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Stochastic Framework for Inverse Consistent

Registration

by YEUNG, Sai Kit

Bioengineering

Department of Chemical Engineering

The Hong Kong University of Science and Technology

ABSTRACT

Registration is the process of extracting spatial correspondences between different

data sets such as digital images or sets of points and obtaining their spatial trans-

formations from the extracted spatial correspondences. The information provided by

these transformations is very useful in areas such as morphing in computer graphics,

fusion of medical images from different modalities, and finding the pose of an object

in an image or between different objects.

One of the essential criteria in registration is inverse consistency, i.e. to make the

registration source-destination symmetric so that the forward and backward mapping

matrices extracted are inverse to each other. Conventional approaches enforce con-

sistency in deterministic fashions, either through the incorporation of sub-objective

cost function that impose consistent property during the registration process or by

the construction of diffeomorphic mapping on predetermined landmarks sets. How-

ever, deterministic techniques for establishing the consistency means that the errors

inherited from the discrete nature of the information sources are not considered. In

this thesis, we present a stochastic framework that yields perfect inverse consistent

registration from the initial forward and backward matching matrices. These ini-

tial forward and backward transformation matrices can be computed by any image

registration or point matching algorithms, which are input to our system. Then an

optimization process is developed to compute the perfect source-destination symmet-

ric mapping between the forward and backward transformation matrices. The errors

xii



of the registration matrices and the imperfectness of the consistent constraint are both

modelled such that the whole optimization process is stochastic in nature. An itera-

tive generalized total least square (GTLS) strategy has been developed such that the

source-destination symmetric criterion is optimally established. Experiments based

on point sets matching where ground truths are available, and synthetic as well as real

image registration problems have been performed. Both show very promising results.
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Chapter 1

Introduction

1.1 Background

Registration is a useful technique in computer vision and image analysis. It aims at

extracting the spatial correspondences between different data sets. Then by these

established spatial correspondences, the corresponding data sets can be aligned or

transformed to one another so that it is easier to relate their corresponding features.

The data sets involved in the registration process can be different unstructured point

sets, landmarks or digital images. Registration problem on point sets is usually re-

ferred to point matching problem while image registration is the registration process

applied among different images.

The information obtained from the registration process is very useful in many as-

pects. The correspondences extracted can be used as the basis for morphing between

different objects [34]. The transformations derived can transform images to a com-

puter model or align different features in an image that have different locations in

physical space. Relating corresponding features is particularly important in medical

image analysis. With the advancements of noninvasive imaging technologies, medical

images are increasing in health care and in biomedical research. Different imaging

modalities emphasize different structures, for example, X ray Computed Tomography

(CT) images show bone structures while Magnetic Resonance (MR) images can reveal

tissues properties. Registration makes the integration of information from different
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modalities possible and it has been one of the hot topics in medical image analysis

[12], [29], [19].

One of the most desirable properties for registration is inverse consistency or

source-destination symmetry in which the correspondence is one-to-one and also un-

ambiguous. Consistent transformations maintain the topology of the registering pair.

This is important in medical imaging for generating biologically meaningful results

[9] and in computer vision 3D points are usually re-projected onto the image to see

if they match with the original pixel color [17], however, this property is usually not

ensured during the registration process. Most of the earlier registration efforts do

not attempt to impose consistency while deriving the transformation matrices, such

as the landmark or point based methods [3, 4, 11, 22], the contours based algorithm

[26, 25], the surface-based algorithms [20, 27], and the volume based methods which

utilize the whole image information [2, 37, 10, 18, 32].

More recently, consistency has received increasing attention in point set and image

registration. The inverse consistent constraint has been imposed along with other

information such as image intensity and geometric characteristics to become part

of the optimization criterion in medical image registration [9] and to act as sub-

objective cost function to ensure coupling in point set matching [14]. Since the source-

destination symmetry is only part of the metric that needs to be minimized, the

resulting transformation matrices are, in general, not perfectly consistent. Further,

the transformations are solved in deterministic nature, meaning that the stochastic

error properties of these matrices are not considered.

1.2 Contributions

We propose a stochastic framework for point set and image registration which results

in perfect source-destination symmetric mapping between the data sets. Instead of

imposing inverse consistency in a deterministic and imperfect sense, we enforce the

inverse consistent property optimally with the systematic considerations of stochastic

uncertainties of the input forward and backward transformation matrices to achieve

2



perfect source-destination symmetry. The adoption of the Generalized Total Least

Square(GTLS) technique [31] allows for simultaneous considerations of the errors in

the input transformation matrices and the inverse consistent constraint during a post-

registration fitting process. A set of new forward and backward transformations are

solved iteratively until they are perfectly inverse to each other. We want to point out

that the contribution of this thesis is not in presenting a new registration algorithm per

se, but rather a novel way for imposing the stochastic inverse consistent constraint

given an estimated set of registration matrices. This framework can be used with

any registration algorithms which have already shown their validity in establishing

forward/backward mappings for different matching problems. Experimental results

on point set matching, synthetic and real image registration demonstrate the superior

performance of the proposed method.

1.3 Structure of the Thesis

This thesis is organized as follows:

In chapter 2, different registration algorithms that yield the inverse consistent

property for different types of registration problems are reviewed.

In chapter 3, the inherited error of the registration process due to discrete nature of

information sources is illustrated. Then the role of inverse consistency in registration is

discussed in depth. Apart from this, we also discuss how inverse consistency generates

better registration results from the forward and backward registration processes.

Chapter 4 examines the methodologies used in detail. In this chapter, our sto-

chastic inverse consistent model for inverse consistent registration is presented, where

the iterative generalized total least square (GTLS) approach is described to show how

the source-destination symmetric transformations pair is optimally obtained.

In chapter 5, experimental results of different point sets, synthetic images and real

medical images are shown and compared with the conventional methods. The study

about convergency issue is presented in the last of this chapter. Chapter 6 concludes

this thesis and suggests different possible future research directions.
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Chapter 2

Review of Related Works

2.1 Introduction

Conventional registration methods usually do not consider the consistency constraint.

Due to different reasons such as the discrete nature of information sources and the local

optimization process in the registration algorithms, the transformations extracted

from the forward and backward registration processes are always ambiguous. It means

given two images or two sets of points I1 and I2. The result of registering I1 to I2 will

not be an exact inverse of the result from registering I2 to I1.

