map with only keyframes. And
the bottom right corner is the topological map corresponding
to the location. When the agent returns from location B to
location A, the frame’s color restores from purple to orange,
which represents the return to a previous topological place.

2) Quantitative results: We need to clarify several stan-
dards which we used to define a real topological node in
the test scenes. The following places will be considered as
topological node for evaluation.
1) A place that can be accessed through a door.
2) A corridor.
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Fig. 6. The system can accurately identify the same topological node when
returning to the same place.

3) A place with only one entrance and exit.
4) An intersection connecting above places.

Only the above places should appear in the topological
map as topological nodes. We will use TP (true positive,
the algorithm takes the place as a topological node, which
is right), FP (false positive, the algorithm takes the place
as a topological node, which is wrong), FN (false negative,
the algorithm thinks the place is not a topological node,
which is wrong) and derived accuracy and recall to measure
the effectiveness of the algorithm in establishing topological
nodes. At the same time, we calculate the total number of
topology nodes established by the algorithm, and that should
be in the scene. We also calculate the RR(node redundancy
rate) to measure the simplification of the topological map.
The lower the redundancy, the more refined the topological
map.

According to the topological place definition criteria we
stated earlier, we quantified the rationality of the topo-
logical nodes established in both two scenarios. We test
each configuration five times, record the mean and standard
deviation of several important index in table I. Our method
can achieve high recall and acceptable accuracy in any scene
and maintain a low node redundancy rate.

3) Semantic information: The semantic information we
assign to each topological node includes the numbers of
each kind of object in the scene. We give Fig. 7 and Fig. 8
to show you the object classes distribution among different
topological places both in the tested laboratory and academic
building scenes.

C. The evaluation of robustness
1) Camera field of view occlusion: In the first test of

robustness, we re-run the algorithm in the academic building

Fig. 7. The object classes distribution of all topological nodes in the
laboratory.

Fig. 8. The object classes distribution of all topological nodes of the
academic building.

scene mentioned above and intermittently block half of the
vision of our camera during the mapping process (the photo
in Fig. 9 shows the camera field of view under interference)
to evaluate the mapping performance of the system. The
results are shown in Fig. 9. Among the 26 vision changes
caused by interference, 7 of them affect the correct judgment
of the topological place. The remaining interference has no
effect at all. The accuracy and recall rate of establishing
topological nodes do not decrease much compared with no
interference. Refer to the table I for detailed data. In most
locations where algorithms make mistakes, there are few
object detection results, which can not be used as a reference.
For example, interference 1 and interference 3 marked in the
figure are located in the open hall, and interference 10 occurs
in the corridor.

2) Huge scene changes: The last experiment we did was
to test the recognition ability of the system after significant
changes in the scene. We follow the route marked by the
arrow in Fig. 10. Our method can correctly identify the same
place and extract consistent topological information When
the agent revisits the place despite large illumination and
appearance variance during mapping processing.

D. Ablation Experiment

Because our system contains many submodules, they will
have their own impact on the final effect of establishing the
topological map. In order to see the role of these modules
more clearly, we did ablation experiments.



TABLE I. Quantitative results of topological map established by various modules. TP, FP, FN represent true positive, false positive, false negative
respectively. Pr means precision, Re means recall, NTN means the number of topological nodes built, RTN represents the number of topological nodes in

the real scene. RR means redundancy ratio, which is calculated by (NT N−RT N)/RT N.

Case Scene TP FP FN Pr/σ (%) Re/σ (%) NTN RTN RR/σ (%)
360ST-Mapping Laboratory 17 11.8 1 59.4/5.5 94.4/3.9 28.8 18 60/14.4
w/o object detection Laboratory 17.2 36.8 0.8 32.3/4 95.5/4.6 54 18 200/45.3
w/o co-visibility Laboratory 16.7 16.8 1.3 50.9/8.6 92.6/4.5 33.5 18 86.1/31.6
w/o merge Laboratory 17 34.8 1 33/3.2 94.4/6.8 51.8 18 187.8/25
360ST-Mapping Academic building 12.3 7.5 2.5 62.3/4.5 82.2/3.5 19.8 15 34.9/4
w/o object detection Academic building 15 32.5 0 31.6/1.2 100/0 47.5 15 216.7/12.7
w/o co-visibility Academic building 11.8 1 3.2 92.9/8.2 78.7/5.6 12.8 15 -14.7/17
w/o merge Academic building 13.7 19 1.3 41.9/3 91.1/3.8 32.7 15 117.8/10.2
with interference Academic building 12.3 9.8 2.8 55.9/5.6 81.7/6.4 22 15 46.7/9.4

