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Sto chastic Framew ork for In verse Consisten t

Registration

by YEUNG, Sai Kit

Bioengineering

Department of ChemicalEngineering

The Hong Kong University of Scienceand Technology

ABSTRACT

Registration is the processof extracting spatial correspondencesbetweendi�eren t

data sets such as digital imagesor sets of points and obtaining their spatial trans-

formations from the extracted spatial correspondences.The information provided by

thesetransformations is very useful in areassuch as morphing in computer graphics,

fusion of medical imagesfrom di�eren t modalities, and �nding the poseof an object

in an imageor betweendi�eren t objects.

One of the essential criteria in registration is inverseconsistency, i.e. to make the

registration source-destinationsymmetric sothat the forward and backward mapping

matrices extracted are inverseto each other. Conventional approachesenforcecon-

sistency in deterministic fashions,either through the incorporation of sub-objective

cost function that imposeconsistent property during the registration processor by

the construction of di�eomorphic mapping on predeterminedlandmarks sets. How-

ever, deterministic techniquesfor establishingthe consistencymeansthat the errors

inherited from the discretenature of the information sourcesare not considered. In

this thesis, we present a stochastic framework that yields perfect inverseconsistent

registration from the initial forward and backward matching matrices. These ini-

tial forward and backward transformation matrices can be computed by any image

registration or point matching algorithms, which are input to our system. Then an

optimization processis developed to computethe perfect source-destinationsymmet-

ric mapping betweenthe forward and backward transformation matrices. The errors

xii



of the registration matricesand the imperfectnessof the consistent constraint areboth

modelled such that the whole optimization processis stochastic in nature. An itera-

tiv e generalizedtotal least square(GTLS) strategy hasbeendeveloped such that the

source-destinationsymmetric criterion is optimally established. Experiments based

on point setsmatching whereground truths areavailable, and synthetic aswell asreal

imageregistration problemshave beenperformed. Both show very promisingresults.
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Chapter 1

In tro duction

1.1 Background

Registration is a useful technique in computer vision and imageanalysis. It aims at

extracting the spatial correspondencesbetween di�eren t data sets. Then by these

establishedspatial correspondences,the corresponding data sets can be aligned or

transformed to oneanother so that it is easierto relate their corresponding features.

The data setsinvolved in the registration processcan be di�eren t unstructured point

sets, landmarks or digital images. Registration problem on point sets is usually re-

ferred to point matching problem while imageregistration is the registration process

applied amongdi�eren t images.

The information obtained from the registration processis very useful in many as-

pects. The correspondencesextracted can be usedas the basisfor morphing between

di�eren t objects [34]. The transformations derived can transform imagesto a com-

puter model or align di�eren t features in an image that have di�eren t locations in

physical space.Relating corresponding featuresis particularly important in medical

imageanalysis. With the advancements of noninvasive imaging technologies,medical

imagesare increasingin health care and in biomedical research. Di�eren t imaging

modalities emphasizedi�eren t structures, for example,X ray ComputedTomography

(CT) imagesshow bonestructureswhile Magnetic Resonance(MR) imagescanreveal

tissuesproperties. Registration makes the integration of information from di�eren t
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modalities possibleand it has beenone of the hot topics in medical image analysis

[12], [29], [19].

One of the most desirable properties for registration is inverse consistencyor

source-destinationsymmetry in which the correspondenceis one-to-oneand also un-

ambiguous. Consistent transformationsmaintain the topology of the registeringpair.

This is important in medical imaging for generatingbiologically meaningful results

[9] and in computer vision 3D points are usually re-projected onto the image to see

if they match with the original pixel color [17], however, this property is usually not

ensuredduring the registration process. Most of the earlier registration e�orts do

not attempt to imposeconsistencywhile deriving the transformation matrices, such

as the landmark or point basedmethods [3, 4, 11, 22], the contours basedalgorithm

[26, 25], the surface-basedalgorithms [20, 27], and the volume basedmethods which

utilize the whole imageinformation [2, 37, 10, 18, 32].

More recently, consistencyhasreceived increasingattention in point setand image

registration. The inverseconsistent constraint has been imposedalong with other

information such as image intensity and geometric characteristics to becomepart

of the optimization criterion in medical image registration [9] and to act as sub-

objectivecost function to ensurecoupling in point setmatching [14]. Sincethe source-

destination symmetry is only part of the metric that needsto be minimized, the

resulting transformation matrices are, in general,not perfectly consistent. Further,

the transformations are solved in deterministic nature, meaning that the stochastic

error properties of thesematrices are not considered.

1.2 Con tributions

We proposea stochastic framework for point set and imageregistration which results

in perfect source-destinationsymmetric mapping between the data sets. Instead of

imposing inverseconsistencyin a deterministic and imperfect sense,we enforcethe

inverseconsistent property optimally with the systematicconsiderationsof stochastic

uncertainties of the input forward and backward transformation matrices to achieve

2



perfect source-destinationsymmetry. The adoption of the GeneralizedTotal Least

Square(GTLS) technique [31] allows for simultaneousconsiderationsof the errors in

the input transformation matricesand the inverseconsistent constraint during a post-

registration �tting process.A set of new forward and backward transformations are

solved iterativ ely until they are perfectly inverse to each other. We want to point out

that the contribution of this thesisis not in presenting a newregistration algorithm per

se, but rather a novel way for imposing the stochastic inverseconsistent constraint

given an estimated set of registration matrices. This framework can be used with

any registration algorithms which have already shown their validit y in establishing

forward/backward mappings for di�eren t matching problems. Experimental results

on point set matching, synthetic and real imageregistration demonstratethe superior

performanceof the proposedmethod.

1.3 Structure of the Thesis

This thesis is organizedas follows:

In chapter 2, di�eren t registration algorithms that yield the inverse consistent

property for di�eren t typesof registration problemsare reviewed.

In chapter 3, the inherited error of the registration processdueto discretenature of

information sourcesis illustrated. Then the roleof inverseconsistencyin registration is

discussedin depth. Apart from this, we alsodiscusshow inverseconsistencygenerates

better registration results from the forward and backward registration processes.

Chapter 4 examinesthe methodologiesused in detail. In this chapter, our sto-

chastic inverseconsistent model for inverseconsistent registration is presented, where

the iterativ e generalizedtotal leastsquare(GTLS) approach is described to show how

the source-destinationsymmetric transformations pair is optimally obtained.

In chapter 5, experimental resultsof di�eren t point sets,synthetic imagesand real

medical imagesare shown and comparedwith the conventional methods. The study

about convergencyissueis presented in the last of this chapter. Chapter 6 concludes

this thesisand suggestsdi�eren t possiblefuture research directions.
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Chapter 2

Review of Related Works

2.1 In tro duction

Conventional registration methods usually do not considerthe consistencyconstraint.

Dueto di�eren t reasonssuch asthe discretenature of information sourcesand the local

optimization processin the registration algorithms, the transformations extracted

from the forward and backward registration processesarealways ambiguous. It means

given two imagesor two setsof points I 1 and I 2. The result of registeringI 1 to I 2 will

not be an exact inverseof the result from registering I 2 to I 1.