In many situations, the registration process is only performed in one of the direc-

tion, i.e., we are only registering I1 to I2 or I2 to I1 to establish the spatial corre-

spondences between the two data sets. In that sense, we are missing the information

from one of the directions. Moreover, if we do not enforce the inverse consistent con-

straint, even we have the registration results from both direction, it would be difficult

to combine or choose the result between them.

One would argue that we can perform the registration process in one of the di-

rection, then we take the inverse of that transformation result to obtain a source-

destination symmetric pair. However, in real situation, the registering data is not

simple and the ground truth is not available. The images and point sets are so com-

plicated that it is very difficult to tell whether the result from the forward or backward

registration process is better without the ground truth evaluation. As a result, simply

4



taking one of the registration results may bear the risk of choosing the worse result.

So inverse consistency indeed provides a mean to utilize the information from both

direction and provide a more robust registration result.

In recent years, different methods are proposed to enforce source-destination sym-

metric in registration. A common approach is imposing the inverse consistent con-

straint during the registration process through incorporation of sub-objective cost

function, then the optimization of the matching criteria will include the inverse con-

sistent constraint. For all of these approaches, there is an implicit assumption that the

transformation matrices extracted from the matching criteria at the global maximum

is the ground truth. That means they are both deterministic in nature that inherent

error associated with the matching criteria is not considered in these approaches.

2.2 Inverse Consistency through incorporation of

sub-objective cost function

A common strategy for enforcing consistency is the incorporation of sub-objective

cost function in the matching criteria. Different works that incorporate consistency

under various conditions and matching criteria have been proposed Christensen etal

[9, 16, 8, 15, 7]. Their scheme for incorporating consistent constraint in registration is

to assign a cost metric ECons to the consistent property as part of the matching cost

function E, i.e.,

E = ESim + ECons (2.1)

where ESim measures the similarity (i.e. image intensity and geometrical properties)

between the data sets. Since the consistent measure is only part of the overall cost

function, the optimal solution to Equ.(2.1) in general would not produce the perfect

inverse consistent mapping one desires. The diffeomorphic point matching in [14] fol-

lows similar pattern, where the cost function is combined with different sub-objective

functions including the diffeomorphic measurement.
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2.3 Deterministic Inverse Consistency Represen-

tation

The above formulations do not consider the underlying stochastic properties asso-

ciated with the transformation results solved from the matching criteria. It means

throughout the registration process, the matching criteria is absolutely trusted so

that the forward transformation T12 and the backward transformation T21 are solved

in deterministic nature in order to get a one-to-one consistent mapping (unambiguous

correspondence), i.e.,

T12 ∗ T21 = I (2.2)

In the following chapters, we will examine the possible drawbacks of simply impos-

ing the deterministic model for inverse consistency. We will also show that due to the

discrete nature of information sources, even the optimization process utilizes a global

strategy, the results produced are still not equal to the ground truth. In other words,

the matching criteria cannot be trusted fully and there will always be uncertainties

associated with the transformation matrices obtained.

The role of inverse consistent constraint will also be discussed. In reported liter-

atures, inverse consistency is usually discussed as the property being imposed on the

registration so that the registration process can maintain certain kind of topology.

Actually inverse consistency is the art of how to integrate the information from the

forward and backward registration processes. A proper combination between the two

can yield a better registration result than results using only forward or only backward

registration. This observation will be discussed in next chapter.
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Chapter 3

Inverse Consistency in Registration

3.1 Introduction

In this chapter, we illustrate the main problems due to the discrete nature of the

information sources in registration process and the role of inverse consistency in reg-

istration. The discrete nature of the digital images or a set of points makes the

registration problems ill-posed. This is because the registering signals are actually

unable to represent the real continuous signals perfectly. As a result, the optimum by

any matching criteria is only the best match for a pair of discrete signals, instead of

the real continuous signals. Registration results obtained therefore will always contain

errors and not equal the ground truth.

Apart from the discrete nature of information sources, the optimization process

is also discrete. This is another problem since the discrete optimization process will

always result in ambiguous forward and backward transformation pair if it is a local

optimization. So in order to guarantee a source-destination symmetric transformation

pair, we have to optimize the forward and backward registration processes simultane-

ously. Here, we explain the role of inverse consistent constraint and how it enforces

the simultaneous optimization between the two registration processes. How inverse

consistency results in better registration results is usually not mentioned in other

literatures [9], [13], [28]. In the last section, we will illustrate the potential of an in-

verse consistent registration that improves the registration results towards the ground

7



truth.

3.2 Registration of Continuous Signals

First, it should be noted that it is always valid to have a deterministic consistent

constraint if we are registering continuous objects. Fig.3.1(a) are 2 continuous sine

curves A and B, A = sin(x) and B = sin(x-0.5) such that B is shifted to right by

0.5s from A. The matching criteria we use to demonstrate the registration profile

for these two signals is the Normalized Mutual Information (NMI) [24] which has its

maximum when two signals are perfectly aligned as shown in Fig.3.1(c). Here we

refer registering B to A as the forward registration process and registering A to B

as the backward registration process. It is easy to observe that there are two dis-

tinct optima for the corresponding ground truth transformation in the forward and

backward registration process. They are -0.5 in the matching criteria curve for the

forward registration process (NMIf) and +0.5 in the matching criteria curve for the

backward registration process (NMIr). So it means that the matching criteria can

result in ground truth transformation in the registration process, i.e., the forward and

backward transformation matrices resolved should be perfectly representing their true

spatial relationship. In addition, the results solved from the forward and backward

registration processes will be a perfect inverse of each others. In this situation, the

consistent property between the solved forward and backward transformations is au-

tomatically established. As a result, if we are registering a pair of continuous objects,

imposing consistent constraint or not during the registration process will not have

any effect and the registration result is in indeed the ground truth transformation.

The inverse of this registration result will immediately become its forward/backward

counterpart transformation result.

Therefore if there is a digital signal that is sampled under very high sampling

rate such that the original continuous signal can be perfectly reconstructed, the de-

terministic model for inverse consistency can always be imposed. In Fig.3.1(b), the

registering pair Ac and Bc reconstruct the original signal A and B perfectly, making

8



(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Registration of (a): A and B, (b): Ac and Bc. (c),(d): The matching
criteria curves for forward and backward registration process. (e),(f): The combined
matching criteria curve (NMIc) from the forward and reverse registration process.

the forward and reverse registration processes result in the ground truth and achieve

source-destination symmetry (Fig.3.1(d)). Such a case would be registration for two

images under very high resolution, e.g CT-CT registration in medical image registra-

tion problem.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: (a),(b): Registration of Ac and Bc. (c),(d): The matching criteria curves
for forward and backward registration process. (e),(f): The combined matching cri-
teria curve (NMIc) from the forward and reverse registration process.

