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Stochastic Framew ork for Inverse Consisten t

Registration
by YEUNG, SaiKit

Bioengineering
Departmert of Chemical Engineering

The Hong Kong University of Scienceand Tednology

ABSTRACT

Registration is the processof extracting spatial correspndencedetweendi erent
data setssud as digital imagesor sets of points and obtaining their spatial trans-
formations from the extracted spatial corresppndences.The information provided by
thesetransformations is very usefulin areassud as morphing in computer graphics,
fusion of medicalimagesfrom di erent modalities, and nding the poseof an object
in an imageor betweendi erent objects.

One of the essetial criteria in registration is inverseconsistencyi.e. to make the
registration source-destinationrsymmetric sothat the forward and badkward mapping
matrices extracted are inverseto ead other. Convertional approates enforcecon-
sistencyin deterministic fashions,either through the incorporation of sub-oljective
cost function that impose consiste property during the registration processor by
the construction of di eomorphic mapping on predeterminedlandmarks sets. How-
ewver, deterministic techniquesfor establishingthe consistencymeansthat the errors
inherited from the discrete nature of the information sourcesare not considered.In
this thesis, we presen a stochastic framework that yields perfect inverseconsisten
registration from the initial forward and badckward matching matrices. Theseini-
tial forward and badkward transformation matrices can be computed by any image
registration or point matching algorithms, which are input to our system. Then an
optimization processis dewelopedto computethe perfect source-destinationsymmet-

ric mapping betweenthe forward and badkward transformation matrices. The errors

Xii



of the registration matricesand the imperfectnesf the consister constrairt are both
modelled sud that the whole optimization processis stochastic in nature. An itera-
tive generalizedtotal leastsquare(GTLS) strategy hasbeendeweloped sud that the
source-destinationsymmetric criterion is optimally established. Experimerts based
on point setsmatching wheregroundtruths are available, and synthetic aswell asreal

imageregistration problemshave beenperformed. Both show very promisingresults.

Xiii



Chapter 1

Intro duction

1.1 Background

Registration is a useful technique in computer vision and image analysis. It aims at
extracting the spatial correspndencesbetweendi erent data sets. Then by these
establishedspatial correspndences,the correspnding data sets can be aligned or
transformedto one another sothat it is easierto relate their correspnding features.
The data setsinvolved in the registration processcan be di erent unstructured point
sets, landmarks or digital images. Registration problem on point setsis usually re-
ferred to point matching problem while image registration is the registration process
applied amongdi erent images.

The information obtained from the registration processis very usefulin many as-
pects. The correspndencesextracted can be usedasthe basisfor morphing between
di erent objects [34]. The transformations derived can transform imagesto a com-
puter model or align di erent featuresin an image that have di erent locations in
physical space. Relating correspnding featuresis particularly important in medical
imageanalysis. With the advancemeis of noninvasive imaging technologies,medical
imagesare increasingin health care and in biomedical researt. Dierent imaging
modalities emphasizedi erent structures, for example,X ray Computed Tomograply
(CT) imagesshown bonestructures while Magnetic Resonanc€MR) imagescan reveal

tissuesproperties. Registration makesthe integration of information from di erent



modalities possibleand it has beenone of the hot topics in medical image analysis
[12, [29], [19].

One of the most desirable properties for registration is inverse consistencyor
source-destinationsymmetry in which the correspndenceis one-to-oneand also un-
ambiguous. Consistert transformations maintain the topology of the registering pair.
This is important in medical imaging for generating biologically meaningful results
[9] and in computer vision 3D points are usually re-projected onto the imageto see
if they match with the original pixel color [17], howeer, this property is usually not
ensuredduring the registration process. Most of the earlier registration e orts do
not attempt to imposeconsistencywhile deriving the transformation matrices, sudh
asthe landmark or point basedmethods [3, 4, 11, 22|, the contours basedalgorithm
[26, 25|, the surface-basedlgorithms [20, 27], and the volume basedmethods which
utilize the whole imageinformation [2, 37, 10, 18, 32].

More recerily, consistencyhasreceivedincreasingattention in point setand image
registration. The inverseconsiste constrairnt has beenimposedalong with other
information sud as image intensity and geometric characteristics to becomepart
of the optimization criterion in medical image registration [9] and to act as sub-
objective costfunction to ensurecouplingin point setmatching [14]. Sincethe source-
destination symmetry is only part of the metric that needsto be minimized, the
resulting transformation matrices are, in general, not perfectly consistent. Further,
the transformations are solved in deterministic nature, meaningthat the stochastic

error properties of thesematrices are not considered.

1.2 Contributions

We proposea stochastic framework for point setand imageregistration which results
in perfect source-destinationsymmetric mapping betweenthe data sets. Instead of
imposing inverse consistencyin a deterministic and imperfect sense,we enforcethe
inverseconsisten property optimally with the systematicconsiderationsof stochastic

uncertainties of the input forward and badkward transformation matricesto achieve



perfect source-destinationsymmetry. The adoption of the GeneralizedTotal Least
Square(GTLS) technique [3]] allows for simultaneous considerationsof the errorsin
the input transformation matricesand the inverseconsistem constraint during a post-
registration tting process.A setof new forward and badkward transformations are
solved iterativ ely until they are perfectly inverseto ead other. We want to point out
that the cortribution of this thesisis not in preserting a newregistration algorithm per
se, but rather a novel way for imposing the stochastic inverseconsisten constrairt
given an estimated set of registration matrices. This framework can be used with
any registration algorithms which have already shavn their validity in establishing
forward/backward mappingsfor di erent matching problems. Experimental results
on point set matching, synthetic and real imageregistration demonstratethe superior

performanceof the proposedmethod.

1.3 Structure of the Thesis

This thesisis organizedas follows:

In chapter 2, dierent registration algorithms that yield the inverse consisten
property for di erent typesof registration problemsare reviewed.

In chapter 3, the inherited error of the registration processdueto discretenature of
information sourcess illustrated. Then the role of inverseconsistencyin registration is
discussedn depth. Apart from this, we alsodiscusshow inverseconsistencygenerates
better registration results from the forward and badckward registration processes.

Chapter 4 examinesthe methodologiesusedin detail. In this chapter, our sto-
chastic inverseconsisteh model for inverseconsisten registration is presened, where
the iterativ e generalizedotal leastsquare(GTLS) approad is descrikedto shov how
the source-destinationsymmetric transformations pair is optimally obtained.

In chapter 5, experimertal resultsof di erent point sets,synthetic imagesand real
medical imagesare shovn and comparedwith the corverntional methods. The study
about corvergencyissueis presetted in the last of this chapter. Chapter 6 concludes

this thesisand suggestdli erent possiblefuture researt directions.