In many situations, the registration processis only performedin oneof the direc-

tion, i.e., we are only registering I 1 to I 2 or I 2 to I 1 to establish the spatial corre-

spondencesbetweenthe two data sets. In that sense,we are missingthe information

from oneof the directions. Moreover, if we do not enforcethe inverseconsistent con-

straint, even we have the registration results from both direction, it would be di�cult

to combine or choosethe result betweenthem.

One would argue that we can perform the registration processin one of the di-

rection, then we take the inverseof that transformation result to obtain a source-

destination symmetric pair. However, in real situation, the registering data is not

simple and the ground truth is not available. The imagesand point setsare so com-

plicated that it is very di�cult to tell whether the result from the forward or backward

registration processis better without the ground truth evaluation. As a result, simply

4



taking one of the registration results may bear the risk of choosing the worseresult.

So inverseconsistencyindeed provides a mean to utilize the information from both

direction and provide a more robust registration result.

In recent years,di�eren t methods are proposedto enforcesource-destinationsym-

metric in registration. A common approach is imposing the inverseconsistent con-

straint during the registration processthrough incorporation of sub-objective cost

function, then the optimization of the matching criteria will include the inversecon-

sistent constraint. For all of theseapproaches,there is an implicit assumptionthat the

transformation matricesextracted from the matching criteria at the global maximum

is the ground truth. That meansthey are both deterministic in nature that inherent

error associated with the matching criteria is not consideredin theseapproaches.

2.2 In verse Consistency through incorp oration of

sub-ob jectiv e cost function

A common strategy for enforcing consistencyis the incorporation of sub-objective

cost function in the matching criteria. Di�eren t works that incorporate consistency

under various conditions and matching criteria have beenproposedChristensenetal

[9, 16, 8, 15, 7]. Their schemefor incorporating consistent constraint in registration is

to assigna cost metric ECons to the consistent property as part of the matching cost

function E, i.e.,

E = ESim + ECons (2.1)

whereESim measuresthe similarit y (i.e. imageintensity and geometricalproperties)

betweenthe data sets. Sincethe consistent measureis only part of the overall cost

function, the optimal solution to Equ.(2.1) in generalwould not produce the perfect

inverseconsistent mapping onedesires.The di�eomorphic point matching in [14] fol-

lows similar pattern, wherethe cost function is combined with di�eren t sub-objective

functions including the di�eomorphic measurement.
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2.3 Deterministic In verse Consistency Represen-

tation

The above formulations do not consider the underlying stochastic properties asso-

ciated with the transformation results solved from the matching criteria. It means

throughout the registration process,the matching criteria is absolutely trusted so

that the forward transformation T12 and the backward transformation T21 are solved

in deterministic nature in order to get a one-to-oneconsistent mapping (unambiguous

correspondence),i.e.,

T12 � T21 = I (2.2)

In the following chapters,we will examinethe possibledrawbacks of simply impos-

ing the deterministic model for inverseconsistency. We will alsoshow that due to the

discretenature of information sources,even the optimization processutilizes a global

strategy, the results producedare still not equal to the ground truth. In other words,

the matching criteria cannot be trusted fully and there will always be uncertainties

associated with the transformation matrices obtained.

The role of inverseconsistent constraint will also be discussed.In reported liter-

atures, inverseconsistencyis usually discussedas the property being imposedon the

registration so that the registration processcan maintain certain kind of topology.

Actually inverseconsistencyis the art of how to integrate the information from the

forward and backward registration processes.A proper combination betweenthe two

canyield a better registration result than resultsusingonly forward or only backward

registration. This observation will be discussedin next chapter.
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Chapter 3

In verse Consistency in Registration

3.1 In tro duction

In this chapter, we illustrate the main problems due to the discrete nature of the

information sourcesin registration processand the role of inverseconsistencyin reg-

istration. The discrete nature of the digital imagesor a set of points makes the

registration problems ill-p osed. This is becausethe registering signals are actually

unable to represent the real continuoussignalsperfectly. As a result, the optimum by

any matching criteria is only the best match for a pair of discretesignals,instead of

the real continuoussignals.Registration resultsobtainedthereforewill always contain

errors and not equal the ground truth.

Apart from the discrete nature of information sources,the optimization process

is also discrete. This is another problem sincethe discreteoptimization processwill

always result in ambiguousforward and backward transformation pair if it is a local

optimization. Soin order to guaranteea source-destinationsymmetric transformation

pair, we have to optimize the forward and backward registration processessimultane-

ously. Here, we explain the role of inverseconsistent constraint and how it enforces

the simultaneousoptimization between the two registration processes.How inverse

consistencyresults in better registration results is usually not mentioned in other

literatures [9], [13], [28]. In the last section,we will illustrate the potential of an in-

verseconsistent registration that improvesthe registration results towards the ground

7



truth.

3.2 Registration of Con tin uous Signals

First, it should be noted that it is always valid to have a deterministic consistent

constraint if we are registering continuous objects. Fig.3.1(a) are 2 continuous sine

curves A and B, A = sin(x) and B = sin(x-0.5) such that B is shifted to right by

0.5s from A. The matching criteria we use to demonstrate the registration pro�le

for thesetwo signalsis the NormalizedMutual Information (NMI) [24] which has its

maximum when two signals are perfectly aligned as shown in Fig.3.1(c). Here we

refer registering B to A as the forward registration processand registering A to B

as the backward registration process. It is easy to observe that there are two dis-

tinct optima for the corresponding ground truth transformation in the forward and

backward registration process. They are -0.5 in the matching criteria curve for the

forward registration process(NMIf ) and +0.5 in the matching criteria curve for the

backward registration process(NMIr). So it meansthat the matching criteria can

result in ground truth transformation in the registration process,i.e., the forward and

backward transformation matricesresolvedshouldbe perfectly representing their true

spatial relationship. In addition, the results solved from the forward and backward

registration processeswill be a perfect inverseof each others. In this situation, the

consistent property betweenthe solved forward and backward transformations is au-

tomatically established.As a result, if we are registeringa pair of continuousobjects,

imposing consistent constraint or not during the registration processwill not have

any e�ect and the registration result is in indeed the ground truth transformation.

The inverseof this registration result will immediately becomeits forward/backward

counterpart transformation result.

Therefore if there is a digital signal that is sampled under very high sampling

rate such that the original continuous signal can be perfectly reconstructed,the de-

terministic model for inverseconsistencycan always be imposed. In Fig.3.1(b), the

registeringpair Ac and Bc reconstruct the original signal A and B perfectly, making

8



(a) (b)

(c) (d)

(e) (f )

Figure 3.1: Registration of (a): A and B, (b): Ac and Bc. (c),(d): The matching
criteria curvesfor forward and backward registration process.(e),(f ): The combined
matching criteria curve (NMIc) from the forward and reverseregistration process.

the forward and reverseregistration processesresult in the ground truth and achieve

source-destinationsymmetry (Fig.3.1(d)). Such a casewould be registration for two

imagesunder very high resolution, e.gCT-CT registration in medical imageregistra-

tion problem.
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(a) (b)

(c) (d)

(e) (f )

Figure 3.2: (a),(b): Registration of Ac and Bc. (c),(d): The matching criteria curves
for forward and backward registration process. (e),(f ): The combined matching cri-
teria curve (NMIc) from the forward and reverseregistration process.