3.3 Discrete Nature of the Information Sources

In the previous section we have shown that if we are registering continuous objects,

or the digitized objects can fully reconstruct the original continuous objects, the

source-destination symmetric constraint will be unnecessary since performing one of

the forward or backward registration process and then simply inversing the result

produces a pair of ground truth transformations. However, since the digital images or

the discrete point sets we used are not able to perfectly represent the original objects,

the above situation is no longer valid. This is the key problem from the discrete nature
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of the information sources because this means that the registering pair we pass to the

registration algorithms is actually different from the original signals. One can easily

see that the resulting transformation will not be perfectly equal to the ground truth

transformation which will be illustrated in the following examples.

Fig.3.2(a) is the first example to illustrate the idea. An and Bn are the digitized

version of A and B both with sampling interval of 3s. Although their corresponding

sampling rate is still above the Nyquist frequency ( 1
π

for sin(x)), it is shown that

the reconstructed signals Ac and Bc are unable to represent the original signals per-

fectly. As a result, the matching criteria are no longer able to give you the ground

truth transformations. The maxima are now around (-1.1,1.1) instead of the sharp

peaks at (-0.5,0.5) in the forward and backward matching materia curves (Fig.3.2(c)).

Fig.3.2(b) is another example with An at a higher sampling rate (2s). Fig.3.2(d)

shows the maxima for the forward and backward registration process which would be

-1 and 1 respectively instead of -0.5 and 0.5. In both cases, even global optimization

algorithms are used, the results obtained are not correct.

In the above situation, the source-destination symmetric property may still be

obtained without enforcing inverse consistent constraint if the forward and backward

registration process can reach their corresponding global optimum by global opti-

mization algorithm. However, in most case the registration algorithms utilize local

optimization algorithm to extract the transformations. This will be problematic for

the case when a distinguish global optimum is not available, so that trapping in local

optimum is more likely to occur and the extracted transformations are further away

from the ground truth. This problem may be avoided if a very sharp optimum is avail-

able. In Fig.3.2(d), the two peaks are outstanding and it can be expected that even

local optimization process is carried on the two curves separately, the results obtained

will still be inverse consistent, i.e., -1,1. But this situation is not guaranteed especially

in high dimension. Moreover, in conventional registration problems, the optimization

process is usually initialized in the same starting direction, i.e., we just initialize one

way to start climbing the hill (the matching criteria curve), e.g. climbing the hill from

left to right. From Fig.3.2(c), the possible forward and backward registration results

11



Figure 3.3: Left side: Forward registration process. Right side: Backward registration
process. Row 1: Input pair. Point correspondences during: Row 2: 1st iteration, Row
3: 70th iteration, Row 4: last iteration

would be (-1.1,-0.5) instead of the ground truth pair (-0.5,0.5) means that there are

both error is the transformation results and they are also ambiguous.

Another problem occurs when the ambiguous transformations pair is an inconsis-

tent correspondence established during the registration process. This problem is very

common in typical point matching process since the point correspondences established

from the forward and backward point matching processes are always going to be dif-

ferent. The intermediate correspondences of the forward and backward process are

ambiguous so that the final transformations obtained are inconsistent. This situation

12



(a) (b)

Figure 3.4: (a): forward registration result T12 (blue circles) with the inverse of back-
ward registration result T−1

21 (purple triangles), (b): backward registration result T21

(blue circles) with the inverse of forward registration result T −1
12 (purple triangles).

The transformations involved are affine.

is illustrated in Fig.3.3. We simply swap the input for the point matching algorithm

(in our case ICP [3]), the correspondences pairs during the iteration are linked by

green lines in Fig.3.3(b)-(d). In Fig.3.4, the final forward and backward transforma-

tions and their corresponding inverses are used on the original testing point set to warp

on the reference point set to show the two transformations are not source-destination

symmetric.

From the above examples, we can conclude that due to the discrete nature of

the information sources, the optimum in the matching criteria cannot represent the

real ground truth in continuous domain. This discrete nature will also affect the

intermediate correspondences established and hence the final results. Moreover, the

discrete nature of the optimization process and its conventional operation strategy

also results in ambiguous problem of the forward and backward registration process.

So in order to obtain a source-destination symmetric transformation pair, the inverse

consistent constraint cannot be omitted.

3.4 Role of Inverse Consistency in Registration

As we have mentioned in the above section, the forward and backward registration

process will generate an ambiguous transformations result. It is necessary to constrain

the forward and backward registration process together in order to achieve the consis-
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tent property. So what does source-destination symmetry or consistency mentioned

above imply in a simple 1D registration problem and when will it be good to the

registration result? Actually in 1D case, enforcing inverse consistency in a determin-

istic sense means the hill climbing process should be initialized in both direction with

the same step length and same starting point, i.e. evaluate the matching criteria in

pairwise nature: (1,-1), (2,-2)...(n,-n) together for the testing signal over the reference

signal. Equivalently, there would be a new matching criteria curve that is a combi-

nation of the forward and backward matching criteria curve. The simplest way is to

have a non-weighted linear combination [23], which can be obtained simple addition,

as shown in Fig.3.1(e),(f), Fig.3.2(e) and (f). Here, a critical rule for combining the

forward and backward matching criteria curves under deterministic sense is that they

should be combined in the corresponding transformation position, i.e. the NMIf value

at 0.5 translation must be combined with the NMIr value at 0.5 translation also.

It should be noted that imposing a deterministic consistent constraint will not

always result in better registration results. In Fig.3.2(f) , although the relative height

of the wrong peaks are decreased by summing up the forward and reverse registration

criteria curves, the new matching criteria still give the same wrong maxima (-1,1).

Deterministic consistency will only give better registration results if the wrong peaks

in the forward and backward matching criteria curve are eliminated and a new peak

closer to the ground truth transformation is established. In Fig.3.2(e), the transfor-

mation pair corresponding to optimum will be around (-0.8,0.8) which is unambiguous

instead of (-1.1,-0.5) and also closer to the ground truth (-0.5,0.5). In terms of physical

anatomy, combining the two matching criteria curves to obtain a better registration

results can be linkened to interference in wave phenomena destructive interference is

formed at the wrong peak position and constructive interference at the peak position

nearer to the ground truth [5].