Chapter 2

Review of Related Works

2.1 Intro duction

Conventional registration methods usually do not considerthe consistencyconstrair.
Dueto di erent reasonsud asthe discretenature of information sourcesandthe local
optimization processin the registration algorithms, the transformations extracted
from the forward and badkward registration processesre always ambiguous. It means
giventwo imagesor two setsof points |, and |,. The result of registeringl; to I, will
not be an exactinverseof the result from registeringl, to |;.

In many situations, the registration processis only performedin one of the direc-
tion, i.e., we are only registeringl, to 1, or I, to I; to establishthe spatial corre-
spondencedetweenthe two data sets. In that sensewe are missingthe information
from one of the directions. Moreover, if we do not enforcethe inverseconsistet con-
straint, even we have the registration resultsfrom both direction, it would be di cult
to conmbine or choosethe result betweenthem.

One would argue that we can perform the registration processin one of the di-
rection, then we take the inverseof that transformation result to obtain a source-
destination symmetric pair. Howewer, in real situation, the registering data is not
simple and the ground truth is not available. The imagesand point setsare socom-
plicated that it is very di cult to tell whetherthe result from the forward or badkward

registration processs better without the groundtruth ewaluation. As aresult, simply



taking one of the registration results may bear the risk of choosingthe worseresult.
Soinverseconsistencyindeed provides a meanto utilize the information from both
direction and provide a more robust registration result.

In recer years,di erent methods are proposedto enforcesource-destinationsym-
metric in registration. A commonapproad is imposing the inverseconsisten con-
straint during the registration processthrough incorporation of sub-oljective cost
function, then the optimization of the matching criteria will include the inversecon-
sistert constrairt. For all of theseapproades,thereis animplicit assumptionthat the
transformation matrices extracted from the matching criteria at the global maximum
is the ground truth. That meansthey are both deterministic in nature that inherert

error asseiated with the matching criteria is not consideredin theseapproades.

2.2 Inverse Consistency through incorp oration of
sub-ob jectiv e cost function

A common strategy for enforcing consistencyis the incorporation of sub-ohective
cost function in the matching criteria. Di erent works that incorporate consistency
under various conditions and matching criteria have beenproposedChristensenetal
[9, 16, 8, 15, 7]. Their schemefor incorporating consistet constrairt in registration is
to assigna cost metric Econs t0 the consisten property as part of the matching cost

function E, i.e.,
E = Esim + Econs (2.1)

where Esi, measureghe similarity (i.e. imageintensity and geometricalproperties)
betweenthe data sets. Sincethe consisteth measureis only part of the overall cost
function, the optimal solution to Equ.(2.1) in generalwould not producethe perfect
inverseconsistet mapping onedesires.The di eomorphic point matching in [14] fol-
lows similar pattern, wherethe costfunction is combined with di erent sub-oljective

functions including the di eomorphic measuremen



2.3 Deterministic Inverse Consistency Represen-
tation

The above formulations do not considerthe underlying stochastic properties asso-
ciated with the transformation results solved from the matching criteria. It means
throughout the registration process,the matching criteria is absolutely trusted so
that the forward transformation T1, and the badkward transformation T,; are solved
in deterministic nature in orderto get a one-to-oneconsisten mapping (unambiguous
correspndence),i.e.,

T12 T21 = | (22)

In the following chapters, we will examinethe possibledrawbads of simply impos-
ing the deterministic model for inverseconsistency We will alsoshaow that dueto the
discretenature of information sourcesgven the optimization processutilizes a global
strategy, the results producedare still not equalto the ground truth. In other words,
the matching criteria cannot be trusted fully and there will always be uncertairties
assaiated with the transformation matrices obtained.

The role of inverseconsiste constraint will alsobe discussed.In reported liter-
atures, inverseconsistencyis usually discussedas the property beingimposedon the
registration so that the registration processcan maintain certain kind of topology.
Actually inverseconsistencyis the art of how to integrate the information from the
forward and backward registration processesA proper conbination betweenthe two
canyield a better registration result than results using only forward or only backward

registration. This obsenation will be discussedn next chapter.



Chapter 3

Inverse Consistency In Registration

3.1 Intro duction

In this chapter, we illustrate the main problems due to the discrete nature of the
information sourcesin registration processand the role of inverseconsistencyin reg-
istration. The discrete nature of the digital imagesor a set of points makes the
registration problemsill-p osed. This is becausethe registering signals are actually
unableto represen the real cortinuoussignalsperfectly. As a result, the optimum by
any matching criteria is only the best match for a pair of discrete signals,instead of
the real cortinuoussignals. Registration results obtained thereforewill always cortain
errors and not equalthe ground truth.

Apart from the discrete nature of information sources,the optimization process
is also discrete. This is another problem sincethe discrete optimization processwill
always result in ambiguousforward and badkward transformation pair if it is a local
optimization. Soin orderto guarartee a source-destinatiorsymmetric transformation
pair, we have to optimize the forward and badkward registration processesimultane-
ously Here, we explain the role of inverseconsistem constraint and how it enforces
the simultaneous optimization betweenthe two registration processes.How inverse
consistencyresults in better registration results is usually not mertioned in other
literatures [9], [13, [2§]. In the last section,we will illustrate the potertial of an in-

verseconsisten registration that improvesthe registration results towards the ground



truth.

3.2 Registration of Contin uous Signals

First, it should be noted that it is always valid to have a deterministic consisten
constrairt if we are registering cortinuous objects. Fig.3.1(a) are 2 cortinuous sine
curvesA and B, A = sin(x) and B = sin(x-0.5) suc that B is shifted to right by
0.5sfrom A. The matching criteria we useto demonstratethe registration pro le
for thesetwo signalsis the Normalized Mutual Information (NMI) [24] which hasits
maximum when two signals are perfectly aligned as showvn in Fig.3.1(c). Here we
refer registering B to A asthe forward registration processand registering A to B
as the badkward registration process. It is easyto obsene that there are two dis-
tinct optima for the correspnding ground truth transformation in the forward and
badkward registration process. They are -0.5 in the matching criteria curve for the
forward registration process(NMIf ) and +0.5 in the matching criteria curve for the
badkward registration process(NMIr). So it meansthat the matching criteria can
result in groundtruth transformation in the registration process,.e., the forward and
badkward transformation matricesresolved shouldbe perfectly represeting their true
spatial relationship. In addition, the results solved from the forward and badkward
registration processeswill be a perfect inverseof ead others. In this situation, the
consisten property betweenthe solved forward and badkward transformationsis au-
tomatically established.As a result, if we are registeringa pair of cortinuousobjects,
imposing consisten constraint or not during the registration processwill not have
any e ect and the registration result is in indeed the ground truth transformation.
The inverseof this registration result will immediately becomeits forward/backward
courterpart transformation result.