3.3 Discrete Nature of the Information Sources

In the previous sectionwe have shown that if we are registering continuous objects,

or the digitized objects can fully reconstruct the original continuous objects, the

source-destinationsymmetric constraint will be unnecessarysinceperforming one of

the forward or backward registration processand then simply inversing the result

producesa pair of ground truth transformations. However, sincethe digital imagesor

the discretepoint setswe usedare not able to perfectly represent the original objects,

the abovesituation is no longervalid. This is the key problemfrom the discretenature

10



of the information sourcesbecausethis meansthat the registeringpair we passto the

registration algorithms is actually di�eren t from the original signals. One can easily

seethat the resulting transformation will not be perfectly equal to the ground truth

transformation which will be illustrated in the following examples.

Fig.3.2(a) is the �rst exampleto illustrate the idea. An and Bn are the digitized

versionof A and B both with sampling interval of 3s. Although their corresponding

sampling rate is still above the Nyquist frequency ( 1
� for sin(x)), it is shown that

the reconstructedsignalsAc and Bc are unable to represent the original signalsper-

fectly. As a result, the matching criteria are no longer able to give you the ground

truth transformations. The maxima are now around (-1.1,1.1) instead of the sharp

peaksat (-0.5,0.5)in the forward and backward matching materia curves(Fig.3.2(c)).

Fig.3.2(b) is another example with An at a higher sampling rate (2s). Fig.3.2(d)

shows the maxima for the forward and backward registration processwhich would be

-1 and 1 respectively instead of -0.5 and 0.5. In both cases,even global optimization

algorithms are used,the results obtained are not correct.

In the above situation, the source-destinationsymmetric property may still be

obtained without enforcinginverseconsistent constraint if the forward and backward

registration processcan reach their corresponding global optimum by global opti-

mization algorithm. However, in most casethe registration algorithms utilize local

optimization algorithm to extract the transformations. This will be problematic for

the casewhen a distinguish global optimum is not available, so that trapping in local

optimum is more likely to occur and the extracted transformations are further away

from the ground truth. This problemmay beavoidedif a very sharpoptimum is avail-

able. In Fig.3.2(d), the two peaksare outstanding and it can be expected that even

local optimization processis carried on the two curvesseparately, the resultsobtained

will still be inverseconsistent, i.e., -1,1. But this situation is not guaranteedespecially

in high dimension. Moreover, in conventional registration problems,the optimization

processis usually initialized in the samestarting direction, i.e., we just initialize one

way to start climbing the hill (the matching criteria curve), e.g. climbing the hill from

left to right. From Fig.3.2(c), the possibleforward and backward registration results

11



Figure 3.3: Left side: Forward registration process.Right side: Backward registration
process.Row 1: Input pair. Point correspondencesduring: Row 2: 1st iteration, Row
3: 70th iteration, Row 4: last iteration

would be (-1.1,-0.5) instead of the ground truth pair (-0.5,0.5) meansthat there are

both error is the transformation results and they are alsoambiguous.

Another problem occurswhen the ambiguoustransformations pair is an inconsis-

tent correspondenceestablishedduring the registration process.This problem is very

commonin typical point matching processsincethe point correspondencesestablished

from the forward and backward point matching processesare always going to be dif-

ferent. The intermediate correspondencesof the forward and backward processare

ambiguoussothat the �nal transformationsobtained are inconsistent. This situation
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(a) (b)

Figure 3.4: (a): forward registration result T12 (blue circles)with the inverseof back-
ward registration result T � 1

21 (purple triangles), (b): backward registration result T21

(blue circles) with the inverseof forward registration result T � 1
12 (purple triangles).

The transformations involved are a�ne.

is illustrated in Fig.3.3. We simply swap the input for the point matching algorithm

(in our caseICP [3]), the correspondencespairs during the iteration are linked by

greenlines in Fig.3.3(b)-(d). In Fig.3.4, the �nal forward and backward transforma-

tions and their corresponding inversesareusedon the original testing point setto warp

on the referencepoint set to show the two transformationsare not source-destination

symmetric.

From the above examples,we can conclude that due to the discrete nature of

the information sources,the optimum in the matching criteria cannot represent the

real ground truth in continuous domain. This discrete nature will also a�ect the

intermediate correspondencesestablishedand hencethe �nal results. Moreover, the

discrete nature of the optimization processand its conventional operation strategy

also results in ambiguousproblem of the forward and backward registration process.

So in order to obtain a source-destinationsymmetric transformation pair, the inverse

consistent constraint cannot be omitted.

3.4 Role of In verse Consistency in Registration

As we have mentioned in the above section, the forward and backward registration

processwill generatean ambiguoustransformationsresult. It is necessaryto constrain

the forward and backward registration processtogether in order to achieve the consis-
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tent property. So what doessource-destinationsymmetry or consistencymentioned

above imply in a simple 1D registration problem and when will it be good to the

registration result? Actually in 1D case,enforcinginverseconsistencyin a determin-

istic sensemeansthe hill climbing processshouldbe initialized in both direction with

the samestep length and samestarting point, i.e. evaluate the matching criteria in

pairwisenature: (1,-1), (2,-2)...(n,-n) together for the testing signalover the reference

signal. Equivalently, there would be a new matching criteria curve that is a combi-

nation of the forward and backward matching criteria curve. The simplest way is to

have a non-weighted linear combination [23], which can be obtained simple addition,

as shown in Fig.3.1(e),(f), Fig.3.2(e) and (f ). Here, a critical rule for combining the

forward and backward matching criteria curvesunder deterministic senseis that they

shouldbe combined in the corresponding transformation position, i.e. the NMIf value

at 0.5 translation must be combined with the NMIr value at 0.5 translation also.

It should be noted that imposing a deterministic consistent constraint will not

always result in better registration results. In Fig.3.2(f) , although the relative height

of the wrong peaksare decreasedby summingup the forward and reverseregistration

criteria curves, the new matching criteria still give the samewrong maxima (-1,1).

Deterministic consistencywill only give better registration results if the wrong peaks

in the forward and backward matching criteria curve are eliminated and a new peak

closerto the ground truth transformation is established. In Fig.3.2(e), the transfor-

mation pair corresponding to optimum will bearound(-0.8,0.8)which is unambiguous

insteadof (-1.1,-0.5)and alsocloserto the groundtruth (-0.5,0.5). In termsof physical

anatomy, combining the two matching criteria curves to obtain a better registration

results can be linkenedto interferencein wave phenomenadestructive interferenceis

formed at the wrong peakposition and constructive interferenceat the peakposition

nearerto the ground truth [5].