Fig. 9. The mapping result of academic build with temporary disruption.
Compared with normal situation, the accuracy and recall rate of establishing
topological nodes do not decrease much. The first row shows the 360◦
images with disruption, while second row is the landmark map. The
locations where interference occurs and ends are denoted as green and red
star respectively in the corresponding trajectory shown in the last row.

The three variables are whether there is an object detection
judgment module, whether there is an online merging mod-
ule and whether there is a co-visibility judgment module,
respectively. If we do not use object detection to assist the
topological place recognition process, we can still establish
the topological map. The effect is shown in Fig. 5(a) and
Fig. 5(b). It is obvious that the topological map built in such
way consists of more topological nodes than the “complete”
version(Fig. 4(a), Fig. 4(b)). That is exactly one of the
reasons why we introduce object detection to the algorithm.

Topological map

Trajectory with landmarks

Start point

End point

(1) (2)
(3)

(4)

(5)
(6)

(7)

(8)

(9)

(10)

10s 61s

Fig. 10. The system can maintain a consistent topological map when the
agent revisit the previous place, even though the previous place undergo
obvious change, including illumination and human interaction. The orange
line with arrows in the middle row simulate motion flow of the agent.

From table I we can see, when not using object detec-
tion, the accuracy of topological node recognition declines
seriously and results in a very high node redundancy. The
number of nodes established is about twice that with object
detection and the accuracy is only half of it. However, its
recall rate is slightly higher than that of the version with
object detection and has reached 100% in many experiments.
it can also be seen that only using co-visibility to judge
scene changes has a high recall rate. That is exactly the
advantage of the co-visibility relationship in scene change
recognition. By using the merging module, the number of
nodes can be reduced by 50% without affecting the recall
rate of the algorithm, so as to double the accuracy.

When there is no co-visibility judgment module, the per-
formances in the two scenes are different. In the laboratory
scenario, the accuracy and recall of topology nodes are lower
than that of the complete algorithm. The accuracy is slightly
higher than the version without the object detection module.



The node redundancy is also between the version without
the object detection module and the complete algorithm. In
the academic building, the accuracy is very high, which can
reach more than 90%, but the recall rate is slightly lower than
the complete algorithm. The node redundancy is a negative
value because the number of nodes generated is less than
the number of nodes expected in the scene. The reason
why the algorithm without co-visibility judgment module
performs differently in the two scenes is that the objects
in the laboratory scene are messy, cover or interfere with
each other seriously, so the object detection module is easy
to be disturbed. The building scene is relatively open, the
object contour is clear, so it is friendly to the object detection
module. However, it is also because the scene is relatively
open in the building scene, objects in one place can also be
seen in another place, so the recall rate of topology nodes is
lower than the complete algorithm.

These results show that it is necessary for us to integrate
the co-visibility relationship with the object detection results
to conduct the topological node creation task.

V. CONCLUSIONS

In this paper, we present an online mapping approach,
360ST-Mapping, supporting scene topological map recon-
struction. We take advantage of robust co-visibility provided
by the omnidirectional vision and semantic coefficient mea-
sured by weighted Hamming distance to accurately iden-
tify the scenes and determine topological node assignment.
360ST-Mapping can be seamlessly integrated into the visual
SLAM system without much computational cost. Extensive
experiments on large-scale indoor scenarios show that the
proposed method can recover a proper topological map and
has high robustness of places recognition even though high
interference occurs such as dynamic elements and temporary
occlusion of perspective.
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