As stated above, source-destination symmetry in deterministic sense means that

the combination of the forward and backward registration curves have to be in fixed

corresponding transformation position, i.e., the NMIf value at 0.5 translation have

to combine with the NMIr value at 0.5 translation (remember the pairwise nature
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(-1,1), ..., (-n,n)). This means we are still trusting the matching criteria. However,

as we have shown above due to inadequate sampling, the registering objects cannot

fully represent their original continuous objects so that the matching criteria cannot

reflect the real ground truth. As a result, we believe that if a relaxation of the fixed

combination between the two curves is allowed, there will be a mean to achieve better

registration results through consistency.

This relaxation of the fixed combination means combining the 2 curves in some

stochastic fashion instead of deterministic one, i.e., sliding the 2 curves before combi-

nation (e.g. imagine the value at -1.5 translation from the NMIc curve can be come

from the value at -1.3 translation in the NMIf curve and the value at -1.6 translation

in the NMIr curve). This makes it more likely that distinct destructive interference

on the wrong peaks. In turn, this increases the potential means for the inverse consis-

tent constraint to make the registration results closer to the underlying ground truth

(make a more distinct destructive interference on the wrong peaks). The range of

the sliding of the two curves should not be the same as the resultant transformation

error between the forward and backward registration process is not necessary equal.

Therefore, if we can stochastically impose the sliding range of the forward and back-

ward matching criteria curves or equivalently, consider the errors associated with the

transformation matrices individually during the combination, there is another mean

to achieve a better registration result.
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Chapter 4

Stochastic Inverse Consistency

4.1 Introduction

In this chapter, we will describe a new way to enforce inverse consistency in reg-

istration through our stochastic inverse consistency. As described in chapter 3, the

matching criteria cannot result in the ground truth transformation due to the discrete

nature of the information sources. This problem is not solve by the matching criteria

since theoretically the function of matching criteria is to give maximum when the

two objects are overlapped with maximal similarity in terms of the matching criteria.

However, the matching criteria indeed fulfill its function as shown in the continuous

case.

Therefore, the errors associated with the extracted transformations pair by any

registration method should not be ignored. In that sense, one should have stochastic

uncertainties associated with the transformation matrices when the inverse consis-

tent constraint is enforced. In addition, the inherent imperfectness in the consistent

constraint should also be taken into account at the same time as our ultimate goal

to achieve source-destination symmetry or inverse consistency over the ground truth

transformations instead of the transformations with maximal matching criteria value.

Hence there will also be a stochastic uncertainty term incorporated with the inverse

consistent constraint.
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4.2 Stochastic Inverse Consistent Representation

As stated above, in this thesis we are arguing that rather than enforcing inverse

consistency under deterministic and imperfect sense, we should model the consistent

constraint with the simultaneous consideration of the underlying stochastic uncertain-

ties within the forward and backward transformation matrices and hence the imper-

fectness of the source-destination symmetric constraint. Thus our stochastic inverse

consistent model becomes:

(T12 + ET12
) ∗ (T21 + ET21

) = I + Ri (4.1)

where ET12
and ET21

model the stochastic error properties of the transformation ma-

trix T12 and T21. In this thesis, we test with 4-by-4 affine transformation matrices,

in theory, we can also enforce the stochastic relationship on non-rigid deformation.

Ri is the error imposed on the imperfectness of the consistent constraint. With this

formulation, we can provide more flexibility on imposing source-destination symme-

try between the forward and backward registration processes, without compromising

accuracy.

It is easy to notify that the error matrices E and the transformation matrices

govern the ’individual sliding range of the matching criteria curve’ while the Ri matrix

is related to the ’degree of sliding’ when combining the 2 curves together. Up to now

we haven’t enforce any deterministic weighting between the matching criteria value

on the 2 curves to avoid any fixed bias. In potential investigations we may deal with

the weighting when we combine the 2 curves together. However, notice that even

without any weighting, sliding the 2 curves already fulfill the goal to ’destruct the

wrong peaks’ completely.

In this thesis, we have adopted simple derivations of the error matrices and set

them as the differences between the transformation matrices and their respective

inverse of the corresponding reverse transformation matrices i.e. :

ET12
= |T12 − T−1

21 | ET−1

12

= |T21 − T−1
12 | (4.2)
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We adopted this simple assumption that the difference of the forward and inverse

of the backward transformation has already set up a loose upper bound of the error as

the final transformation solved under the stochastic inverse consistent model should

be some way ’in-between’ of the 2 input transformation matrices. For the Ri matrix,

we simply assume all the entries will have the same stochastic property and set it as

4r such that Ri ∈ R4×4 with all the entries equal to 4r:

Ri =




4r · · · · · · 4r

...
. . .

...

...
. . .

...

4r · · · · · · 4r




(4.3)

To further simplify our current error model, we assume all the elements in the

error matrices have zero mean and are independent of each other. The individual

element of the error matrices, their relationship within the matrix and also the in-

terrelation among the error matrices will be examined in future work. Once again,

we are aiming at developing a completely new stochastic inverse consistent model in

this thesis. The modelling of the error properties depends on the actual data and also

the corresponding matching criteria which is very complicated. Also notice that the

modelling of the stochastic properties will be the potential mean to improve the regis-

tration results through inverse consistency which will be investigated heavily in future

work. These matrices will be involved in building the error equilibration matrices for

the Generalized Total Least Solvers in the following section.

4.3 GTLS Formulation

After obtaining a pair of forward and backward transformations from any point set

or image registration algorithm, our stochastic framework aims at considering the er-

rors on the transformation matrices and imposing stochastic property on the inverse

consistent constraint at the same time to optimally solve a pair of consistent trans-

formation matrices. In order to solve the problem while considering all the errors
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simultaneously, we adopt the total least square approach [31]. In addition, as the er-

ror on every entry do not carry the same stochastic property and some of the entries

are error free, a Generalized Total Least Square (GTLS) [30] approach is used. The

GTLS formulation is as follows: Consider a overdetermined system of linear equations

with a set of m linear equations in n × d unknowns X:

AX ≈ B A ∈ Rm×n, B ∈ Rm×d and X ∈ Rn×d, m > n + d (4.4)

Partition A = [A1; A2] A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and n = n1 + n2 (4.5)

X = [XT
1 ; XT

2 ]
T

X1 ∈ Rn1×d and X2 ∈ Rn2×d (4.6)

Assume that the columns of A1 are error free and that nonsingular error equilibration

matices RD ∈ Rm×m and RC ∈ R(n2+d)×(n2+d) are given such that the errors on

R−T
D [A2, B]R−1

C are equilibrated, i.e. uncorrelated with zero mean and same variance.