As stated above, source-destinationsymmetry in deterministic sensemeansthat

the combination of the forward and backward registration curveshave to be in �xed

corresponding transformation position, i.e., the NMIf value at 0.5 translation have

to combine with the NMIr value at 0.5 translation (remember the pairwise nature

14



(-1,1), ..., (-n,n)). This meanswe are still trusting the matching criteria. However,

as we have shown above due to inadequatesampling, the registering objects cannot

fully represent their original continuousobjects so that the matching criteria cannot

re
ect the real ground truth. As a result, we believe that if a relaxation of the �xed

combination betweenthe two curvesis allowed, there will be a meanto achieve better

registration results through consistency.

This relaxation of the �xed combination meanscombining the 2 curves in some

stochastic fashioninsteadof deterministic one, i.e., sliding the 2 curvesbeforecombi-

nation (e.g. imagine the value at -1.5 translation from the NMIc curve can be come

from the value at -1.3 translation in the NMIf curve and the value at -1.6 translation

in the NMIr curve). This makes it more likely that distinct destructive interference

on the wrong peaks. In turn, this increasesthe potential meansfor the inverseconsis-

tent constraint to make the registration results closerto the underlying ground truth

(make a more distinct destructive interferenceon the wrong peaks). The range of

the sliding of the two curvesshould not be the sameas the resultant transformation

error betweenthe forward and backward registration processis not necessaryequal.

Therefore,if we can stochastically imposethe sliding rangeof the forward and back-

ward matching criteria curvesor equivalently, considerthe errors associated with the

transformation matrices individually during the combination, there is another mean

to achieve a better registration result.
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Chapter 4

Sto chastic In verse Consistency

4.1 In tro duction

In this chapter, we will describe a new way to enforce inverse consistencyin reg-

istration through our stochastic inverseconsistency. As described in chapter 3, the

matching criteria cannot result in the ground truth transformation due to the discrete

nature of the information sources.This problem is not solve by the matching criteria

since theoretically the function of matching criteria is to give maximum when the

two objects are overlapped with maximal similarit y in terms of the matching criteria.

However, the matching criteria indeedful�ll its function as shown in the continuous

case.

Therefore, the errors associated with the extracted transformations pair by any

registration method should not be ignored. In that sense,oneshould have stochastic

uncertainties associated with the transformation matrices when the inverseconsis-

tent constraint is enforced. In addition, the inherent imperfectnessin the consistent

constraint should also be taken into account at the sametime as our ultimate goal

to achieve source-destinationsymmetry or inverseconsistencyover the ground truth

transformations insteadof the transformationswith maximal matching criteria value.

Hencethere will also be a stochastic uncertainty term incorporated with the inverse

consistent constraint.
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4.2 Sto chastic In verse Consisten t Represen tation

As stated above, in this thesis we are arguing that rather than enforcing inverse

consistencyunder deterministic and imperfect sense,we should model the consistent

constraint with the simultaneousconsiderationof the underlying stochastic uncertain-

ties within the forward and backward transformation matrices and hencethe imper-

fectnessof the source-destinationsymmetric constraint. Thus our stochastic inverse

consistent model becomes:

(T12 + ET12 ) � (T21 + ET21 ) = I + Ri (4.1)

whereET12 and ET21 model the stochastic error properties of the transformation ma-

trix T12 and T21. In this thesis, we test with 4-by-4 a�ne transformation matrices,

in theory, we can also enforcethe stochastic relationship on non-rigid deformation.

Ri is the error imposedon the imperfectnessof the consistent constraint. With this

formulation, we can provide more 
exibilit y on imposing source-destinationsymme-

try betweenthe forward and backward registration processes,without compromising

accuracy.

It is easy to notify that the error matrices E and the transformation matrices

govern the 'individual sliding rangeof the matching criteria curve' while the R i matrix

is related to the 'degreeof sliding' when combining the 2 curvestogether. Up to now

we haven't enforceany deterministic weighting between the matching criteria value

on the 2 curvesto avoid any �xed bias. In potential investigationswe may deal with

the weighting when we combine the 2 curves together. However, notice that even

without any weighting, sliding the 2 curves already ful�ll the goal to 'destruct the

wrong peaks'completely.

In this thesis, we have adopted simple derivations of the error matrices and set

them as the di�erences between the transformation matrices and their respective

inverseof the corresponding reversetransformation matrices i.e. :

ET12 = jT12 � T � 1
21 j ET � 1

12
= jT21 � T � 1

12 j (4.2)
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We adopted this simple assumptionthat the di�erence of the forward and inverse

of the backward transformation hasalreadysetup a looseupper bound of the error as

the �nal transformation solved under the stochastic inverseconsistent model should

be someway 'in-between' of the 2 input transformation matrices. For the R i matrix,

we simply assumeall the entries will have the samestochastic property and set it as

4 r such that Ri 2 R4� 4 with all the entries equal to 4 r :

Ri =

0

B
B
B
B
B
B
B
@

4 r � � � � � � 4 r

...
. . .

...
...

. . .
...

4 r � � � � � � 4 r

1

C
C
C
C
C
C
C
A

(4.3)

To further simplify our current error model, we assumeall the elements in the

error matrices have zero mean and are independent of each other. The individual

element of the error matrices, their relationship within the matrix and also the in-

terrelation among the error matrices will be examinedin future work. Once again,

we are aiming at developing a completely new stochastic inverseconsistent model in

this thesis. The modelling of the error propertiesdependson the actual data and also

the corresponding matching criteria which is very complicated. Also notice that the

modelling of the stochastic propertieswill be the potential meanto improve the regis-

tration resultsthrough inverseconsistencywhich will be investigatedheavily in future

work. Thesematriceswill be involved in building the error equilibration matrices for

the GeneralizedTotal Least Solvers in the following section.

4.3 GTLS Form ulation

After obtaining a pair of forward and backward transformations from any point set

or imageregistration algorithm, our stochastic framework aims at consideringthe er-

rors on the transformation matrices and imposingstochastic property on the inverse

consistent constraint at the sametime to optimally solve a pair of consistent trans-

formation matrices. In order to solve the problem while consideringall the errors
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simultaneously, we adopt the total least squareapproach [31]. In addition, as the er-

ror on every entry do not carry the samestochastic property and someof the entries

are error free, a GeneralizedTotal Least Square(GTLS) [30] approach is used. The

GTLS formulation is asfollows: Considera overdeterminedsystemof linear equations

with a set of m linear equationsin n � d unknowns X :

AX � B A 2 Rm� n ; B 2 Rm� d and X 2 Rn� d; m > n + d (4.4)

Partition A = [A1; A2] A1 2 Rm� n1 ; A2 2 Rm� n2 and n = n1 + n2 (4.5)

X = [X T
1 ; X T

2 ]
T

X 1 2 Rn1 � d and X 2 2 Rn2 � d (4.6)

Assumethat the columnsof A1 are error freeand that nonsingularerror equilibration

matices RD 2 Rm� m and RC 2 R(n2+ d)� (n2+ d) are given such that the errors on

R� T
D [A2; B ]R� 1

C are equilibrated, i.e. uncorrelatedwith zeromeanand samevariance.