Therefore if there is a digital signal that is sampled under very high sampling
rate sud that the original cortinuous signal can be perfectly reconstructed,the de-
terministic model for inverseconsistencycan always be imposed. In Fig.3.1(b), the

registeringpair A; and B, reconstruct the original signal A and B perfectly, making
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Figure 3.1: Registration of (a): A and B, (b): A. and B.. (c),(d): The matching
criteria curvesfor forward and badkward registration process.(e),(f): The combined
matching criteria curve (NMlc) from the forward and reverseregistration process.

the forward and reverseregistration processesesult in the ground truth and achieve
source-destinationsymmetry (Fig.3.1(d)). Sud a casewould be registration for two

imagesunder very high resolution, e.g CT-CT registration in medicalimageregistra-

tion problem.
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Figure 3.2: (a),(b): Registration of A and B.. (c),(d): The matching criteria curves
for forward and backward registration process. (e),(f): The conbined matching cri-
teria curve (NMic) from the forward and reverseregistration process.

3.3 Discrete Nature of the Information Sources

In the previous sectionwe have shavn that if we are registering cortin uous objects,
or the digitized objects can fully reconstruct the original cortinuous objects, the
source-destinationsymmetric constrairt will be unnecessarysince performing one of
the forward or badkward registration processand then simply inversing the result
producesa pair of groundtruth transformations. Howewer, sincethe digital imagesor
the discretepoint setswe usedare not ableto perfectly represem the original objects,

the above situation is nolongervalid. This is the key problemfrom the discretenature

10



of the information sourceshecausehis meansthat the registeringpair we passto the
registration algorithms is actually di erent from the original signals. One can easily
seethat the resulting transformation will not be perfectly equalto the ground truth

transformation which will be illustrated in the following examples.

Fig.3.2(a) is the rst exampleto illustrate the idea. A, and B, are the digitized
versionof A and B both with samplinginterval of 3s. Although their correspnding
sampling rate is still above the Nyquist frequency (¥ for sin(x)), it is shown that
the reconstructedsignalsA. and B, are unable to represen the original signalsper-
fectly. As a result, the matching criteria are no longer able to give you the ground
truth transformations. The maxima are now around (-1.1,1.1) instead of the sharp
peaksat (-0.5,0.5)in the forward and badward matching materia curves(Fig.3.2(c)).
Fig.3.2(b) is another example with A, at a higher sampling rate (2s). Fig.3.2(d)
shows the maxima for the forward and badkward registration processwhich would be
-1 and 1 respectively instead of -0.5and 0.5. In both casesgwven global optimization
algorithms are used,the results obtained are not correct.

In the above situation, the source-destinationsymmetric property may still be
obtained without enforcinginverseconsister constrairt if the forward and badkward
registration processcan read their correspnding global optimum by global opti-
mization algorithm. Howewer, in most casethe registration algorithms utilize local
optimization algorithm to extract the transformations. This will be problematic for
the casewhen a distinguish global optimum is not available, sothat trapping in local
optimum is more likely to occur and the extracted transformations are further away
from the groundtruth. This problemmay be avoidedif a very sharpoptimum is avail-
able. In Fig.3.2(d), the two peaksare outstanding and it can be expectedthat even
local optimization processs carried on the two curvesseparately the results obtained
will still beinverseconsisten, i.e., -1,1. But this situation is not guararteed esgecially
in high dimension. Moreover, in convertional registration problems,the optimization
processis usually initialized in the samestarting direction, i.e., we just initialize one
way to start climbing the hill (the matching criteria curve), e.g. climbing the hill from

left to right. From Fig.3.2(c), the possibleforward and badward registration results
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Figure 3.3: Left side: Forward registration process.Right side: Backward registration
process.Row 1: Input pair. Point correspndencesluring: Row 2: 1stiteration, Row
3: 70th iteration, Row 4: last iteration

would be (-1.1,-0.5) instead of the ground truth pair (-0.5,0.5) meansthat there are
both error is the transformation results and they are also ambiguous.

Another problem occurswhen the ambiguoustransformations pair is an inconsis-
tent correspndenceestablishedduring the registration process.This problemis very
commonin typical point matching processsincethe point correspndencesestablished
from the forward and badkward point matching processesre always goingto be dif-
ferert. The intermediate corresppndencesof the forward and badkward processare

ambiguoussothat the nal transformationsobtained are inconsistert. This situation
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(@) (b)

Figure 3.4: (a): forward registration result T,, (blue circles)with the inverseof badk-
ward registration result T,,* (purple triangles), (b): badkward registration result T,
(blue circles) with the inverseof forward registration result T,,* (purple triangles).
The transformationsinvolved are a ne.

is illustrated in Fig.3.3. We simply swap the input for the point matching algorithm

(in our caselCP [3]), the corresppndencespairs during the iteration are linked by

greenlinesin Fig.3.3(b)-(d). In Fig.3.4,the nal forward and badkward transforma-
tions and their correspndinginversesare usedon the original testing point setto warp

on the referencepoint setto shav the two transformations are not source-destination
symmetric.

From the above examples,we can concludethat due to the discrete nature of
the information sources,the optimum in the matching criteria cannot represen the
real ground truth in cortinuous domain. This discrete nature will also a ect the
intermediate correspndencesestablishedand hencethe nal results. Moreover, the
discrete nature of the optimization processand its corvertional operation strategy
alsoresults in ambiguous problem of the forward and badward registration process.
Soin order to obtain a source-destinationsymmetric transformation pair, the inverse

consisten constrain cannot be omitted.

3.4 Role of Inverse Consistency in Registration

As we have mertioned in the above section, the forward and badkward registration
processwill generatean ambiguoustransformationsresult. It is necessaryo constrain

the forward and badckward registration processtogetherin order to achieve the consis-
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tent property. Sowhat does source-destinationsymmetry or consistencymertioned

above imply in a simple 1D registration problem and when will it be good to the

registration result? Actually in 1D case,enforcinginverseconsistencyin a determin-

istic sensemeansthe hill climbing processshould be initialized in both direction with

the samestep length and samestarting point, i.e. evaluate the matching criteria in

pairwise nature: (1,-1), (2,-2)...(n,-n) together for the testing signal over the reference
signal. Equivalenly, there would be a new matching criteria curve that is a conbi-

nation of the forward and badkward matching criteria curve. The simplestway is to

have a non-weighted linear combination [23], which can be obtained simple addition,

as shown in Fig.3.1(e),(f), Fig.3.2(e) and (f). Here, a critical rule for conmbining the

forward and badkward matching criteria curvesunder deterministic senses that they

shouldbe conbined in the correspnding transformation position, i.e. the NMIf value
at 0.5 translation must be conbined with the NMIr value at 0.5 translation also.