Then, a GTLS solution of (4.4) is any solution of the set

ÂX = A1X1 + Â2X2 = B̂ (4.7)

where Â = [A1, Â2] and B̂ are determined such that

Range(B̂) ⊆ Range(Â) (4.8)

and

‖ R−T
D [4Â2,4B̂]R−1

C ‖F =‖ R−T
D [A2 − Â2, B2 − B̂]R−1

C ‖F is minimal (4.9)

The problem of finding [4Â2,4B̂] such that Equ.(4.8) and (4.9) are satisfied is re-

ferred to as the GTLS problem. Whenever the solution is not unique, GTLS singles

out the minimum norm solution, denoted by X̂ = [X̂T
1 ; X̂T

2 ]
T

.

Our objective is to formulate our problem into the GTLS formulation and solve

the fitting transformation matrix under the consideration of the transformation er-

rors and the errors on the consistent constraint simultaneously by making use of the
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GTLS property. Notice that in the case of affine transformation, the last row of

the transformation matrix is actually error free. By making use of this property,

the transformation matrices can be first transposed and permuted to fit the GTLS

formulation:

Q12 = T T
12 ∗ P Q21 = T T

21 ∗ P (4.10)

invQ12 = (T−1
12 )T ∗ P invQ21 = (T−1

21 )T ∗ P (4.11)

where P = P14 ∗ P24 ∗ P34 and

P14 =




0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0




P24 =




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0




P34 =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




(4.12)

Q12 and Q21 will be 4-by-4 matrices with the form :

Q12 =




0 T12(1, 1) · · · T12(3, 1)

0 T12(1, 2)
...

0
...

. . .
...

1
... · · · T12(3, 4)




Q21 =




0 T21(1, 1) · · · T21(3, 1)

0 T21(1, 2)
...

0
...

. . .
...

1
... · · · T21(3, 4)




(4.13)

So the first column of Q12 and Q21 is error free and fit the form of the GTLS approach
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in Equ.(4.7). Hence the GTLS formulation of our stochastic inverse consistent model

becomes: 


Q12

invQ21


 X ≈




I

I







invQ12

Q21


 Y ≈




I

I


 (4.14)

Where X and Y are the optimal forward and backward transformation matrices re-

spectively, both containing the information from the original T12 and T21. In order to

get back the forward and backward transformation T ∗

12 and T ∗

21, we simply perform

the permutation and transpose on the GTLS solutions X and Y :

T ∗

21 = (P ∗ X)T T ∗

12 = (P ∗ Y )T (4.15)

Apart from the input transformation matrices, the error properties are also nec-

essary to specify the GTLS formulation. The error matrix EQ12
for Q12 and EinvQ12

for invQ12 are derived as presented in Equ.(4.2) i.e.

EQ12
= |Q12 − invQ21| EinvQ12

= |Q21 − invQ12| (4.16)

and the first column is dropped as the first column of Q12 is error free. The error

matrices EinvQ21
and EQ21

transformation matrix are formed respectively by:

EinvQ21
=

(1 − α)

α
∗ EQ12

EQ21
=

(1 − α)

α
∗ EinvQ12

(4.17)

where α is the weighting on the error of the forward transformation matrix T12 (assume

signal with higher resolution be the testing signal):

α =
voxel size of I1

voxel size of I2
or α =

# of points in point set 2

# of points in point set 1
(4.18)

So by imposing the above relationship, the registration result with a higher resolution

test image or point matching result with more points in the test point set will be more

trusted. While in this thesis we use this simple assumption to model the weighting

function between the error on forward and backward registration results from two
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images under different resolutions, more complicated way can be investigated and is

a possibility of future work.

The error equilibration matrices RC and RD are then formed from the square root

of the error covariance matrices C and D:

C = ∆T ∆ and D = ∆∆T

where ∆ =




EQ12
Ri

EinvQ21
Ri


 (4.19)

The matrix ∆ above represents the stochastic property of the error in the linear system

for solving X in Equ.(4.14). After deducing C and D, RC and RD for the input of the

GTLS solver are simply obtained from their Cholesky decomposition, i.e. C = RT
CRC

and D = RT
DRD. Notice that the ∆ matrix in solving Y in Equ.(4.14) is:

∆ =




EinvQ12
Ri

EQ21
Ri


 (4.20)

4.4 Inverse Consistency by Iterative GTLS Solu-

tion

After defining the GTLS model to fit the transformation matrix based on the sto-

chastic inverse consistency, we set up the whole iterative process from the registration

results T12 and T21 in order to extract both the forward transformation matrix T ∗

12

and the backward transformation matrix T ∗

21. Recall that these matrices are inverse

of each other. The input for the iteration process is Q12, Q21, invQ12 and invQ21 in

Equ. (4.10) and (4.11).




Q
(0)
12

invQ
(0)
21


 X(0) ≈




I

I







invQ
(0)
12

Q
(0)
21


 Y (0) ≈




I

I


 (4.21)
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with the corresponding stochastic property in the noise data:




E
(0)
Q12

Ri

E
(0)
invQ21

Ri


 and




E
(0)
invQ12

Ri

E
(0)
Q21

Ri


 (4.22)

the ’0’ in the brackets is the number of iteration and the solved X (0) and Y (0) are:

X(0) = P−1 ∗ (T
(1)
21 )T Y (0) = P−1 ∗ (T

(1)
12 )T (4.23)

so

(X(0))−1 = invQ
(1)
21 and P ∗ (X(0)) ∗ P = Q

(1)
21 (4.24)

(Y (0))−1 = invQ
(1)
12 and P ∗ (Y (0)) ∗ P = Q

(1)
12 (4.25)

The corresponding error matrices for the transformation matrices are also updated

during the iteration, i.e., getting E
(1)
Q12

, E
(1)
Q21

, E
(1)
invQ12

, E
(1)
invQ21

by Equ.(4.16) and (4.17)

to fit the input matrices of the GTLS solvers. Notice the transformation errors should

be smaller during the iteration (closer to the ground truth) while the error matrix

Ri for the consistency constraint is fixed since the initial input stochastic inverse

consistent model is kept unchanged.