Then, a GTLS solution of (4.4) is any solution of the set

bAX = A1X 1 + cA2X 2 = bB (4.7)

where bA = [A1; cA2] and bB are determinedsuch that

Range( bB) � Range( bA) (4.8)

and

k R� T
D [4 cA2; 4 bB]R� 1

C kF = k R� T
D [A2 � cA2; B2 � bB ]R� 1

C kF is minimal (4.9)

The problem of �nding [4 cA2; 4 bB] such that Equ.(4.8) and (4.9) are satis�ed is re-

ferred to as the GTLS problem. Whenever the solution is not unique, GTLS singles

out the minimum norm solution, denotedby bX = [ cX T
1 ; cX T

2 ]
T
.

Our objective is to formulate our problem into the GTLS formulation and solve

the �tting transformation matrix under the considerationof the transformation er-

rors and the errors on the consistent constraint simultaneously by making useof the
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GTLS property. Notice that in the caseof a�ne transformation, the last row of

the transformation matrix is actually error free. By making use of this property,

the transformation matrices can be �rst transposedand permuted to �t the GTLS

formulation:

Q12 = TT
12 � P Q21 = TT

21 � P (4.10)

inv Q12 = (T � 1
12 )T � P inv Q21 = (T � 1

21 )T � P (4.11)

whereP = P14 � P24 � P34 and

P14 =

0

B
B
B
B
B
B
B
@

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

1

C
C
C
C
C
C
C
A

P24 =

0

B
B
B
B
B
B
B
@

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1

C
C
C
C
C
C
C
A

P34 =

0

B
B
B
B
B
B
B
@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

C
C
C
C
C
C
C
A

(4.12)

Q12 and Q21 will be 4-by-4 matrices with the form :

Q12 =

0

B
B
B
B
B
B
B
@

0 T12(1; 1) � � � T12(3; 1)

0 T12(1; 2)
...

0
...

. . .
...

1
... � � � T12(3; 4)

1

C
C
C
C
C
C
C
A

Q21 =

0

B
B
B
B
B
B
B
@

0 T21(1; 1) � � � T21(3; 1)

0 T21(1; 2)
...

0
...

. . .
...

1
... � � � T21(3; 4)

1

C
C
C
C
C
C
C
A

(4.13)

Sothe �rst column of Q12 and Q21 is error freeand �t the form of the GTLS approach
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in Equ.(4.7). Hencethe GTLS formulation of our stochastic inverseconsistent model

becomes: 2

6
4

Q12

inv Q21

3

7
5 X �

2

6
4

I

I

3

7
5

2

6
4

inv Q12

Q21

3

7
5 Y �

2

6
4

I

I

3

7
5 (4.14)

Where X and Y are the optimal forward and backward transformation matrices re-

spectively, both containing the information from the original T12 and T21. In order to

get back the forward and backward transformation T �
12 and T �

21, we simply perform

the permutation and transposeon the GTLS solutions X and Y:

T �
21 = (P � X )T T �

12 = (P � Y)T (4.15)

Apart from the input transformation matrices, the error properties are also nec-

essaryto specify the GTLS formulation. The error matrix EQ12 for Q12 and E inv Q12

for inv Q12 are derived as presented in Equ.(4.2) i.e.

EQ12 = jQ12 � inv Q21j E inv Q12 = jQ21 � inv Q12j (4.16)

and the �rst column is dropped as the �rst column of Q12 is error free. The error

matrices E inv Q21 and EQ21 transformation matrix are formed respectively by:

E inv Q21 =
(1 � � )

�
� EQ12 EQ21 =

(1 � � )
�

� E inv Q12 (4.17)

where� is the weighting on the error of the forward transformation matrix T12 (assume

signal with higher resolution be the testing signal):

� =
voxel sizeof I 1

voxel sizeof I 2
or � =

# of points in point set 2
# of points in point set 1

(4.18)

Soby imposingthe above relationship, the registration result with a higher resolution

test imageor point matching result with morepoints in the test point setwill be more

trusted. While in this thesis we use this simple assumptionto model the weighting

function between the error on forward and backward registration results from two
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imagesunder di�eren t resolutions,more complicatedway can be investigatedand is

a possibility of future work.

The error equilibration matricesRC and RD are then formed from the squareroot

of the error covariancematrices C and D:

C = � T � and D = �� T

where � =

2

6
4

EQ12 Ri

E inv Q21 Ri

3

7
5 (4.19)

The matrix � aboverepresents the stochasticproperty of the error in the linear system

for solving X in Equ.(4.14). After deducingC and D, RC and RD for the input of the

GTLS solver are simply obtained from their Choleskydecomposition, i.e. C = RT
CRC

and D = RT
D RD . Notice that the � matrix in solving Y in Equ.(4.14) is:

� =

2

6
4

E inv Q12 Ri

EQ21 Ri

3

7
5 (4.20)

4.4 In verse Consistency by Iterativ e GTLS Solu-

tion

After de�ning the GTLS model to �t the transformation matrix basedon the sto-

chastic inverseconsistency, we set up the whole iterativ e processfrom the registration

results T12 and T21 in order to extract both the forward transformation matrix T �
12

and the backward transformation matrix T �
21. Recall that thesematrices are inverse

of each other. The input for the iteration processis Q12, Q21, inv Q12 and inv Q21 in

Equ. (4.10) and (4.11).

2

6
4

Q(0)
12

inv Q(0)
21

3

7
5 X (0) �

2

6
4

I

I

3

7
5

2

6
4

inv Q(0)
12

Q(0)
21

3

7
5 Y (0) �

2

6
4

I

I

3

7
5 (4.21)
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with the corresponding stochastic property in the noisedata:

2

6
4

E (0)
Q12

Ri

E (0)
inv Q21

Ri

3

7
5 and

2

6
4

E (0)
inv Q12

Ri

E (0)
Q21

Ri

3

7
5 (4.22)

the '0' in the brackets is the number of iteration and the solved X (0) and Y (0) are:

X (0) = P � 1 � (T (1)
21 )T Y (0) = P � 1 � (T (1)

12 )T (4.23)

so

(X (0) )� 1 = inv Q(1)
21 and P � (X (0) ) � P = Q(1)

21 (4.24)

(Y (0) )� 1 = inv Q(1)
12 and P � (Y (0) ) � P = Q(1)

12 (4.25)

The correspondingerror matricesfor the transformation matricesarealsoupdated

during the iteration, i.e., getting E (1)
Q12

; E (1)
Q21

; E (1)
inv Q12

; E (1)
inv Q21

by Equ.(4.16)and (4.17)

to �t the input matricesof the GTLS solvers. Notice the transformation errorsshould

be smaller during the iteration (closer to the ground truth) while the error matrix

Ri for the consistencyconstraint is �xed since the initial input stochastic inverse

consistent model is kept unchanged.