It should be noted that imposing a deterministic consistert constrairt will not
always result in better registration results. In Fig.3.2(f) , although the relative height
of the wrong peaksare decreasedy summingup the forward and reverseregistration
criteria curves, the new matching criteria still give the samewrong maxima (-1,1).
Deterministic consistencywill only give better registration resultsif the wrong peaks
in the forward and badkward matching criteria curve are eliminated and a new peak
closerto the ground truth transformation is established. In Fig.3.2(e), the transfor-
mation pair correspndingto optimum will be around (-0.8,0.8)which is unambiguous
insteadof (-1.1,-0.5)and alsocloserto the groundtruth (-0.5,0.5). In terms of physical
anatonmy, conbining the two matching criteria curvesto obtain a better registration
results can be linkenedto interferencein wave phenomenadestructive interferenceis
formed at the wrong peak position and constructive interferenceat the peak position
nearerto the ground truth [5].

As stated above, source-destinationsymmetry in deterministic sensemeansthat
the combination of the forward and badkward registration curveshave to be in xed
correspnding transformation position, i.e., the NMIf value at 0.5 translation have

to combine with the NMIr value at 0.5 translation (remenber the pairwise nature
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(-1,1), ..., (-n,n)). This meanswe are still trusting the matching criteria. Howeer,
as we have shovn above due to inadequatesampling, the registering objects cannot
fully represenm their original continuous objects sothat the matching criteria cannot
re ect the real ground truth. As a result, we beliewe that if a relaxation of the xed
combination betweenthe two curvesis allowed, there will be a meanto adieve better
registration results through consistency

This relaxation of the xed combination meansconbining the 2 curvesin some
stochastic fashioninstead of deterministic one, i.e., sliding the 2 curvesbeforecombi-
nation (e.g. imagine the value at -1.5 translation from the NMIc curve can be come
from the value at -1.3 translation in the NMIf curve and the value at -1.6 translation
in the NMIr curve). This makesit more likely that distinct destructive interference
on the wrong peaks. In turn, this increaseghe potential meansfor the inverseconsis-
tent constraint to make the registration results closerto the underlying ground truth
(make a more distinct destructive interferenceon the wrong peaks). The range of
the sliding of the two curvesshould not be the sameasthe resultant transformation
error betweenthe forward and badkward registration processis not necessaryequal.
Therefore, if we can stochastically imposethe sliding range of the forward and badk-
ward matching criteria curvesor equivalertly, considerthe errors assaiated with the
transformation matrices individually during the combination, there is another mean

to achieve a better registration result.
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Chapter 4

Stochastic Inverse Consistency

4.1 Intro duction

In this chapter, we will describe a new way to enforceinverse consistencyin reg-
istration through our stochastic inverseconsistency As described in chapter 3, the
matching criteria cannotresult in the groundtruth transformation dueto the discrete
nature of the information sources.This problem is not solve by the matching criteria
since theoretically the function of matching criteria is to give maximum when the
two objects are overlapped with maximal similarity in terms of the matching criteria.
Howewer, the matching criteria indeedful Il its function as showvn in the cortinuous
case.

Therefore, the errors assaiated with the extracted transformations pair by any
registration method should not be ignored. In that sensepne should have stochastic
uncertainties ass@iated with the transformation matrices when the inverse consis-
tent constrairt is enforced. In addition, the inherert imperfectnessin the consisten
constrairnt should also be taken into account at the sametime as our ultimate goal
to adhieve source-destinationsymmetry or inverseconsistencyover the ground truth
transformationsinstead of the transformationswith maximal matching criteria value.
Hencethere will alsobe a stochastic uncertainty term incorporated with the inverse

consistern constrairt.
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4.2 Stochastic Inverse Consistent Representation

As stated above, in this thesis we are arguing that rather than enforcing inverse
consistencyunder deterministic and imperfect sensewe should model the consisten
constrairt with the simultaneousconsiderationof the underlying stochastic uncertain-
ties within the forward and backward transformation matrices and hencethe imper-
fectnessof the source-destinationsymmetric constraint. Thus our stochastic inverse

consisten model becomes:
(T12+ Ele) (T21+ ET21) = | + Ri (41)

whereE+,, and E1,, model the stochastic error properties of the transformation ma-
trix Ty, and Tp;. In this thesis, we test with 4-by-4 a ne transformation matrices,
in theory, we can also enforcethe stochastic relationship on non-rigid deformation.
R; is the error imposedon the imperfectnessof the consiste constrairt. With this
formulation, we can provide more exibilit y on imposing source-destinationsymme-
try betweenthe forward and badkward registration processeswithout compromising
accuracy

It is easyto notify that the error matrices E and the transformation matrices
govern the ‘'individual sliding rangeof the matching criteria curve’ while the R; matrix
is related to the 'degreeof sliding' when conbining the 2 curvestogether. Up to now
we haven't enforceany deterministic weighting betweenthe matching criteria value
on the 2 curvesto avoid any xed bias. In potential investigationswe may deal with
the weighting when we combine the 2 curves together. Howeer, notice that even
without any weighing, sliding the 2 curves already ful Il the goal to 'destruct the
wrong peaks'completely

In this thesis, we have adopted simple derivations of the error matrices and set
them as the di erences between the transformation matrices and their respective

inverseof the correspnding reversetransformation matricesi.e. :

Er, = jTiz Toj Eri= iTa Ty (4.2)
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We adoptedthis simple assumptionthat the di erence of the forward and inverse
of the badkward transformation hasalready setup a looseupper bound of the error as
the nal transformation solved under the stochastic inverseconsisten model should
be someway 'in-b etween' of the 2 input transformation matrices. For the R; matrix,
we simply assumeall the entries will have the samestochastic property and setit as
4 , sud that R; 2 R* 4 with all the ertries equalto 4 ,:

0 1
4, 4,
R = h (4.3)

4, 4,

To further simplify our current error model, we assumeall the elemerts in the
error matrices have zero mean and are independert of ead other. The individual
elemen of the error matrices, their relationship within the matrix and also the in-
terrelation amongthe error matrices will be examinedin future work. Once again,
we are aiming at deweloping a completely new stochastic inverseconsisten model in
this thesis. The modelling of the error properties dependson the actual data and also
the correspnding matching criteria which is very complicated. Also notice that the
modelling of the stochastic propertieswill be the potential meanto improve the regis-
tration resultsthrough inverseconsistencywhich will be investigatedheavily in future
work. Thesematriceswill be involved in building the error equilibration matrices for

the GeneralizedTotal Least Solversin the following section.