Therefore all the components for the GTLS solvers are updated and the process

can be repeated until the consistency error (e) is less than a given threshold:

||(P ∗ X (n))T ∗ (P ∗ Y (n))T − I||F = e < threshold (4.26)

and the GTLS solution matrices will be:

T ∗

21 = (P ∗ X(n))T T ∗

12 = (P ∗ Y (n))T (4.27)

Notice that from Equ.(4.26) and (4.27), the final output matrices T ∗

12 and T ∗

21 from

the GTLS system are perfect inverse of each other. Therefore, the objective to derive
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a novel model for source-destination symmetric registration in this thesis is achieved.
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Chapter 5

Experiments and Discussions

5.1 Introduction

Experiments have been performed on synthetic image data, point set data and real

MRI brain images. The forward and backward registration results of all the experi-

ments are shown and used as the input for our stochastic inverse consistency model

to achieve inverse consistency. Different kinds of data and matching algorithm were

applied so that it showed the robustness of stochastic inverse consistency on different

types of registration problems. The main purpose of the experiments on synthetic

images data and real images data is to provide visual results of the algorithm. Mean-

while the point set data serves as a robustness evaluation through error distance

measurements.

5.2 Experiments on Synthetic Image Data

Synthetic image data with known transformation and noise levels were used to verify

the effects of the stochastic inverse consistency on the forward and backward transfor-

mation results. The effect of trusting the registration process with a higher resolution

testing image is shown in the second example.

25



(a) (b) (c)

Figure 5.1: (a): Image A. (b): Image B. (c): Image C: Image B downsampled by 2 in
x and y dimensions.

5.2.1 Data Description

A known affine transformation was applied on 2D synthetic image A to form another

image B, then image B is downsampled by 2 in x and y dimension to form image

C. Noise is added to all the images. Image A and B form the first registering pair

(Fig.5.1(a) and (b)) while image A and C form another registering pair (Fig.5.1(a)

and (c)).

5.2.2 Results and Discussions

In the synthetic image example, the forward and backward registration is performed

by utilizing the Normalized Mutual Information (NMI) [24] to extract T12 and T21.

These two matrices and their inverses are passed to the GTLS system to obtain a pair

of source-destination symmetric transformation pairs T ∗

12 and T ∗

21.

The results for registering image A and image B are shown in Fig.5.2. In Fig.5.2(a)-

(c), the transformations representing the forward warping results shown by the warped

red contours over image B. The red contours are the warped boundary of the object

in image A by different transformations, from left to right, are T12,T
∗

12, T−1
21 . In

Fig.5.2(d)-(f), the results for the backward process are illustrated. The warped con-

tours from the object’s boundary in image B is overlayed on image A. The transforma-

tions for the warping of image B, from left to right, are T−1
12 ,T ∗

21, T21. In this example,

we can observe that the GTLS solution actually gives a better registration results

due to the cancellation of opposite bias from the forward and backward registration
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: (a)-(c): transformations represented the forward warping results, left
to right: T12,T

∗

12, T−1
21 . (d)-(f): transformations represented the backward warping

results, left to right: T−1
12 ,T ∗

21, T21. The red contours are the warped boundary of
the object in image A for row 1 and image B for row 2 with the warping by the
transformations specified above.

results.

Fig.5.3 shows the registering results of image A with a lower resolution image C.

This example also tests the effect of the alpha value in Equ.(4.17). From Equ.(4.18),

the alpha value is set to 0.25. As the same order in Fig.5.2, the first row has forward

transformation results: T12,T
∗

12, T−1
21 . The second row has the backward transforma-

tion results: T−1
12 ,T ∗

21, T21. Although in this example, the GTLS solutions are not

the best, but the results are closer to the better one instead of the worse one, e.g,

the backward transformation results illustration in Fig.5.3(d)-(f), T ∗

21 is closer to T−1
12

instead of T21.

5.3 Experiments on Point Sets Data

The point set data performs the robustness evaluation of our GTLS solution. The

registration error is measured by the sum of squared distances (SSD) between the
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: (a)-(c): transformations represented the forward warping results, left
to right: T12,T

∗

12, T−1
21 . (d)-(f): transformations represented the backward warping

results, left to right: T−1
12 ,T ∗

21, T21. The red contours are the warped boundary of
the object in image A for row 1 and image C for row 2 with the warping by the
transformations specified above.

coordinates of the reference point set and the warped test point set by different trans-

formations.

5.3.1 Data Description

We begin with a simple example, a point set representing a fish to illustrate general

point matching problem. Then point sets representing different human brains are

tested to demonstrate its use in medical image analysis. All the examples will be

driven by a testing point set and the corresponding reference point set. The reference

point set is formed by applying known non-rigid transformation on the testing point

set and then adding noise to both point sets or outliers to the reference point set.
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(a): forward warping, T12 (b):backward warping, T21

(c): forward warping, T−1
21 (d): backward warping, T−1

12

Figure 5.4: Registering black crosses to black circles. Left column and right column
represent the forward and backward registration process respectively. The red or blue
triangles above are the warping results from the transformations specified below the
corresponding figures.

5.3.2 Results and Discussions

The forward and backward point matching results for the fish example are shown in

Fig.5.4. The point matching algorithm we applied for the point matching process is

the robust point matching algorithm RPM [21], the fish point sets are modified from

their web-site. Then the T12 and T21 and their inverses are used as the input of our

GTLS system. The final GTLS results with the input transformations are shown in

Fig.5.5. The GTLS solutions are inverse consistent and in-between the input forward

and backward transformations (from the positions of the green stars). Table.5.3.1

shows the SSD between the coordinates of the reference point set and the warped test

point set with different transformations. As shown in the table, the GTLS solutions

outperform the input transformations with a smaller SSD.
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(a): red:T12 green:T ∗

12 blue: T−1
21 (b): red:T21 green:T ∗

21 blue: T−1
12

Figure 5.5: (a) and (b) are the results for the forward and backward point matching
processes respectively. The red and blue triangles and the green stars are the warping
results of the black crosses by the transformations specified in the corresponding
figures.

Position Errors
Forward Matching Backward Matching

Transformation SSD Transformation SSD
T12 282.47 T21 428.45

GTLS T ∗

12 262.27 GTLS T ∗

21 386.85
T−1

21 303.08 T−1
12 427.94

Table 5.1: Sum of squared distances (SSD) from different transformations results.

The fish example gives a sense about how the point set data experiments are

performed and evaluated. More point set example are tested with our stochastic

inverse consistency as illustrated below. The brain images for the brain point set

data are from the BrainWeb project [1]. Points are extracted from the brain images

with canny edge detector [6], then the edge points are clustered until a reasonable

amounts of points remain to form the testing point sets. Different degree of non-rigid

transformations are applied to the testing point sets to form the reference point sets.

The positions of points in both point sets are perturbed by zero mean gaussian noise

with different standard deviation. Different amounts of outliers are also added to the

reference point sets to make the point matching process obtaining a worse results.