Thereforeall the components for the GTLS solvers are updated and the process

can be repeateduntil the consistencyerror (e) is lessthan a given threshold:

jj (P � X (n))T � (P � Y (n))T � I jjF = e < threshold (4.26)

and the GTLS solution matrices will be:

T �
21 = (P � X (n))T T �

12 = (P � Y (n))T (4.27)

Notice that from Equ.(4.26)and (4.27), the �nal output matricesT �
12 and T �

21 from

the GTLS systemare perfect inverseof each other. Therefore,the objective to derive
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a novel model for source-destinationsymmetric registration in this thesis is achieved.
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Chapter 5

Exp erimen ts and Discussions

5.1 In tro duction

Experiments have beenperformed on synthetic image data, point set data and real

MRI brain images. The forward and backward registration results of all the experi-

ments are shown and usedas the input for our stochastic inverseconsistencymodel

to achieve inverseconsistency. Di�eren t kinds of data and matching algorithm were

applied so that it showed the robustnessof stochastic inverseconsistencyon di�eren t

types of registration problems. The main purposeof the experiments on synthetic

imagesdata and real imagesdata is to provide visual resultsof the algorithm. Mean-

while the point set data serves as a robustnessevaluation through error distance

measurements.

5.2 Exp erimen ts on Synthetic Image Data

Synthetic imagedata with known transformation and noiselevelswereusedto verify

the e�ects of the stochastic inverseconsistencyon the forward and backward transfor-

mation results. The e�ect of trusting the registration processwith a higher resolution

testing imageis shown in the secondexample.
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(a) (b) (c)

Figure 5.1: (a): ImageA. (b): ImageB. (c): ImageC: ImageB downsampledby 2 in
x and y dimensions.

5.2.1 Data Description

A known a�ne transformation wasapplied on 2D synthetic imageA to form another

image B, then image B is downsampledby 2 in x and y dimension to form image

C. Noise is added to all the images. Image A and B form the �rst registering pair

(Fig.5.1(a) and (b)) while image A and C form another registering pair (Fig.5.1(a)

and (c)).

5.2.2 Results and Discussions

In the synthetic imageexample,the forward and backward registration is performed

by utilizing the Normalized Mutual Information (NMI) [24] to extract T12 and T21.

Thesetwo matricesand their inversesarepassedto the GTLS systemto obtain a pair

of source-destinationsymmetric transformation pairs T �
12 and T �

21.

The resultsfor registeringimageA and imageB areshown in Fig.5.2. In Fig.5.2(a)-

(c), the transformationsrepresenting the forward warping resultsshown by the warped

red contours over imageB. The red contours are the warped boundary of the object

in image A by di�eren t transformations, from left to right, are T12,T �
12, T � 1

21 . In

Fig.5.2(d)-(f), the results for the backward processare illustrated. The warped con-

tours from the object's boundary in imageB is overlayedon imageA. The transforma-

tions for the warping of imageB, from left to right, are T � 1
12 ,T �

21, T21. In this example,

we can observe that the GTLS solution actually gives a better registration results

due to the cancellationof opposite bias from the forward and backward registration
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(a) (b) (c)

(d) (e) (f )

Figure 5.2: (a)-(c): transformations represented the forward warping results, left
to right: T12,T �

12, T � 1
21 . (d)-(f ): transformations represented the backward warping

results, left to right: T � 1
12 ,T �

21, T21. The red contours are the warped boundary of
the object in image A for row 1 and image B for row 2 with the warping by the
transformations speci�ed above.

results.

Fig.5.3 shows the registering results of imageA with a lower resolution imageC.

This examplealso tests the e�ect of the alpha value in Equ.(4.17). From Equ.(4.18),

the alpha value is set to 0.25. As the sameorder in Fig.5.2, the �rst row has forward

transformation results: T12,T �
12, T � 1

21 . The secondrow has the backward transforma-

tion results: T � 1
12 ,T �

21, T21. Although in this example, the GTLS solutions are not

the best, but the results are closer to the better one instead of the worse one, e.g,

the backward transformation results illustration in Fig.5.3(d)-(f), T �
21 is closerto T � 1

12

instead of T21.

5.3 Exp erimen ts on Poin t Sets Data

The point set data performs the robustnessevaluation of our GTLS solution. The

registration error is measuredby the sum of squareddistances(SSD) between the
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(a) (b) (c)

(d) (e) (f )

Figure 5.3: (a)-(c): transformations represented the forward warping results, left
to right: T12,T �

12, T � 1
21 . (d)-(f ): transformations represented the backward warping

results, left to right: T � 1
12 ,T �

21, T21. The red contours are the warped boundary of
the object in image A for row 1 and image C for row 2 with the warping by the
transformations speci�ed above.

coordinatesof the referencepoint set and the warped test point set by di�eren t trans-

formations.

5.3.1 Data Description

We begin with a simple example,a point set representing a �sh to illustrate general

point matching problem. Then point sets representing di�eren t human brains are

tested to demonstrate its use in medical image analysis. All the exampleswill be

driven by a testing point set and the corresponding referencepoint set. The reference

point set is formed by applying known non-rigid transformation on the testing point

set and then adding noiseto both point setsor outliers to the referencepoint set.
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(a): forward warping, T12 (b):backward warping, T21

(c): forward warping, T � 1
21 (d): backward warping, T � 1

12

Figure 5.4: Registeringblack crossesto black circles. Left column and right column
represent the forward and backward registration processrespectively. The red or blue
triangles above are the warping results from the transformations speci�ed below the
corresponding �gures.

5.3.2 Results and Discussions

The forward and backward point matching results for the �sh exampleare shown in

Fig.5.4. The point matching algorithm we applied for the point matching processis

the robust point matching algorithm RPM [21], the �sh point setsare modi�ed from

their web-site. Then the T12 and T21 and their inversesare usedas the input of our

GTLS system. The �nal GTLS results with the input transformations are shown in

Fig.5.5. The GTLS solutionsare inverseconsistent and in-betweenthe input forward

and backward transformations (from the positions of the green stars). Table.5.3.1

shows the SSDbetweenthe coordinatesof the referencepoint set and the warped test

point set with di�eren t transformations. As shown in the table, the GTLS solutions

outperform the input transformations with a smaller SSD.
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(a): red:T12 green:T �
12 blue: T � 1

21 (b): red:T21 green:T �
21 blue: T � 1

12

Figure 5.5: (a) and (b) are the results for the forward and backward point matching
processesrespectively. The red and blue triangles and the greenstarsare the warping
results of the black crossesby the transformations speci�ed in the corresponding
�gures.

Position Errors
Forward Matching Backward Matching

Transformation SSD Transformation SSD
T12 282.47 T21 428.45

GTLS T �
12 262.27 GTLS T �

21 386.85
T � 1

21 303.08 T � 1
12 427.94

Table 5.1: Sum of squareddistances(SSD) from di�eren t transformations results.

The �sh example gives a senseabout how the point set data experiments are

performed and evaluated. More point set example are tested with our stochastic

inverseconsistencyas illustrated below. The brain imagesfor the brain point set

data are from the BrainWeb project [1]. Points are extracted from the brain images

with canny edgedetector [6], then the edgepoints are clustered until a reasonable

amounts of points remain to form the testing point sets. Di�eren t degreeof non-rigid

transformations are applied to the testing point setsto form the referencepoint sets.