4.3 GTLS Form ulation

After obtaining a pair of forward and backward transformations from any point set
or imageregistration algorithm, our stochastic framework aims at consideringthe er-
rors on the transformation matrices and imposing stochastic property on the inverse
consisten constrairt at the sametime to optimally solve a pair of consisten trans-

formation matrices. In order to solwe the problem while consideringall the errors
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simultaneously we adopt the total leastsquareapproad [31]. In addition, asthe er-
ror on ewvery ertry do not carry the samestochastic property and someof the ertries
are error free, a GeneralizedTotal Least Square(GTLS) [30] approad is used. The
GTLS formulation is asfollows: Considera overdeterminedsystemof linear equations

with a setof m linear equationsin n  d unknowns X :

AX B A2R™™B2R™9andX 2R" ¢ m>n+d (4.4)

Partition A

[A;A] At2R™ ™ A2R™ "andn=n;+n, (4.5)

X

XT;XJ1" X2 R™ 9andX,2 R" ¢ (4.6)

Assumethat the columnsof A, are error freeand that nonsingularerror equilibration
maticesRp 2 R™ ™ and Rec 2 R(M2+d) (n2*d) zre given sudh that the errors on
RDT[AZ; B]RC1 are equilibrated, i.e. uncorrelatedwith zeromeanand samevariance.

Then, a GTLS solution of (4.4) is any solution of the set
RX = AX + BoX,= B (4.7)
where R = [A1;A,] and B are determinedsuc that
Range(@) Range(ﬁ?) (4.8)
and
kR,T[4 B4 BIR.ke=k R,T[A, BB, BIR. ke isminimal  (4.9)

The problem of nding [4 A,;4 @] sud that Equ.(4.8) and (4.9) are satis ed is re-
ferredto asthe GTLS problem. Wheneer the solution is not unique, GTLS singles
out the minimum norm solution, denotedby X = [)@T;%ZT]T.

Our objective is to formulate our problem into the GTLS formulation and solve
the tting transformation matrix under the considerationof the transformation er-

rors and the errors on the consisten constrairnt simultaneously by making use of the
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GTLS property. Notice that in the caseof ane transformation, the last row of
the transformation matrix is actually error free. By making use of this property,
the transformation matrices can be rst transposedand permuted to t the GTLS

formulation:

Qn=T, P Qun=T, P (4.10)

invQy = (T,)T P invQayu = (T,,H" P (4.11)

whereP = P4 Py, Pss and

0 1 0 1
0001 1 000
0100 00O01

Pu = P24 =
0010 0010
1 000 0100

0 1
1 000
0100

Py, = (4.12)
00O01
0010
Q12 and Qy; will be 4-by-4 matriceswith the form :
0 1
0 Ti2(1;1) T12(3;1)
0 T2(1;2)
Q2 =
0 .
1 T12(3;4)
0 1
0 Ta(1;1) T21(3;1)
0 T2(1;2)
Qo1 = _ (4.13)
0
1 T21(3;4)

Sothe rst columnof Qi and Q,; iserror freeand t the form of the GTLS approat
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in Equ.(4.7). Hencethe GTLS formulation of our stochastic inverseconsistenh model

becomes: 2 3 3 2 3 3

2 2
§ 9 Iy §'t §™zy §'1 (4.14)
inv Qyy I Q21 |

Where X and Y are the optimal forward and badkward transformation matrices re-
spectively, both cortaining the information from the original T, and T,;. In order to
get badk the forward and badkward transformation T,, and T,,, we simply perform

the permutation and transposeon the GTLS solutions X and Y:
Ty=(P X)T T,=((P Y)T (4.15)

Apart from the input transformation matrices, the error properties are also nec-
essaryto specify the GTLS formulation. The error matrix Eq,, for Qi2 and Ejy q,,

for invQ,, are derived as presetted in Equ.(4.2) i.e.

EQ12 = leZ inVQle Eian12 = jQzl inVlej (4.16)

and the rst column is dropped asthe rst column of Qq, is error free. The error

matrices Einy o,, and Eq,, transformation matrix are formed respectively by:

@a ) @ )

Einv Qa1 —

EQ12 EQ21 -

Einv le (4.17)

where isthe weighting onthe error of the forward transformation matrix T, (assume

signal with higher resolution be the testing signal):

_ voxel sizeof 11 _ # of points in point set 2

= = —— . 4.18
voxel sizeof I, # of points in point set1 ( )

Soby imposingthe above relationship, the registration result with a higherresolution
test imageor point matching result with more points in the test point setwill be more
trusted. While in this thesis we usethis simple assumptionto model the weighing

function betweenthe error on forward and badkward registration results from two
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imagesunder di erent resolutions, more complicatedway can be investigatedand is
a possibility of future work.
The error equilibration matricesR¢ and Rp are then formed from the squareroot

of the error covariance matrices C and D:

c= T angl D = g
E R;
where =8 9 £ (4.19)
Einv Q21 Ri

The matrix  aboverepreseis the stochastic property of the error in the linear system
for solving X in Equ.(4.14). After deducingC and D, Rc and Rp for the input of the
GTLS solver are simply obtained from their Choleskydecomsition, i.e. C = RLRc
and D = RLRp. Notice that the  matrix in solving Y in Equ.(4.14)is:

2 3
_ 2 Eivon Ri g
EQ21 Ri

(4.20)

4.4 Inverse Consistency by Iterativ e GTLS Solu-
tion

After de ning the GTLS model to t the transformation matrix basedon the sto-
chastic inverseconsistencywe set up the wholeiterativ e processfrom the registration
results T, and T,; in order to extract both the forward transformation matrix T,,
and the badkward transformation matrix T,;. Recall that thesematrices are inverse
of ead other. The input for the iteration processis Q12, Q21, INVQ1, and invQy; in

Equ. (4.10)and (4.11).
2 3 2 3 2 3 2 3

; )]
§ % Iyo §'Z§ mvg” Zvo §'1Z (4.21)
' | Q21 |
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with the correspnding stochastic property in the noisedata:

2 3 2 3
(0) (0)
EinV Q21 Ri EQ21 R

the '0' in the brackets is the number of iteration and the solved X @ and Y ©@ are:

XO=p 1 (THHT vO=p ! (TH)T (4.23)

SO
(X@) *=ivQy and P (X©) P=Q} (4.24)
(YO) 1= invQ®  and P (YO) P=QY¥ (4.25)

The correspnding error matricesfor the transformation matricesare alsoupdated

during the iteration, i.e., getting ES) ;EY ;EW L EW

Q127 —Q21' —inv Qa2 —inv Q21

by Equ.(4.16)and (4.17)
to t the input matricesof the GTLS solwers. Notice the transformation errors should
be smaller during the iteration (closerto the ground truth) while the error matrix
R; for the consistencyconstrairt is xed since the initial input stochastic inverse
consisteh model is kept unchanged.