These are performed for evaluation of our stochastic inverse consistent model under

worse input conditions.

Fig.5.6 shows the first brain point set example. As described above, the blue

circles are the points extracted to be the testing point set, while the black crosses are
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(a) (b)

Figure 5.6: (a): Brain image with the extracted point sets. (b): Testing point sets
(blue circles) with the reference point sets (black crosses).

the reference point set. The points shown in Fig.5.6 were not perturbed by noise or

outliers. The visual results and the numerical error of the transformation in terms of

SSD is shown in Fig.5.7. In these figures, the GTLS solutions solved are in-between

their inputs. The plots show that in this example the GTLS solutions are better than

their inputs most of the time. Even the GTLS solution is not the best, it is still closer

to the input with the best result as shown in Fig.5.7(c) (standard deviation = 4).

Similar experiments are performed on another brain image. The point sets input

are shown in Fig.5.8. The results for the forward and backward registration processes

are shown in the left and right rows of Fig.5.9 respectively. The plots in Fig.5.9(c)

and (d) do not show the obvious trend as those in Fig.5.7. However, an interesting

result is obtained at standard deviation = 5 in the plots. At that point, one of the

transformation results is particular poor (T12/T
−1
12 ). Although our GTLS solution is

not the best at that point, but it is very close to the best result instead of the worst

one.

In the last brain point sets example, we extract points from a brain image similar

to the one in first example, Fig.5.10. Small and large deformations are applied on
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the testing point set to form two different reference point sets, in Fig.5.11(a) and (b).

Examples of the point sets with addition of noise or outliers are shown in Fig.5.11(c)

and (d). The visual results and results for error are shown in Fig.5.12 and Fig.5.13.

The results show similar pattern with the above examples. The GTLS solution either

outperforms the input transformation matrices or even if it is not the best, it will

close to the input with a better performance. In this example we also examine the

consistency error by comparing the terms ‖ T12 ∗T21 − I ‖F for the input forward and

backward transformations pair and ‖ T ∗

12∗T ∗

21−I ‖F for the GTLS outputs. As shown

in Fig.5.14, the GTLS outputs are guaranteed to be inverse consistent by Equ.(4.26)

such that T ∗

12 ∗ T ∗

21 is equal to identity.

5.4 Experiments on Real Image Data

We also test our stochastic inverse consistent model with real images data. The images

we used are from the Vanderbilt Retrospective Registration Project [33]. We pick out

two slices from two different patients to test our model.

5.4.1 Data Description

The images we tested are two PD-weighted MR images from two different patient.

Fig.5.15 shows the two input images. We define the forward registration process as

registering I2 to I1.

5.4.2 Results and Discussions

The visual results are shown in Fig.5.16. The forward and backward registration

results are again derived from normalized mutual information as in the synthetic

image example. From the red and blue contours, we can observe inconsistency in the

forward and reverse processes, i.e., T12 6= T−1
21 . Since there is no ground truth for

error evaluation, we cannot determine the registration error numerically. However,

from Fig.5.16(a) and (b), there are obvious registration errors as indicated by the

32



red ellipses. Such errors are not discovered in the GTLS results. All the registration

results are displayed together in Fig.5.17 for comparison.

5.5 Convergency Issue

We have plotted the value for the consistency error (e) in Equ.(4.26) in every itera-

tion during the iterative process. It is done in order to investigate the convergency

property of the iterative process. The plot of consistency error (e) versus the number

of iteration is the convergency profile (CP). The convergency profiles are plotted for

the brain point sets experiment with all the combinations: small/large deformation

+ perturbed by noise/outliers(impulse noise). Examples for the convergency profile

in each combination are shown in Fig.5.18. We did not show out all the convergency

profiles for different amounts of noise and outliers. But an interesting fact is that for

the case of deformation perturbed by noise, the number of iterations (3 in this case)

for the whole process is the same under different amounts of noise. While for the

deformation perturbed by outliers, the number of iterations under different amounts

of outliers is also the same (4 in this case). These are the observations obtained from

all the experiments on the brain point sets. Since not all the convergency profiles

for different amounts of noise or outlier proportion are shown, the mean value of the

convergency profile (from different amounts of noise or outliers) in each combination

is shown in Fig.5.19 (together with the maximum value, minimum value and +/- 1SD

from the mean value). From these figures, we can observe that after the first itera-

tion, the numerical result of the value for evaluating Equ.(4.26) already becomes very

small and the whole process terminates within 3 more iterations. The threshold is

10−6 in Equ.(4.26) for the brain point sets experiment. We zoom in the convergency

profile in the second iteration to show the numerical result is very small in Fig.5.20.

As it is difficult to illustrate the change of the convergency profile after the second

iteration, the percentage change of the convergency error for the convergency profile is

plotted in Fig.5.21. From the figures, it should be noticed that the percentage change

is very large between every iteration, making the whole iterative process converge in
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few iterations.

Among all the experiments on the brain point sets, the whole iterative process

converge without any problems, i.e., the convergency profile is monotonic decreasing.

However, we find an example which the convergency profile is oscillated. It is shown

in Fig.5.22, the input transformation matrices are from the point matching results

which are shown in Fig.5.23. In this example, the initial condition is very bad so that

the 2 input matrices are very bad inverse of each other. In this thesis the relationship

of the initial condition and the result of the convergency profile is not studied, but

further analysis of the convergency issue will be one of our future work.
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(a): red:T12 green:T ∗

12 blue: T−1
21 (b): red:T21 green:T ∗

21 blue: T−1
12

(c): forward registration process (d): backward registration process

Figure 5.7: (a) and (b) are the visual results for the forward and backward point
matching processes respectively. The red and blue triangles and the green stars are
the warping results of the black crosses by the transformations specified in the corre-
sponding figures. (c) and (d) are the plots of the sum of squared distances (SSD) for
input point sets with different standard deviation of gaussian noise.
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(a) (b)

Figure 5.8: (a): Brain image with the extracted point sets. (b): Testing point sets
(blue circles) with the reference point sets (black crosses).
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(a): red:T12 green:T ∗

12 blue: T−1
21 (b): red:T21 green:T ∗

21 blue: T−1
12

(c): forward registration process (d): backward registration process

Figure 5.9: (a) and (b) are the visual results for the forward and backward point
matching processes respectively. The red and blue triangles and the green stars are
the warping results of the black crosses by the transformations specified in the corre-
sponding figures. (c) and (d) are the plots of the sum of squared distances (SSD) for
input point sets with different standard deviation of gaussian noise.
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Figure 5.10: Brain image with the representing point set.
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(a): small deformation (b): large deformation