The positions of points in both point setsare perturbed by zeromeangaussiannoise

with di�eren t standard deviation. Di�eren t amounts of outliers are alsoaddedto the

referencepoint sets to make the point matching processobtaining a worse results.

Theseare performed for evaluation of our stochastic inverseconsistent model under

worseinput conditions.

Fig.5.6 shows the �rst brain point set example. As described above, the blue

circlesare the points extracted to be the testing point set, while the black crossesare
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(a) (b)

Figure 5.6: (a): Brain image with the extracted point sets. (b): Testing point sets
(blue circles) with the referencepoint sets(black crosses).

the referencepoint set. The points shown in Fig.5.6 were not perturbed by noiseor

outliers. The visual results and the numerical error of the transformation in terms of

SSDis shown in Fig.5.7. In these�gures, the GTLS solutions solved are in-between

their inputs. The plots show that in this examplethe GTLS solutionsare better than

their inputs most of the time. Even the GTLS solution is not the best, it is still closer

to the input with the best result as shown in Fig.5.7(c) (standard deviation = 4).

Similar experiments are performedon another brain image. The point setsinput

are shown in Fig.5.8. The results for the forward and backward registration processes

are shown in the left and right rows of Fig.5.9 respectively. The plots in Fig.5.9(c)

and (d) do not show the obvious trend as those in Fig.5.7. However, an interesting

result is obtained at standard deviation = 5 in the plots. At that point, one of the

transformation results is particular poor (T12/ T � 1
12 ). Although our GTLS solution is

not the best at that point, but it is very closeto the best result instead of the worst

one.

In the last brain point setsexample,we extract points from a brain imagesimilar

to the one in �rst example, Fig.5.10. Small and large deformations are applied on
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the testing point set to form two di�eren t referencepoint sets,in Fig.5.11(a)and (b).

Examplesof the point setswith addition of noiseor outliers are shown in Fig.5.11(c)

and (d). The visual results and results for error are shown in Fig.5.12 and Fig.5.13.

The resultsshow similar pattern with the above examples.The GTLS solution either

outperforms the input transformation matrices or even if it is not the best, it will

closeto the input with a better performance. In this examplewe also examinethe

consistencyerror by comparingthe terms k T12 � T21 � I kF for the input forward and

backward transformationspair and k T �
12 � T �

21 � I kF for the GTLS outputs. As shown

in Fig.5.14, the GTLS outputs are guaranteed to be inverseconsistent by Equ.(4.26)

such that T �
12 � T �

21 is equal to identit y.

5.4 Exp erimen ts on Real Image Data

Wealsotest our stochastic inverseconsistent model with real imagesdata. The images

we usedare from the Vanderbilt Retrospective Registration Project [33]. We pick out

two slicesfrom two di�eren t patients to test our model.

5.4.1 Data Description

The imageswe tested are two PD-weighted MR imagesfrom two di�eren t patient.

Fig.5.15 shows the two input images. We de�ne the forward registration processas

registering I 2 to I 1.

5.4.2 Results and Discussions

The visual results are shown in Fig.5.16. The forward and backward registration

results are again derived from normalized mutual information as in the synthetic

imageexample. From the red and blue contours, we can observe inconsistencyin the

forward and reverseprocesses,i.e., T12 6= T � 1
21 . Since there is no ground truth for

error evaluation, we cannot determine the registration error numerically. However,

from Fig.5.16(a) and (b), there are obvious registration errors as indicated by the
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red ellipses.Such errors are not discovered in the GTLS results. All the registration

results are displayed together in Fig.5.17 for comparison.

5.5 Convergency Issue

We have plotted the value for the consistencyerror (e) in Equ.(4.26) in every itera-

tion during the iterativ e process. It is done in order to investigate the convergency

property of the iterativ e process.The plot of consistencyerror (e) versusthe number

of iteration is the convergencypro�le (CP). The convergencypro�les are plotted for

the brain point setsexperiment with all the combinations: small/large deformation

+ perturbed by noise/outliers(impulsenoise). Examplesfor the convergencypro�le

in each combination are shown in Fig.5.18. We did not show out all the convergency

pro�les for di�eren t amounts of noiseand outliers. But an interesting fact is that for

the caseof deformation perturbed by noise,the number of iterations (3 in this case)

for the whole processis the sameunder di�eren t amounts of noise. While for the

deformation perturbed by outliers, the number of iterations under di�eren t amounts

of outliers is alsothe same(4 in this case).Theseare the observations obtained from

all the experiments on the brain point sets. Since not all the convergencypro�les

for di�eren t amounts of noiseor outlier proportion are shown, the meanvalue of the

convergencypro�le (from di�eren t amounts of noiseor outliers) in each combination

is shown in Fig.5.19(together with the maximum value,minimum valueand +/- 1SD

from the mean value). From these�gures, we can observe that after the �rst itera-

tion, the numerical result of the value for evaluating Equ.(4.26)alreadybecomesvery

small and the whole processterminates within 3 more iterations. The threshold is

10� 6 in Equ.(4.26) for the brain point setsexperiment. We zoom in the convergency

pro�le in the seconditeration to show the numerical result is very small in Fig.5.20.

As it is di�cult to illustrate the changeof the convergencypro�le after the second

iteration, the percentagechangeof the convergencyerror for the convergencypro�le is

plotted in Fig.5.21. From the �gures, it shouldbe noticed that the percentagechange

is very large betweenevery iteration, making the whole iterativ e processconvergein
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few iterations.

Among all the experiments on the brain point sets, the whole iterativ e process

convergewithout any problems,i.e., the convergencypro�le is monotonic decreasing.

However, we �nd an examplewhich the convergencypro�le is oscillated. It is shown

in Fig.5.22, the input transformation matrices are from the point matching results

which are shown in Fig.5.23. In this example,the initial condition is very bad sothat

the 2 input matricesare very bad inverseof each other. In this thesisthe relationship

of the initial condition and the result of the convergencypro�le is not studied, but

further analysisof the convergencyissuewill be oneof our future work.
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(a): red:T12 green:T �
12 blue: T � 1

21 (b): red:T21 green:T �
21 blue: T � 1

12

(c): forward registration process (d): backward registration process

Figure 5.7: (a) and (b) are the visual results for the forward and backward point
matching processesrespectively. The red and blue triangles and the greenstars are
the warping results of the black crossesby the transformations speci�ed in the corre-
sponding �gures. (c) and (d) are the plots of the sum of squareddistances(SSD) for
input point setswith di�eren t standard deviation of gaussiannoise.
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(a) (b)

Figure 5.8: (a): Brain image with the extracted point sets. (b): Testing point sets
(blue circles) with the referencepoint sets(black crosses).
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(a): red:T12 green:T �
12 blue: T � 1