Therefore all the componerts for the GTLS solwers are updated and the process

can be repeateduntil the consistencyerror (e) is lessthan a given threshold:

i XMMT (P YT |jjr = e < threshold (4.26)

and the GTLS solution matriceswill be:

T,,= (P XM)T T,= (P YT (4.27)

Notice that from Equ.(4.26)and (4.27),the nal output matricesT,, and T,, from

the GTLS systemare perfectinverseof ead other. Therefore,the objective to derive
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a novel model for source-destinationsymmetric registration in this thesisis acieved.
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Chapter 5

Exp erimen ts and Discussions

5.1 Intro duction

Experimerts have beenperformed on syrthetic image data, point set data and real
MRI brain images. The forward and badkward registration results of all the experi-
merts are shovn and usedas the input for our stochastic inverseconsistencymodel
to achieve inverseconsistency Di erent kinds of data and matching algorithm were
applied sothat it shoved the robustnessof stochastic inverseconsistencyon di erent
types of registration problems. The main purposeof the experimerts on syrthetic
imagesdata and real imagesdata is to provide visual results of the algorithm. Mean-
while the point set data senes as a robustnessevaluation through error distance

measuremets.

5.2 Experiments on Synthetic Image Data

Syrnthetic imagedata with known transformation and noiselevelswere usedto verify
the e ects of the stochastic inverseconsistencyon the forward and backward transfor-
mation results. The e ect of trusting the registration processwith a higher resolution

testing imageis shavn in the secondexample.
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(@) (b) (c)
Figure 5.1: (a): ImageA. (b): ImageB. (c): ImageC: ImageB downsampledby 2 in
x and y dimensions.

5.2.1 Data Description

A known a ne transformation was applied on 2D synthetic imageA to form another
image B, then image B is downsampledby 2 in x and y dimensionto form image
C. Noiseis addedto all the images. Image A and B form the rst registering pair
(Fig.5.1(a) and (b)) while image A and C form another registering pair (Fig.5.1(a)
and (c)).

5.2.2 Results and Discussions

In the synthetic image example,the forward and badckward registration is performed
by utilizing the Normalized Mutual Information (NMI) [24] to extract Ti, and To;.
Thesetwo matricesand their inversesare passedo the GTLS systemto obtain a pair
of source-destinationsymmetric transformation pairs T,, and T,;.

The resultsfor registeringimageA andimageB areshown in Fig.5.2. In Fig.5.2(a)-
(c), the transformationsrepreseting the forward warping resultsshavn by the warped
red contours over image B. The red cortours are the warped boundary of the object
in image A by dierent transformations, from left to right, are T1,,T;,, T,;*. In
Fig.5.2(d)-(f), the results for the badkward processare illustrated. The warped con-
tours from the object's boundary in imageB is overlayed onimageA. The transforma-
tions for the warping of imageB, from left to right, are T,,',T,;, T21. In this example,
we can obsene that the GTLS solution actually gives a better registration results

due to the cancellation of opposite bias from the forward and badkward registration
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(@) (b) ()

(d) (e) ()
Figure 5.2: (a)-(c): transformations represered the forward warping results, left
to right: T, Ty, To'. (d)-(f): transformations represemed the backward warping
results, left to right: T,,5,T,;, To;. The red cortours are the warped boundary of
the object in image A for row 1 and image B for row 2 with the warping by the
transformations speci ed above.
results.

Fig.5.3 shows the registering results of image A with a lower resolution image C.
This examplealsoteststhe e ect of the alpha value in Equ.(4.17). From Equ.(4.18),
the alphavalueis setto 0.25. As the sameorder in Fig.5.2,the rst row hasforward
transformation results: T1,,T,,, T,,>. The secondrow hasthe backward transforma-
tion results: T,,',T,;, T21. Although in this example,the GTLS solutions are not
the best, but the results are closerto the better one instead of the worse one, e.qg,

the backward transformation resultsillustration in Fig.5.3(d)-(f), T,, is closerto T,,*

instead of To;.

5.3 Experiments on Point Sets Data

The point set data performs the robustnessevaluation of our GTLS solution. The

registration error is measuredby the sum of squareddistances(SSD) between the
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(@) (b) (©)

(d) (€) (f)

Figure 5.3: (a)-(c): transformations represered the forward warping results, left
to right: T, Ty, To'. (d)-(f): transformations represemed the backward warping
results, left to right: T,,5,T,;, To;. The red cortours are the warped boundary of
the object in image A for row 1 and image C for row 2 with the warping by the
transformations speci ed above.

coordinatesof the referencepoint setand the warped test point setby di erent trans-

formations.

5.3.1 Data Description

We begin with a simple example,a point setrepreseting a sh to illustrate general
point matching problem. Then point setsrepreseting di erent human brains are
tested to demonstrateits usein medical image analysis. All the exampleswill be
driven by a testing point setand the correspnding referencepoint set. The reference
point setis formed by applying known non-rigid transformation on the testing point

setand then adding noiseto both point setsor outliers to the referencepoint set.
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(a): forward warping, T;2 (b):backward warping, Ty,

(c): forward warping, T,,* (d): backward warping, T;,"

Figure 5.4: Registeringblack crossego bladk circles. Left column and right column
represenm the forward and badkward registration processrespectively. The red or blue
triangles above are the warping results from the transformations speci ed below the
correspnding gures.

5.3.2 Results and Discussions

The forward and badkward point matching results for the sh exampleare showvn in
Fig.5.4. The point matching algorithm we applied for the point matching processis
the robust point matching algorithm RPM [21], the sh point setsare modi ed from
their web-site. Then the Ty, and T,; and their inversesare usedas the input of our
GTLS system. The nal GTLS results with the input transformations are shown in
Fig.5.5. The GTLS solutions are inverseconsisten and in-betweenthe input forward
and badkward transformations (from the positions of the greenstars). Table.5.3.1
shows the SSDbetweenthe coordinates of the referencepoint setand the warped test
point setwith di erent transformations. As shawn in the table, the GTLS solutions

outperform the input transformations with a smaller SSD.
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(a): red:Ty, greenT,, blue: T,,* (b): red:Ty; greenT,, blue: T,

Figure 5.5: (a) and (b) are the results for the forward and badkward point matching
processesespectively. The red and blue triangles and the greenstars are the warping
results of the black crossesby the transformations speci ed in the correspnding
gures.

Position Errors
Forward Matching Badkward Matching
Transformation| SSD | Transformation| SSD
T1io 282.47 To1 428.45
GTLS T,, 262.27 GTLS T, 386.85
T, 303.08 T 427.94

Table 5.1: Sum of squareddistances(SSD) from di erent transformations results.

The sh example gives a senseabout how the point set data experimerts are
performed and evaluated. More point set example are tested with our stochastic
inverse consistencyas illustrated belon. The brain imagesfor the brain point set
data are from the BrainWeb project [1]. Points are extracted from the brain images
with canrny edgedetector [6], then the edgepoints are clustered until a reasonable
amourts of points remain to form the testing point sets. Di erent degreeof non-rigid
transformations are applied to the testing point setsto form the referencepoint sets.
The positions of points in both point setsare perturbed by zeromeangaussiannoise
with di erent standard deviation. Di erent amourts of outliers are alsoaddedto the
referencepoint setsto make the point matching processobtaining a worse results.
Theseare performed for evaluation of our stochastic inverseconsistet model under
worseinput conditions.