(c): gaussian noise added, S.D = 2 (d): outlier added, proportion = 0.5

Figure 5.11: Column 1 and 2 are examples of small deformation and large deformation
respectively. (a),(b) are the point set without any noise and outliers. In (c), positions
of the points are perturbed by gaussian noise with standard deviation = 2. In (d),
outliers are added to the reference point set.
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(a): red:T12 green:T ∗

12 blue: T−1
21 (b): red:T21 green:T ∗

21 blue: T−1
12

(c): forward registration process (d): forward registration process

(c): backward registration process (d): backward registration process

Figure 5.12: Column 1 and 2 are the results for registering reference point sets with
small and large deformation respectively. (a) shows forward registration results for
small deformation with outlier proportion = 0.1. (b) shows the backward registration
results for large deformation with gaussian noise of S.D = 4 added. (c)-(f) are the
plots of the sum of squared distances (SSD) for input point sets with different standard
deviation of gaussian noise. While (c),(d) are for the forward registration process,
(e),(f) are for the backward one.
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(c): forward registration process (d): forward registration process

(c): backward registration process (d): backward registration process

Figure 5.13: Column 1 and 2 are the results for registering reference point sets with
small and large deformation respectively. (a)-(d) are the plots of the sum of squared
distances (SSD) for input point sets with different proportion of outliers added. While
(c),(d) are for the forward registration process, (e),(f) are for the backward one.
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(a): forward registration process (b): forward registration process

(c): backward registration process (d): backward registration process

Figure 5.14: Column 1 and 2 are the results for registering reference point sets with
small and large deformation respectively. (a)-(d) are the plots of the consistency error,
measured by ‖ T12 ∗T21− I ‖F for the input transformation pair and ‖ T ∗

12 ∗T ∗

21− I ‖F

for the GTLS output. While (c) and (d) are plots under different S.D of gaussian
noise, (e) and (f) are plots for different proportion of outliers added.
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(a): I1 (b): I2

(c): I2’s boundary on I1 (d): I1’s boundary on I2

Figure 5.15: Registering pair I1 and I2.
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(a): T12 (b): T21

(c): T−1
21 (d): T−1

12

(e): T ∗

12 (f): T ∗

21

Figure 5.16: Registration results for the forward and backward registration process
are shown in column 1 and column 2 respectively.
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(a): red:T12 green:T ∗

12 blue: T−1
21 (b): red:T21 green:T ∗

21 blue: T−1
12

Figure 5.17: The registration results for the forward and backward registration process
are shown in (a) and (b) respectively.

(a) (b)

(c) (d)

Figure 5.18: Convergency Profile (CP) example for experiments of brain point sets:
(a): Small deformation + noise. (b): Large deformation + noise. (c): Small defor-
mation + outliers. (d): Large deformation + outliers. The noise in (a) and (b) is
gaussian noise with zero mean, S.D = 4. Outlier proportion = 0.4 in (c) and (d).
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(a) (b)

(c) (d)

Figure 5.19: The mean value (Mean CP), together with the maximum value (Max CP),
minimum value (Min CP) and +/- 1 S.D. from the mean value (Mean CP+1SD/Mean
CP-1SD) of the convergency profile from the studies of different amounts of noise or
outliers. (a): Small deformation + noise. (b): Large deformation + noise. (c): Small
deformation + outliers. (d): Large deformation + outliers. The number of studies in
each case is 5.
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(a) (b)

(c) (d)

Figure 5.20: Zoom in of Fig.5.19
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(a) (b)

(c) (d)

Figure 5.21: Percentage change of the convergency error shown in the convergency
profiles in Fig.5.18. (a): Small deformation + noise. (b): Large deformation + noise.
(c): Small deformation + outliers. (d): Large deformation + outliers.

(a) (b)

Figure 5.22: (a): An example of convergency profile which can not converge monoton-
ically. (b): The percentage change of the convergency profile.
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(a) (b)

Figure 5.23: Input to the GTLS system which cause the problematic convergency in
Fig.5.22. (a): The purple triangles are transformed from the blue circles by transfor-
mation matrix T12. (b): The purple triangles are transformed from the blue circles
by transformation matrix T21. T12 and T21 is the transformation matrices pair for our
system input.
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Chapter 6

Conclusion

6.1 Summary

We presented a new framework for modelling the inverse consistency in registration,

by simultaneously considering the stochastic uncertainties on both the transforma-

tion matrices and the inverse consistent constraint through the Generalized Total

Least Square fitting from the transformation matrices obtained after the registration

process. Our approach can be adopted to medical image registration problem [35] or

general registration problem [36].

With our stochastic inverse consistent model, the uncertainty inherited from the

discrete nature of the information sources is considered. Such uncertainty is illus-

trated in the wrong global maximum in the matching criteria such that the regis-

tration results obtained from conventional registration algorithms cannot achieve the

real ground truth. The enforcement of the stochastic property on these forward and

backward transformation matrices provides a mean apart from the matching criteria

to achieve registration results which are closer to the ground truth.

Due to the underlying error within the forward and backward transformation ma-

trices, deterministic imposition of the inverse consistent constraint from these erratic

matrices will not help to improve the registration results in systematic way. Through

our stochastic inverse consistency, the source-destination symmetric property will be

enforced in a more systematic and flexible way such that the perfect inverse consis-
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tency will be obtained when the uncertainty in the transformation is already mini-

mized. In addition, our stochastic model can be imposed with the consideration of

any other similarity constraints without compromising the weighting between the sim-

ilarity measures and the inverse consistent constraint, it is theoretically more sensible

than the incorporation of sub-objective cost function.

6.2 Future Work

In this thesis we are aiming at providing a new framework for modelling the inverse

consistency in a post-registration fashion. In the future, we will examine whether it

is better to incorporate the total least square fitting during the whole registration

process. The affine transformation fitting will be extended to piecewise-affine or non-

rigid deformation fitting to observe the possible improvement of the registration results

in high dimensional deformation through inverse consistency.

The stochastic property of the individual element of the forward and backward

transformation matrices, their relationship within the matrix and also the interre-

lation among a pair of transformation matrices will be examined extensively. The

relationship of the inverse consistent model with input forward and backward trans-

formation matrices and the stochastic property representing the imperfectness of the

inverse consistent constraint will also be studied in the future work. All of these are

potential means to establish better registration results through inverse consistency.
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