21 (b): red:T21 green:T �
21 blue: T � 1

12

(c): forward registration process (d): backward registration process

Figure 5.9: (a) and (b) are the visual results for the forward and backward point
matching processesrespectively. The red and blue triangles and the greenstars are
the warping results of the black crossesby the transformations speci�ed in the corre-
sponding �gures. (c) and (d) are the plots of the sum of squareddistances(SSD) for
input point setswith di�eren t standard deviation of gaussiannoise.
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Figure 5.10: Brain imagewith the representing point set.
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(a): small deformation (b): large deformation

(c): gaussiannoiseadded,S.D = 2 (d): outlier added,proportion = 0.5

Figure 5.11: Column 1 and 2 areexamplesof small deformationand largedeformation
respectively. (a),(b) are the point set without any noiseand outliers. In (c), positions
of the points are perturbed by gaussiannoisewith standard deviation = 2. In (d),
outliers are addedto the referencepoint set.
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(a): red:T12 green:T �
12 blue: T � 1

21 (b): red:T21 green:T �
21 blue: T � 1

12

(c): forward registration process (d): forward registration process

(c): backward registration process (d): backward registration process

Figure 5.12: Column 1 and 2 are the results for registering referencepoint setswith
small and large deformation respectively. (a) shows forward registration results for
small deformation with outlier proportion = 0.1. (b) shows the backward registration
results for large deformation with gaussiannoiseof S.D = 4 added. (c)-(f ) are the
plots of the sumof squareddistances(SSD)for input point setswith di�eren t standard
deviation of gaussiannoise. While (c),(d) are for the forward registration process,
(e),(f ) are for the backward one.
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(c): forward registration process (d): forward registration process

(c): backward registration process (d): backward registration process

Figure 5.13: Column 1 and 2 are the results for registering referencepoint setswith
small and large deformation respectively. (a)-(d) are the plots of the sum of squared
distances(SSD) for input point setswith di�eren t proportion of outliers added. While
(c),(d) are for the forward registration process,(e),(f ) are for the backward one.
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(a): forward registration process (b): forward registration process

(c): backward registration process (d): backward registration process

Figure 5.14: Column 1 and 2 are the results for registering referencepoint setswith
small and largedeformationrespectively. (a)-(d) arethe plots of the consistencyerror,
measuredby k T12 � T21 � I kF for the input transformation pair and k T �

12 � T �
21 � I kF

for the GTLS output. While (c) and (d) are plots under di�eren t S.D of gaussian
noise,(e) and (f ) are plots for di�eren t proportion of outliers added.
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(a): I 1 (b): I 2

(c): I 2's boundary on I 1 (d): I 1's boundary on I 2

Figure 5.15: Registeringpair I 1 and I 2.
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(a): T12 (b): T21

(c): T � 1
21 (d): T � 1

12

(e): T �
12 (f ): T �

21

Figure 5.16: Registration results for the forward and backward registration process
are shown in column 1 and column 2 respectively.
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(a): red:T12 green:T �
12 blue: T � 1

21 (b): red:T21 green:T �
21 blue: T � 1

12

Figure 5.17: The registration resultsfor the forward and backward registration process
are shown in (a) and (b) respectively.

(a) (b)

(c) (d)

Figure 5.18: ConvergencyPro�le (CP) examplefor experiments of brain point sets:
(a): Small deformation + noise. (b): Large deformation + noise. (c): Small defor-
mation + outliers. (d): Large deformation + outliers. The noise in (a) and (b) is
gaussiannoisewith zeromean,S.D = 4. Outlier proportion = 0.4 in (c) and (d).
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(a) (b)

(c) (d)

Figure 5.19: The meanvalue(MeanCP), togetherwith the maximum value(Max CP),
minimum value(Min CP) and +/- 1 S.D. from the meanvalue(Mean CP+1SD/Mean
CP-1SD) of the convergencypro�le from the studiesof di�eren t amounts of noiseor
outliers. (a): Small deformation + noise. (b): Large deformation + noise. (c): Small
deformation + outliers. (d): Large deformation + outliers. The number of studiesin
each caseis 5.
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(a) (b)

(c) (d)

Figure 5.20: Zoom in of Fig.5.19
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(a) (b)

(c) (d)

Figure 5.21: Percentage changeof the convergencyerror shown in the convergency
pro�les in Fig.5.18. (a): Small deformation + noise. (b): Large deformation + noise.
(c): Small deformation + outliers. (d): Large deformation + outliers.

(a) (b)

Figure 5.22: (a): An exampleof convergencypro�le which cannot convergemonoton-
ically. (b): The percentage changeof the convergencypro�le.

48



(a) (b)

Figure 5.23: Input to the GTLS systemwhich causethe problematic convergencyin
Fig.5.22. (a): The purple triangles are transformed from the blue circlesby transfor-
mation matrix T12. (b): The purple triangles are transformed from the blue circles
by transformation matrix T21. T12 and T21 is the transformation matricespair for our
systeminput.
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Chapter 6

Conclusion

6.1 Summary

We presented a new framework for modelling the inverseconsistencyin registration,

by simultaneously consideringthe stochastic uncertainties on both the transforma-

tion matrices and the inverse consistent constraint through the GeneralizedTotal

Least Square�tting from the transformation matricesobtained after the registration

process.Our approach can be adopted to medical imageregistration problem [35] or

generalregistration problem [36].

With our stochastic inverseconsistent model, the uncertainty inherited from the

discrete nature of the information sourcesis considered. Such uncertainty is illus-

trated in the wrong global maximum in the matching criteria such that the regis-

tration results obtained from conventional registration algorithms cannot achieve the

real ground truth. The enforcement of the stochastic property on theseforward and

backward transformation matrices provides a meanapart from the matching criteria

to achieve registration results which are closerto the ground truth.

Due to the underlying error within the forward and backward transformation ma-

trices, deterministic imposition of the inverseconsistent constraint from theseerratic

matriceswill not help to improve the registration results in systematicway. Through

our stochastic inverseconsistency, the source-destinationsymmetric property will be

enforcedin a more systematic and 
exible way such that the perfect inverseconsis-
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tency will be obtained when the uncertainty in the transformation is already mini-

mized. In addition, our stochastic model can be imposedwith the considerationof

any other similarit y constraints without compromisingthe weighting betweenthe sim-

ilarit y measuresand the inverseconsistent constraint, it is theoretically moresensible

than the incorporation of sub-objective cost function.

6.2 Future Work

In this thesis we are aiming at providing a new framework for modelling the inverse

consistencyin a post-registration fashion. In the future, we will examinewhether it

is better to incorporate the total least square �tting during the whole registration

process.The a�ne transformation �tting will be extendedto piecewise-a�ne or non-

rigid deformation�tting to observethe possibleimprovement of the registration results

in high dimensionaldeformation through inverseconsistency.

The stochastic property of the individual element of the forward and backward

transformation matrices, their relationship within the matrix and also the interre-

lation among a pair of transformation matrices will be examinedextensively. The

relationship of the inverseconsistent model with input forward and backward trans-

formation matricesand the stochastic property representing the imperfectnessof the

inverseconsistent constraint will also be studied in the future work. All of theseare

potential meansto establishbetter registration results through inverseconsistency.
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