Fig.5.6 shows the rst brain point set example. As described above, the blue

circlesare the points extracted to be the testing point set, while the black crossesre
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(a) (b)

Figure 5.6: (a): Brain image with the extracted point sets. (b): Testing point sets
(blue circles) with the referencepoint sets(black crosses).
the referencepoint set. The points showvn in Fig.5.6 were not perturbed by noiseor
outliers. The visual results and the numerical error of the transformation in terms of
SSDis shavn in Fig.5.7. In these gures, the GTLS solutions solved are in-between
their inputs. The plots show that in this examplethe GTLS solutionsare better than
their inputs most of the time. Eventhe GTLS solution is not the best, it is still closer
to the input with the bestresult asshavn in Fig.5.7(c) (standard deviation = 4).

Similar experimerts are performedon another brain image. The point setsinput
are shown in Fig.5.8. The resultsfor the forward and badkward registration processes
are shown in the left and right rows of Fig.5.9 respectively. The plots in Fig.5.9(c)
and (d) do not shawv the obvious trend asthosein Fig.5.7. Howewer, an interesting
result is obtained at standard deviation = 5 in the plots. At that point, one of the
transformation results is particular poor (Tyo/ T;,%). Although our GTLS solution is
not the best at that point, but it is very closeto the best result instead of the worst
one.

In the last brain point setsexample,we extract points from a brain image similar

to the onein rst example, Fig.5.10. Small and large deformations are applied on
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the testing point setto form two di erent referencepoint sets,in Fig.5.11(a)and (b).
Examplesof the point setswith addition of noiseor outliers are shovn in Fig.5.11(c)
and (d). The visual results and results for error are shovn in Fig.5.12 and Fig.5.13.
The results show similar pattern with the above examples.The GTLS solution either
outperforms the input transformation matrices or even if it is not the best, it will
closeto the input with a better performance. In this examplewe also examinethe
consistencyerror by comparingthe termsk Ty, To; | kg for the input forward and
badward transformationspair andk T,, T,; | kg for the GTLS outputs. As shovn
in Fig.5.14,the GTLS outputs are guararteed to be inverseconsistet by Equ.(4.26)

sud that T,, T,; is equalto identity.

5.4 Experiments on Real Image Data

We alsotest our stochastic inverseconsistenh model with realimagesdata. The images
we usedare from the Vanderbilt Retrospective Registration Project [33]. We pick out

two slicesfrom two di erent patients to test our model.

5.4.1 Data Description

The imageswe tested are two PD-weighed MR imagesfrom two di erent patient.
Fig.5.15 shaws the two input images. We de ne the forward registration processas

registeringl, to I ;.

5.4.2 Results and Discussions

The visual results are shavn in Fig.5.16. The forward and badkward registration
results are again derived from normalized mutual information as in the syrthetic
image example. From the red and blue cortours, we can obsene inconsistencyin the
forward and reverse processesj.e., T1, 6 T211. Sincethere is no ground truth for
error evaluation, we cannot determine the registration error numerically. Howeer,

from Fig.5.16(a) and (b), there are obvious registration errors as indicated by the
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red ellipses. Sud errors are not discoreredin the GTLS results. All the registration

results are displayed together in Fig.5.17 for comparison.

5.5 Convergency Issue

We have plotted the value for the consistencyerror (e) in Equ.(4.26) in ewery itera-
tion during the iterative process. It is donein order to investigate the corvergency
property of the iterativ e process.The plot of consistencyerror (e) versusthe number
of iteration is the convergencypro le (CP). The corvergencypro les are plotted for
the brain point setsexperimert with all the conbinations: small/large deformation
+ perturbed by noise/outliers(impulse noise). Examplesfor the cornvergencypro le

in ead conmbination are shown in Fig.5.18. We did not show out all the corvergency
pro les for di erent amourts of noiseand outliers. But an interesting fact is that for
the caseof deformation perturbed by noise,the number of iterations (3 in this case)
for the whole processis the sameunder di erent amourts of noise. While for the
deformation perturbed by outliers, the number of iterations under di erent amourts
of outliers is alsothe same(4 in this case). Theseare the obsenations obtained from
all the experimerts on the brain point sets. Sincenot all the convergencypro les

for di erent amourts of noiseor outlier proportion are showvn, the meanvalue of the
convergencypro le (from di erent amourts of noiseor outliers) in eat combination

is shavn in Fig.5.19(together with the maximum value, minimum valueand +/- 1SD
from the meanvalue). From these gures, we can obsene that after the rst itera-
tion, the numerical result of the value for evaluating Equ.(4.26) already becomesvery
small and the whole processterminates within 3 more iterations. The threshold is
10 © in Equ.(4.26)for the brain point setsexperimert. We zoom in the corvergency
pro le in the seconditeration to shav the numerical result is very small in Fig.5.20.
As it is dicult to illustrate the changeof the corvergencypro le after the second
iteration, the percerniage changeof the corvergencyerror for the cornvergencypro le is
plotted in Fig.5.21. From the gures, it shouldbe noticed that the perceniage change

is very large betweenewery iteration, making the whole iterativ e processcornvergein
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few iterations.

Among all the experimerts on the brain point sets, the whole iterative process
convergewithout any problems,i.e., the convergencypro le is monotonic decreasing.
Howewer, we nd an examplewhich the cornvergencypro le is oscillated. It is shavn
in Fig.5.22, the input transformation matrices are from the point matching results
which are showvn in Fig.5.23. In this example,the initial condition is very bad sothat
the 2 input matricesare very bad inverseof eat other. In this thesisthe relationship
of the initial condition and the result of the corvergencypro le is not studied, but

further analysisof the convergencyissuewill be one of our future work.
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(a): red:Ty, greenT,, blue: T,,* (b): red:Ty; greenT,, blue: T,,!

(c): forward registration process (d): badkward registration process

Figure 5.7: (a) and (b) are the visual results for the forward and badkward point
matching processesespectively. The red and blue triangles and the greenstars are
the warping results of the bladk crossedyy the transformations speci ed in the corre-
sponding gures. (c) and (d) are the plots of the sum of squareddistances(SSD) for
input point setswith di erent standard deviation of gaussiannoise.
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() (b)

Figure 5.8: (a): Brain image with the extracted point sets. (b): Testing point sets
(blue circles) with the referencepoint sets(black crosses).
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(a): red:T;, greenT,, blue: T, (b): red:Ty; greenT,, blue: T,,!

(c): forward registration process (d): backward registration process

Figure 5.9: (a) and (b) are the visual results for the forward and badkward point
matching processesespectively. The red and blue triangles and the greenstars are
the warping results of the black crosseduy the transformations speci ed in the corre-
sponding gures. (c) and (d) are the plots of the sum of squareddistances(SSD) for
input point setswith di erent standard deviation of gaussiannoise.
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Figure 5.10: Brain imagewith the represeting point set.
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(a): small deformation (b): large deformation

(c): gaussiannoiseadded,S.D = 2 (d): outlier added, proportion = 0.5

Figure 5.11: Column 1 and 2 are examplesof small deformation and large deformation
respectively. (a),(b) arethe point setwithout any noiseand outliers. In (c), positions
of the points are perturbed by gaussiannoisewith standard deviation = 2. In (d),
outliers are addedto the referencepoint set.
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(a): red:Ty, greenT,, blue: T,,* (b): red:Ty; greenT,, blue: T,

(c): forward registration process (d): forward registration process

(c): badkward registration process (d): badkward registration process

Figure 5.12: Column 1 and 2 are the results for registering referencepoint setswith

small and large deformation respectively. (a) shows forward registration results for
small deformationwith outlier proportion = 0.1. (b) shavsthe badkward registration
results for large deformation with gaussiannoiseof S.D = 4 added. (c)-(f) are the
plots of the sumof squareddistances(SSD) for input point setswith di erent standard
deviation of gaussiannoise. While (c),(d) are for the forward registration process,
(e),(f) are for the badkward one.
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(c): forward registration process (d): forward registration process

(c): badkward registration process (d): badkward registration process

Figure 5.13: Column 1 and 2 are the results for registering referencepoint setswith

small and large deformation respectively. (a)-(d) are the plots of the sum of squared
distances(SSD) for input point setswith di erent proportion of outliers added. While

(c),(d) are for the forward registration process,(e),(f) are for the backward one.
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(a): forward registration process (b): forward registration process

(c): badkward registration process (d): badkward registration process

Figure 5.14: Column 1 and 2 are the results for registering referencepoint setswith

smalland large deformationrespectively. (a)-(d) arethe plots of the consistencyerror,

measuredby k T1, To1 | kg for the input transformation pairandk T;, T,; | kg

for the GTLS output. While (c) and (d) are plots under di erent S.D of gaussian
noise,(e) and (f) are plots for di erent proportion of outliers added.
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(a): I1 (b): 12

(c): I,'s boundaryon I, (d): I1's boundaryonl,

Figure 5.15: Registeringpair | and I ,.
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(a): T12 (b) T21

(©): Ty (d): Tp,'

(e): Ty, (f): Ty

Figure 5.16: Registration results for the forward and badkward registration process
are shavn in column 1 and column 2 respectively.
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(a): red:Ty, greenT,, blue: T,,* (b): red:Ty; greenT,, blue: T,

Figure 5.17: The registration resultsfor the forward and badkward registration process
are shavn in (a) and (b) respectively.

(a) (b)

(c) (d)

Figure 5.18: ConvergencyPro le (CP) examplefor experimerts of brain point sets:
(a): Small deformation + noise. (b): Large deformation + noise. (c): Small defor-
mation + outliers. (d): Large deformation + outliers. The noisein (a) and (b) is
gaussiannoisewith zeromean, S.D = 4. Outlier proportion = 0.4in (c) and (d).
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(@) (b)

(©) (d)

Figure 5.19: The meanvalue (Mean CP), togetherwith the maximum value (Max CP),
minimum value (Min CP) and +/- 1 S.D.from the meanvalue (Mean CP+1SD/Mean
CP-1SD) of the convergencypro le from the studiesof di erent amourts of noiseor
outliers. (a): Small deformation+ noise. (b): Large deformation + noise. (c): Small
deformation + outliers. (d): Large deformation+ outliers. The number of studiesin
ead caseis 5.
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)

(©)

Figure 5.20: Zoom in of Fig.5.19
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(@) (b)

(c) (d)

Figure 5.21: Percenage change of the corvergencyerror shaovn in the corvergency
pro les in Fig.5.18. (a): Small deformation+ noise. (b): Large deformation+ noise.
(c): Small deformation + outliers. (d): Large deformation + outliers.

(@) (b)

Figure 5.22: (a): An exampleof corvergencypro le which cannot corvergemonoton-
ically. (b): The perceniage changeof the corvergencypro le.
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(a) (b)

Figure 5.23: Input to the GTLS systemwhich causethe problematic convergencyin
Fig.5.22. (a): The purple triangles are transformed from the blue circlesby transfor-
mation matrix Ty,. (b): The purple triangles are transformed from the blue circles
by transformation matrix T,;. T1, and T, is the transformation matrices pair for our
systeminput.
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Chapter 6

Conclusion

6.1 Summary

We preserted a new framework for modelling the inverseconsistencyin registration,
by simultaneously consideringthe stochastic uncertainties on both the transforma-
tion matrices and the inverse consistemn constraint through the Generalized Total
Least Square tting from the transformation matrices obtained after the registration
process.Our approad can be adoptedto medicalimage registration problem [35 or
generalregistration problem [36].

With our stochastic inverseconsisteth model, the uncertainty inherited from the
discrete nature of the information sourcesis considered. Sud uncertainty is illus-
trated in the wrong global maximum in the matching criteria sud that the regis-
tration results obtained from convertional registration algorithms cannot achieve the
real ground truth. The enforcemen of the stochastic property on theseforward and
badkward transformation matrices provides a meanapart from the matching criteria
to adhieve registration results which are closerto the ground truth.

Due to the underlying error within the forward and badkward transformation ma-
trices, deterministic imposition of the inverseconsiste constrairt from theseerratic
matriceswill not help to improve the registration resultsin systematicway. Through
our stochastic inverseconsistency the source-destinationsymmetric property will be

enforcedin a more systematicand exible way sud that the perfect inverseconsis-
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tency will be obtained when the uncertainty in the transformation is already mini-
mized. In addition, our stochastic model can be imposedwith the consideration of
any other similarity constraints without compromisingthe weighting betweenthe sim-
ilarity measuresand the inverseconsisten constrairt, it is theoretically more sensible

than the incorporation of sub-oljective cost function.

6.2 Future Work

In this thesiswe are aiming at providing a new framework for modelling the inverse
consistencyin a post-registration fashion. In the future, we will examinewhether it
is better to incorporate the total least square tting during the whole registration
process.The a ne transformation tting will be extendedto piecewise-a ne or non-
rigid deformation tting to obserethe possibleimprovemert of the registration results
in high dimensionaldeformation through inverseconsistency

The stochastic property of the individual elemen of the forward and badkward
transformation matrices, their relationship within the matrix and also the interre-
lation among a pair of transformation matrices will be examined extensively. The
relationship of the inverseconsisten model with input forward and badkward trans-
formation matrices and the stochastic property represeting the imperfectnessof the
inverseconsistet constraint will alsobe studied in the future work. All of theseare

potential meansto establishbetter registration results through inverseconsistency
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